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Abstract: The diagnosis of misalignment plays a crucial role in the area of maintenance and repair
since misalignment can lead to expensive downtime. To address this issue, several solutions have
been developed, and both offline and online approaches are available. However, online strategies
using a small number of sensors show a higher false positive rate than other approaches. The problem
is a lack of knowledge regarding the interrelations of a fault, disturbances during the diagnosis
process, and capable features and feature vectors. Knowledge discovery in database is a framework
that allows extracting the missing knowledge. For technical systems, optimal results were achieved
by aligning (partially) automated experiments with a data mining strategy, in this case classification.
The results yield a greater understanding of the interrelations regarding parallel misalignment, i.e.,
feature vectors that show good results also with varying load and realistic fault levels. Moreover,
the test data confirm a specificity (range 0 to 1) for classification between 0.87 and 1 with the found
feature vectors. For angular misalignment, potential vectors were identified, but these need further
validation with a modified experiment in future work. For the study, two induction motors with
1.1 kW and 7.5 kW were considered. Furthermore, the findings were compared with additional
motors of the same rated power. The findings of this work can help to improve the implementation
of sensorless diagnostics on machines and advance the research in this field.

Keywords: condition monitoring; data mining; induction motor; knowledge discovery from data;
misalignment

1. Introduction

Coupling wear, fatigue cracks, or rotor-to-stator rubbing are the results of improper
alignment between an electric motor and its load machine [1]. To avoid costs for repair and
unexpected downtime, plant operators need to take care that systems are properly aligned.
During the mounting process of a new system or after maintenance, optical approaches are
widely used for alignment. Although the process is time-consuming and requires special
equipment and know-how, the risk of an accident decreases. Unfortunately, misalignment
can also occur during operation through thermal expansion or vibration. In this case,
Motor Current Signature Analysis (MCSA) can be applied. This approach uses specific
components of the spectrum from motor to the current to recognize a change in alignment.
Unfortunately, these components are also related to the load and other faults like broken
rotor bars or eccentricity. In real applications, this multi-dependency of the features leads
to false positives and poses a serious problem for decision makers. Furthermore, this issue
cannot always be solved by installing additional sensors because of higher cost, harsh
environmental conditions, and the fact that each component increases the fault risk.

The question is how to improve the quality of an online diagnosis system such that
misalignment can be diagnosed based only on electrical signals. Such an improved system
needs to consider online diagnosis, minimal false positive indication, and minimal number
of sensors, and should be easy to set up. In order to find such a solution, a fundamental
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understanding of the fault is necessary. Knowledge Discovery in Database (KDD) is an
approach that provides sufficient knowledge. According to [2], the KDD process is defined
as follows: The process of using the database along with any required selection, preprocessing,
subsampling, and transformations of it; to apply data mining methods (algorithms) to enumerate
patterns from it; and to evaluate the products of data mining to identify the subset of the enumerated
patterns deemed “knowledge”.

In addition, a unified framework for KDD and its objectives are described in [2]. The
process was designed to find patterns within the data that are expected to fulfill the needs
of an improved diagnosis system as mentioned above. Besides steps for data formatting
and data visualization, KDD includes the better known Data Mining (DM) approach, which
is the main process. Nevertheless, it is necessary to emphasize that KDD is more than DM
because the results are subject to further assessment.

Although the idea of KDD is applied in many research fields, the research in technical
diagnostics of rotating machines has been dominated by the validation of expert knowledge,
and the implementation of novel classifiers partly in combination with expert knowledge.
Both approaches have met the needs in research for a long time. This is why MCSA
is one of the best known approaches to implement expert knowledge in this field. An
overview of the research in condition-based monitoring, respectively, technical diagnostics,
is given in [3], where the literature research is separated into several categories including
feature-based approaches and Artificial Intelligence. Examples of research on features
are [4,5], who show the effects of misalignment on the motor current spectrum. In addition,
ref. [6] compared the MCSA approach with vibration analysis with good results for the
analysis of single components within the spectra. This knowledge is sufficient for many
applications, but MCSA fails in the case of varying load, as examined in [7]. The reason is
that the load affects the same spectral component as misalignment. In addition, various
faults also affect the same spectral components as misalignment, as shown in [8]. As a
consequence, new concepts were developed that are able to deal with load dependencies.
These concepts use new media for calculating the spectra, such as instantaneous power,
which was compared with current in [9]. Another alternative is to use load-independent
states like the start-up of a machine. This idea leads to Advanced Transient Current
Signature Analysis (ATCSA), as examined in [10]. The drawback lies in the fundamental
idea of the concept, because a start-up or a similar load-independent state is necessary
for a valid classification, which is not always possible during the operation of a motor.
Another approach developed in research on technical diagnostics are machine learning
algorithms. The power of multidimensional classifiers is shown in [8], where several
time-domain features were calculated, and in [11], where features were calculated using
an auto recursive model. Furthermore, in [12], wavelet transform was combined with a
convolutional attention neural network with good results for multiple faults, but without
considering the shift in operational point. Two different motor faults, namely bearing
faults and broken rotor bars, were classified in [13] with a convolutional neural network in
combination with automated feature extraction. High-quality features were named by [14]
as the key to good classification, but they require expert knowledge and human intervention.
To solve this issue, deep believe networks have been applied. Although these contributions
show the power of modern classifiers, they rather aim to improve the classification process
that is based on the known expert knowledge than to find fundamental relationships
between (new) features and the target. In addition to the listed literature, some works
address these relationships. For example, ref. [15] combined machine learning with expert
knowledge of MCSA to extract discriminant features. The motivation was to improve
traditional machine learning classifiers because they are less affected by data availability
than deep learning models, as investigated in [16]. Although the research showed good
results for the classification of different faults, KDD was not applied and the experiments
deviate from realistic applications. Thus, no statement regarding the limits of the features
was possible. Another suggestion to address the problem of missing data for Artificial
Intelligent models was made in [17], with the idea being to gather data provided directly
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by industrial processes. The incoming data were processed using an anomaly detection to
create training data for a classifier. The drawback of this approach is the access to plants
and missing process control, which makes the approach reactive and time-consuming, and
imbalanced data cannot be avoided. A divergent way that was shown in [18] is inspired by
ATCSA. First, a model was used to identify and analyze a detail of the wavelet transform;
then pattern recognition was applied on that detail to extract features for classification. The
transfer of already gathered knowledge is the objective in [19]. They trained a convolutional
neural network and transferred the learned parameters using a transfer learning technique,
with the disadvantage that the knowledge is implicit. In a previous work [20], DM was
applied on experimental data in order to find a universal feature set for the classification of
misalignment. For DM, a pool with general and expert features was created. The result
of that work were several feature sets with a classification error below 1%. Although the
results of the DM were good, they do not fulfill the needs of a KDD process. In order to
achieve knowledge about misalignment, additional steps like visualization and evaluation
are needed. For visualization, a survey of different approaches is given in [21]. Furthermore,
ref. [22] evaluated a current approach, elliptic paired coordinates, which should allow a
lossless depiction of high-dimensional data. The evaluation of the results from DM can
be done through 2D interpretation of the results combined with various criteria such as
understandability, expressed through the number of features needed for classification, or
interestingness, which is a combination of validity, novelty, usefulness, and simplicity. In a
current study [23] in the field of technical diagnostics, KDD and DM were used to identify
causal insights for the prediction of wearing at the cutting edge of a milling machine.
Beyond the field of technical diagnostics, the focus on KDD is higher. For example, ref. [24]
applied KDD with different DM techniques (association analysis, sequential pattern mining,
and clustering) to find answers for different medical questions. In addition to the applied
DM techniques, regression, classification, anomaly detection, and data warehousing were
identified.

To overcome the lack of information regarding misalignment and the lack of a research
strategy in the field of technical diagnostics, this work contributes an exemplary KDD
process aimed at achieving knowledge about misalignment under realistic conditions.
The focus is on feature vectors with highly discriminant capabilities for multiple levels
of misalignment and without faults in the data structure. In order to achieve causal
insights, the KDD framework is extended to include an experiment. The measure has
a crucial impact on the whole KDD process when experiment and DM are aligned and
interaction between the growing knowledge and the appropriation of new data takes place.
Furthermore, the measure fulfills the data science requirement of high-quality data while
allowing the number of samples for each class to be increased by automation. In addition,
the experiment allows gathering data for both analysis and testing with different machines.
The remainder of this paper is organized as follows. In Section 2, the methodology used for
the KDD process, the DM, and the experiment is described, while Section 3 presents the
results and a discussion of the findings.

2. Materials and Methods

In this section, the methodology for the analysis of misalignment using KDD is
presented. In Section 2.1, an overview of the KDD process is given that describes the role of
DM and the experiment in the whole process. In Section 2.2, the experiment is described,
with details on the experimental setup, the devices used, and the experimental sequence.
Sections 2.3 and 2.4 present the DM process and how it is applied to find fault-related
features and interpretable patterns from the experimental data. To this end, DM is divided
into two steps, feature extraction and feature selection, which are coordinated with the
experiment.
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2.1. Knowledge Discovery

In the following, the applied KDD process is described and discussed. The original
framework introduced in [2] is depicted and compared with the suggested framework,
which includes the experiment illustrated in Figure 1.

Figure 1. Original framework for KDD. (Top) original framework; (bottom) modified framework for
consideration of experimental data.

The original framework shows some drawbacks regarding the databases, because
not all databases were created to gather the data required for KDD and the collection of
additional data is not always possible. As a result, data imbalance could affect the KDD.
In the case of technical diagnostics, especially for rotating machines, data can be created
through a coordinated experiment. In that case, the same number of samples per class can
be collected. Moreover, the number of samples can be set to the acquired amount. In
addition, the experiment can be designed for the desired DM technique that is in this case
the classification. In order to realize all the requirements, automated or partially automated
experiments are needed. A detailed overview of the partially automated experiment is
presented in Section 2.2.

After the selection of the target data, preprocessing is applied. In the case of the
suggested framework, this includes feature extraction, scaling, and transformation. Feature
extraction means applying a metric on a time series or a spectrum that leads to compression
of the data and creates interpretable features. A detailed description of the applied feature
extraction is provided in Section 2.3. Furthermore, the algorithm selected for the DM
requires scaling, which is necessary for algorithms based on distances, transformation,
and data combination. While transformation does not play a role in the applied DM, the
combination of the data does. Details about the combination of the data are provided in
Section 2.4.

In the data mining step, information is extracted from data by applying feature selection.
Furthermore, feature selection is well coordinated with feature extraction, which is a crucial
part of the discovery strategy. According to [25] these algorithms pull out important features
and allow understanding the attributes or variables. There are two types of feature selection
algorithms: filter and wrapper. A comparison of the two was conducted in [26] with similar
results for accuracy and differences in number of features and computational time. A crucial
aspect for the proposed KDD is the characteristic of wrapper-type feature selection, which
allows evaluating combined features, as mentioned in [26]. Algorithms such as Ant Colony
Optimization (ACO) were developed to search for such feature combinations and are
capable of finding the global optimum [27]. The drawback of this kind of algorithm is the
search time, especially in combination with big search spaces. One solution is to combine
filter and wrapper types. A systematic approach for identifying the signal-generating
processes of a time series is presented in [28]. The methodology considers multiple sources
with different periods, which leads to a combination of filter- and wrapper-type feature
selection.

The interpretation of the results from the data mining step is the key part of KDD. In this
step, the enumerated results are checked for useful patterns that will allow interpretating
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the relationship between the target (misalignment), the disturbance (load), and the features
for the diagnostics. An automated KDD process can find so many results in a large database
that a human cannot process them. Because of this, one measure within the interpretation
step is to limit the number of results. In order to do this in an automated process, a criterion
is applied. In the literature, different criteria are defined; for example, understandability,
validity, novelty, usefulness, simplicity or the overall measure interestingness as in [29].
The applied data mining algorithm is configured to enumerate all feature sets that achieve
a given error rate. For the interpretation of the results, simplicity is selected to shrink the
overall number. The criterion is defined as:

m ≤ D + 1 (1)

where m is the number of features of a feature vector, D is the number of disturbances,
and 1 stands for the target. The number of disturbances depends on the expected effects
on the system that is undergoing technical diagnostics. In the experiment conducted, the
number of disturbances was one because only the load was considered. This means that
only feature vectors with two features are interpreted. Thanks to the selected criterion, the
second goal of preparing the visualization is easy, since no processing is needed. In all
cases where the feature vector has more than two dimensions, a strategy for visualization
is needed.

2.2. Experiment

This part details the experiment that was conducted to acquire the data used for KDD,
including testing with additional data. The original experiment was developed in [20] with
the aim of applying DM. As described above, DM is just one step in the whole KDD process
and cannot lead to valid knowledge, as the interpretation of the results from the previous
work showed. Some of the identified issues with previous results need to be addressed
by the design of the experiment, mainly regarding the definition area of the measured
states. In addition to the original experiment, data with a smaller scope was gathered with
additional machines to assess the results.

The experiment was designed to acquire data for fault misalignment, which is a
displacement between the rotational axis of the motor shaft and the load machine shaft.
This displacement leads to the above-mentioned issues when the machines are coupled.
There are two types of misalignment, parallel misalignment (PM) and angular misalignment
(AM). In the case of PM, the rotational axes are parallel but do not intersect. In the case of
AM, the rotational axes are not parallel.

2.2.1. Experimental Set-Up

In order to set up multiple types and levels of misalignment in combination with
different load levels, a motor test bench was used. As depicted in Figure 2, the misaligned
motor, called device under test (DUT) in the following, was coupled with a brake using a
claw-type coupling. The brake was an induction motor (IM) with 7 kW rated power and a
control system that allows varying the torque. During operation, the DUT was powered by
the mains and mounted on a mounting plate that allowed alignment and misalignment
only in one dimension, while the positions in the remaining dimensions were forced. The
forcing was realized through a check rail and a body stop.

The experiment comprised PM and AM. The misalignment type and the level for each
DUT could be set through distance plates between the mounting plate and the ground
plate. For this purpose, distance plates with different thicknesses were combined, with
the smallest one being 0.025 mm, and placed at the front and rear of the DUT. Diverse
devices were used for acquiring data. The measurement equipment was divided into three
categories with the following objectives:

• Measurement of signals for data processing
• Offline acquisition of misalignment for quality management
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• Online acquisition of process signals for quality management

Figure 2. Experimental setup. (Top) coupled motor; (bottom) measurement devices.

For the measurement of the signals for data mining, a four-channel oscilloscope
(Rohde&Schwarz RTE 1034) with a sample frequency of 10 kHz was used. With this device,
three terminal currents of the DUT were measured via current transducers (LEM IT 200-S
Ultrastab) and shunts (Yokogawa 19/SH5/BNC/0.05). The fourth channel was used to
measure one line-to-line voltage via a differential probe (Rohde&Schwarz RT-ZD01). To
ensure the quality of the experiment, additional information was acquired. The levels
of misalignment were measured after each adjustment with an optical alignment system
(easyLaser XT660) with a resolution of 0.001 mm for PM and 0.001 mm

100 mm for AM. It must
be noted that AM is the gap at the outer distance of a coupling with a diameter of 100 mm.
The set-up of devices can is shown in Figure 2. During the operation of the motor, several
process signals were observed for quality management purposes: input power via a power
analyzer (Yokogawa WT3000), speed and torque via a torque measurement shaft (Kistler
4503A50L), as well as environmental and motor temperature via a temperature probe (Texas
Instruments LM35DT). Additional information about the sensors used is given in Table 1.

Table 1. Details about sensors used.

Device/Sensor Type Specification

Oscilloscope RTE1034 4-channel, 350 MHz, 5 GSa
s

Current transducer IT 200-S ±200 A
Shunt 19/SH5/BNC/0.05 5 Ω± 0.05%
Differential probe RT-ZD01 1000 V (RMS)
Torque measurement shaft 4503A50L ±50 Nm (±10 Nm)
Temperature sensor LM35DT /
Alignment system XT660 /
Power analyzer WT3000 4-channel
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2.2.2. Scope of the Experiment

With the set-up described above, 42 states were created as a combination of the
following parameters:

• Motor size (kW): 1.1 and 7.5
• Load (% of rated power): 100–92, 90–82, 80–72
• Misalignment (mm): aligned = 0.02 (PM, AM), 0.05 (PM), 0.08 (PM), 0.11 (PM),

0.05 (AM), 0.08 (AM), 0.11 (AM).

The experiment included two motors of the same type (four-pole IM). With each
motor, 21 states were created as a combination of misalignment and operational point,
i.e., load. These measured states are primary classes that can be combined to create new
classes containing a variation of a parameter. The variation within a class allows searching
for features that are independent of the varying parameter. Regarding the load, several
modifications were made compared to the previous work. The first optimization regarded
the location of the states and thus the primary classes. An analysis of the previous results
had shown that automated feature extraction based on MCSA might fail to select the right
peak if the dominant peaks are crowded and spectral leakage occurs due to a bad signal-
to-noise ratio. In order to improve the reliability of the feature extraction, the operational
points were moved close to the rated power; 100%, 90%, and 80% of the rated power
were selected. Due to this measure, no drawbacks were expected for the KDD process
because the dominant effects should be captured. For the results to be applicable, it needs
to be checked whether the features can be used at partial load or whether noise becomes
dominant. The second optimization was to take into account continuity of the load and the
DM with a classifier. In the previous experiment, only samples with a small definition area
around the defined operational points were considered. That allowed distributed clusters
of one class and settlement of other groups in the gaps. This problem and the solution
are depicted in Figure 3. Such feature sets achieve low classification errors but will fail
in real application. The measures applied to avoid such a selection, included defining an
operational area instead of an operational point and using small step sizes to close the gaps
between the classes/states. This led to states with an eight percentage points definition area
of the load and two percentage points distance to the next state. An alternative could be
the application of a regressor instead of a classifier in the DM step. This idea was discarded
as it would have required substantial modifications in the data processing, but will be the
subject of future work.

gap

feature 1

fe
at

ur
e

2

group 1
group 2

intersection

intersection

feature 1

fe
at

ur
e

2

group 1
group 2

Figure 3. Description of gaps and strategy for avoiding these results during data mining.
(Left) clusters with gaps and another group in between; (right) expansion of the cluster provoked
worse error rates during data mining.

The values for PM and AM were derived from a best practices guide (handbook of
OPTALIGN smart RS5) for shaft alignment published by Prueftechnik, a producer of optical
shaft alignment systems; see Table 2.
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Table 2. Recommended deviation for shaft alignment.

Type
Threshold

Acceptable (mm) Excellent (mm)

Parallel 0.09 0.06
Angular 0.07 0.05

Due to the selected parameter variation, it is not possible to create a case to search
AM with PM as disturbances and vice versa; see Section 2.4. The examination of the faults
had to be separate. Note that even with an optical shaft alignment system and distance
plates of 0.025 mm, the states of PM can have an unwanted amount of radial misalignment
and the states of AM can have an unwanted amount of parallel misalignment. In order to
shrink the unwanted effect, a threshold of ±0.02 mm for PM and ±0.02 mm

100 mm for AM was
defined.

The experiment with 42 states was conducted twice. In the first round, data was
acquired for mining and in the second round for testing. Both rounds differed in the scope
of the data, which was higher for analysis, while additional DUTs were used for testing. In
the first round, 50 signal samples with a length of 100 s for each state were acquired, which
led to a total measurement time of approximately 60 h without adjustments. For testing, the
number of samples for each state was decreased to 125. The experimental cycle comprised
three measures of adjustment, as depicted in Figure 4.

The first step was to align the DUT without any distance plate between the mounting
plate and the ground plate. This step also included correction of the soft foot, meaning
that the motor feet with four connection spots only touch the ground in three spots. This is
due to manufacturing tolerances and leads to bracing of the housing if all connection bolts
are tightened. Without compensation, the alignment is not controllable. After alignment,
the DUT ran at the rated load until a steady state temperature was reached. With this
measure, the influence of temperature on the data should be avoided because temperature
is not declared as a dominant influence. This step was followed by measurement of the
mentioned quantities. Then the load was decreased automatically in 75 steps, 25 steps per
group, and the next measurement started without temperature correction. Once all load
variations had been measured, the level of misalignment had increased. The earlier steps
were repeated until all states were set, then the next DUT was mounted.

Figure 4. Experimental cycle. For the parameter values, only the index is given.
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2.3. Feature Extraction and Preprocessing

Feature extraction is the process that creates or extracts features from signals. With
this measure, the data is compressed while the degree of physical interpretation increases.
With feature extraction, a feature stock is created from which a feature selection algorithm
selects the combinations of interest. The feature stock benefits from both general metrics
and expert features derived from MCSA. The process applied and some examples of the
feature extraction are depicted in Figure 5.

Figure 5. Overview of feature extraction with examples of the created features.

As shown, there are three steps: calculation of virtual sensors, transformation, and
application of a metric. A feature extractor is defined by the algorithms applied in each
step, respectively, by whether any algorithm is applied at a step. All combinations lead to
five feature extractors, which were applied to the collected data (see Section 2.2):

1. Time-domain features extractor
2. Space vector time-domain features extractor
3. Frequency-domain features extractor
4. Space vector frequency-domain features extractor
5. MCSA features extractor.

In addition to the above-mentioned steps, preprocessing of the data took place. This
step is not part of the feature extraction but determines how many samples of each feature
are available for DM and testing. Based on the experience gathered in the previous study,
1000 is an adequate number of samples. For the first four extractors, that number was
achieved by splitting each signal with a length of 100 s into 5 s sequences. In the case of the
MCSA features, the original 100 s were split into 25 s. This is because previous analyses had
shown that a higher spectral resolution is needed for correct automated peak selection after
the calculation of the harmonic. The different numbers of samples were adapted by cloning
each sample of the MCSA extractor five times. In the case of the extractors that process
data with the Fourier transform, the Hann window was applied and the spectra was scaled
with the fundamental frequency and then expressed in decibels. The window function
improved the determination of the correct feature values by suppressing the leakage effect,
while the scaling emphasized the relevant components of the spectra.

Time-domain features were calculated after preprocessing by simply applying different
metrics to describe signals or statistical distributions, such as root mean square or rectified
value.

Space vector time-domain features were calculated in the same way as the time-domain
features, but the metric was applied to different signals coming from the space vector
transform. The signals used were:

• Length of the space vector
• Angle of the space vector
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• Fluctuation of the space vector length
• Fluctuation of the space vector angle [30].

All signals were derived from the space vector components in polar coordinates, which
were calculated at every point in time.

Unlike the time-domain features, the frequency-domain features were calculated after a
Fourier transform. The resulting spectra were then split into 20 segments in order to get a
deeper search. This was done because features were calculated based on the input, which
could be the full spectrum or only a single band. If the input is the full spectrum and the
automated feature extraction algorithm searches for the peak value, it would always find
the fundamental component. By segmenting the spectrum, peaks could be determined for
twenty bands. The number of features from the spectrum increased by a factor of twenty.
The extractor uses statistical metrics and searches for the first five highest peaks and their
position within the band.

Space vector frequency-domain features were processed in the same way as frequency-
domain features. The process was only applied to the virtual sensor signals from the space
vector transform.

MCSA features were calculated in the same way as fault-correlated frequencies and
their amplitudes were calculated according to MCSA as in [5]. In addition, the slip, the
winding harmonics, and the principal slot harmonics were calculated. In the first step, the
Fourier transform was applied and then the equations from MCSA were applied to find
the position of the fault-correlated frequency. In order to avoid any loss of information, all
orders within the spectra were calculated.

After automated creation of the feature stock, preprocessing is necessary to make the
data suitable for DM, respectively, feature selection. The first process was normalization
with z-score, which uses the variance to scale the features. This measure is necessary
if distance-based classifiers are to be applied. The second step was data cleaning, were
non applicable features and samples with forbidden numeric values like infinity and not
a number, were deleted. These values can be a result of automated feature extraction,
especially in the case of the expert features for which automated peak selection was applied.
Moreover, all features with a variance equal to zero were deleted. No further transformation
of the data was applied.

2.4. Feature Selection

The second step in DM is feature selection, which will be described in the following,
including the algorithms used and the cases examined.

The selected feature selection algorithm was a wrapper-type, bottom-up algorithm
that sequentially adds features in order to reduce the failure rate. For the classification, a
k-nearest neighbors (kNN) classifier with k = 11 was used. The kNN classifier was applied
because of the simple training and approximation, and the low number of parameters. The
drawbacks such as storage usage and slow approximation can be neglected for the KDD
process. The parameter k was found by a trial-and-error strategy for which enumerated
feature vectors were used as optimization criterion. In order to avoid over-fitting, the
classifier was embedded into 10-fold cross-validation. The validation algorithm calculates
the average of the error rate over ten turns with a random selection of samples for training
and classification. The building of the feature vector stops when an error rate below 1% is
reached or if there is no progress.

In order to find features for different cases, new classes were created by merging and
combining several primary classes. The new classes were then processed by the feature
selection. Each case can be described with three parameters: target (T), restriction (R),
and disturbance (D). For all parameters, one of four quantities describing a primary class,
respectively, a state, are possible: PM, AM, load, and motor size. The target parameter
decides which quantities are to be classified, while disturbance is an unwanted but un-
avoidable influence. Both parameters need to vary in the resulting class. Restriction limits
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the variation of a disturbance to a single value, whereby the search space is reduced. The
following values are possible:

• Target: parallel misalignment, angular misalignment
• Restriction: DUT 1, DUT 2 (motor size)
• Disturbance: load.

For each of the defined cases, 15 feature selection iterations were conducted. With
every iteration, the feature stock is reduced by the previously found features. This measure
was applied due to two issues: redundant features within the feature stock and irrelevant
features likely to be selected by the algorithm. In order to deal with these issues, it is
necessary to enumerate all results that fulfill the defined criterion and to interpret all
findings. A drawback of the suggested approach is that important features might only be
available once, and thus some feature combinations cannot be found. In order to solve this
problem, a postprocess was proposed that uses ant colony optimization, but this did not
lead to any improvement.

3. Results

In this section, the findings for the four described cases will be discussed. The findings
will be discussed in two subsections starting with the results for PM in Section 3.1 and
followed by those for AM in Section 3.2.

Each discussion of the enumerated feature vectors is preceded by a short table showing
the Pearson correlation and the error rate for both the analysis and the testing data. It lists
only the discussed feature vectors that achieved the lowest error rate with two features, as
claimed by Equation (1). A complete list of all feature vectors can be found in Appendix A.

The correlation coefficient gives first insights into the data and helps to understand
the selection. In addition to the correlation between the feature and the target as well
as between the feature and the disturbance, the correlation between the feature and the
unwanted type of misalignment is given. This is because the experimental design did
not fully avoid mixed misalignment. In the second step, a selection of interesting feature
vectors will be visualized in order to assess the patterns and the behavior of the analysis
and test data.

3.1. Parallel Misalignment

In the following, the feature vectors for PM of a 7.5 kW motor will be discussed. A
selection of the enumeration of the results from the DM are listed in Table 3.

Table 3. Reduced list of results for parallel misalignment of the 7.5 kW motor.

Feature Extractor Metric 1

Error Rate (%) Correlation (1)

Analysis Test
Analysis Test

Load PM AM Load PM AM

Selection 1
MCSA (I1) BB2 (k1+) −0.087 0.962 0.619 −0.23 0.929 0.808
Signal (I2) SRM 0.96 0.011 0.045 0.962 0.002 0.009

complete vector 0 0.17 / / / / / /

Selection 9
MCSA (I3) ECC1 (k1+) −0.139 0.96 0.576 −0.254 0.947 0.826
Space Vector (r) SF −0.254 −0.396 −0.432 −0.063 −0.619 −0.433

complete vector 0.742 6.13 / / / / / /

Selection 10
MCSA (I3) BB2 (k3+) −0.139 0.96 0.576 −0.254 0.947 0.826
MCSA (I2) n −0.939 −0.07 −0.065 −0.91 −0.092 −0.127

complete vector 1.075 0.3 / / / / / /

Complete list of results in Appendix A; 1 Details in Appendix B.
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The complete table only lists the first 10 feature vectors chosen by the feature selection
algorithm, i.e., those with the lowest error rate. The enumeration shows features calculated
by the Signal, the Space Vector Signal, and the MCSA feature extractors. It can be observed
that the feature selection combined a highly load-correlated feature with a highly PM-
correlated feature in order to achieve a good classification with an error rate below 1%.
Regarding the correlation coefficients and the error rate, the results were confirmed by
the test data. The enumeration contains features like ECC1, ECC2, which are known to
correlate with eccentricity, and BB2, which correlates with a broken rotor bar. As they
are all sensitive to changes in air gap magnetization, their occurrence is expected. In
addition, the results show the load and AM dependency of all features correlated with PM.
The observation supports the assumption that combined features are needed for reliable
diagnostics. Although the results are as expected, it is not possible to transfer the findings
to the smaller machine with 1.1 kW. In order to find an explanation for this, the patterns
need to be assessed in detail. As described above, visualization and assessment are crucial
steps in KDD. Some interesting results will be examined in the following.

Figure 6 shows the first example from the findings with the best possible classification,
meaning an error rate of zero.
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Figure 6. Feature vector for diagnosing PM of a 7.5 kW motor with two components and an error rate
of 0. (Left) data for the analysis; (right) test data.

It can be seen that the samples form well-structured clusters without any intersection.
Furthermore, each of the 12 primary classes can be seen in the two selected dimensions. In
the direction of the load-correlated feature, the gaps of two percentage points, set during
the experiment, occur between all primary classes. In the direction of the misalignment, the
gaps vary. This behavior can be explained by the different levels of misalignment during
the adjustment. When studying the test data, the same patterns can be recognized. The only
remarkable difference is the location of the samples in the direction of the misalignment-
correlated feature. In order to explain this observation, the values for misalignment need
to be considered. Doing so reveals that for the analysis data, the level of misalignment
was lower and led to a smaller degree of damping. For the test data, sensitivity equals 1
and specificity equals 1. Similar results could be achieved with each of the three terminal
currents and the MCSA-ECC1 equation.

Another alternative to the feature sets presented above is depicted in Figure 7.
Although the pattern is similar, the classification performance is worse. The feature set

uses speed to deal with the load. This is why the pattern is mirrored compared to Figure 6
because the speed is inversely proportional to the load, as also expressed by the correlation
coefficients. The worse classification performance can be explained by the approach applied
for speed estimation. The speed was calculated using the principal slot harmonics in the
spectra with automated peak selection, which can fail in some cases, resulting in diffuse
primary classes and outliers. Nevertheless, the finding is that calculating the speed via the
principal slot harmonics can improve the implementation of technical diagnostics. The
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comparison of the patterns with the test data shows the same behavior as discussed above.
For the test data, sensitivity equals 0.978 and specificity equals 0.975.
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Figure 7. Feature vector for diagnosing PM of a 7.5 kW motor with two components and an error rate
of 1.08%. (Left) data for the analysis; (right) test data.

A divergent pattern with a validation error of 0.74% is shown in Figure 8.
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Figure 8. Feature vector for diagnosing PM of a 7.5 kW motor with two components and an error rate
of 0.74%. (Left) data for the analysis; (right) test data.

In comparison to the feature vectors depicted above, this one leads to four clusters
that intersect at their borders. The primary classes cannot be seen, but a sequence of the
misalignment levels is visible. It is also remarkable that PM 0 and PM 2 show a wider
stray for the shape factor. Furthermore, compared to the other results, both features are
correlated with AM, but the shape factor has an inverse sign. The test data are comparable
with the analysis data. They both show the same clustering and the same sequence
of the misalignment. Differences can be observed in the classes PM 0 and PM 2, for
which the cluster shows a smaller stray for the shape factor. A comparison with the level
of misalignment during the experiment does not show any anomaly. For the test data,
sensitivity equals 0.845 and specificity equals 0.87.

The next case assessed is PM of a 1.1 kW motor with a selection of the enumeration
depicted in Table 4.

There are only five feature vectors that achieve an error rate below 5%, and the
selection deviates from the previous one. In this case, the features were calculated with
the Spectrum and the Space Vector Signal feature extractors. In all selections, the length
of the space vector is used to deal with the load. For PM, different peaks were identified,
with low correlation with the target compared to the previous case. The pattern discussed
later will show a non-linear trend of the feature. In order to discover such patterns it is
necessary to avoid filters in the preprocess. Regarding the load, the test data confirm the
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findings, but in the case of PM, the values differ. A comparison between the levels of PM
and AM for the measured states does not show any anomaly.

Table 4. Reduced list of results for parallel misalignment of the 1.1 kW motor.

Feature Extractor Metric 1

Error Rate (%) Correlation (1)

Analysis Test
Analysis Test

Load PM AM Load PM AM

Selection 1
SV (r) mean 0.961 0 0 0.962 0.011 −0.001
Spectrum (I1, Seg. 11) peak position 0.52 −0.299 0 0.284 −0.883 0.499

complete vector 0.217 0 / / / / / /

Selection 2
SV r RV 0.961 0 0 0.962 0.011 −0.007
Spectrum (I3, Seg. 10) peak position 0.577 −0.26 0 0.225 −0.897 0.511

complete vector 0.383 0 / / / / / /

Complete list of results in Appendix A; 1 Details in Appendix B.

In order to gain a better understanding of the selected feature vectors and the data,
some examples will be discussed. Figure 9 shows the first selection.
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Figure 9. Feature vector for diagnosing PM of a 1.1 kW motor with two components and an error rate
of 0.22%. (Left) data for the analysis; (right) test data.

With this pattern, it is possible to identify all primary classes that have clear borders
without intersection that show a sequence of the PM level. What is remarkable is the
arrangement of the data for PM 0 and PM 2 close to the rated load. The observed behavior
is the reason why the correlation coefficients are worse, but the error rate is adequate.
This finding illustrates why a classifier is used to find potential feature vectors. This
behavior cannot be observed with the test data. Also, if the level of misalignment differs
by approximately 0.006 mm and the unwanted influence of AM difference is 0.003 mm

100mm ,
the reason for the strong increase is not clear. A possible explanation is given in [9], where
the influence of rigidness on the correlation between instantaneous active power and
alignment angle is shown. Overall, the test data show a plausible arrangement of clusters.
With KDD, it was possible to identify an interesting effect for technical diagnostics. Further
adjustments of the experiment will clarify whether the observation was induced by the
experiment or by a characteristic of the machine. For the test data, sensitivity equals 1 and
specificity equals 1.

Similar results were achieved with the feature set depicted in Figure 10.
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Figure 10. Feature vector for diagnosing PM of a 1.1 kW motor with two components and an error
rate of 0.38%. (Left) data for the analysis; (right) test data.

The major difference is that for the analysis data, the peak for PM 3 lies outside the
observed segment. The observation reveals an issue with the definition of the segments.
If the origin of a moving peak lies close to the borders of the segment and moves outside
because of the definition area, the feature is useless since not all information is included.
For KDD, this means extending the segments, which has the drawback that other peaks
are covered. Another strategy is to align the center of the segment with the location of the
winding harmonics, which are mostly the origin. For the test data, sensitivity equals 1 and
specificity equals 1.

3.2. Angular Misalignment

The third case is AM of a 7.5 kW motor. A selection of the enumeration of the feature
vectors is depicted in Table 5.

Table 5. Reduced list of results for angular misalignment of the 7.5 kW motor.

Feature Extractor Metric 1

Error Rate (%) Correlation (1)

Analysis Test
Analysis Test

Load PM AM Load PM AM

Selection 2
Space vector (r) SRM 0.962 0.005 0.003 0.962 0.005 −0.004
Space vector (LF) MS 0.958 −0.03 −0.023 0.956 0 0.004

complete vector 4.592 39.13 / / / / / /

Complete list of results in Appendix A; 1 Details in Appendix B.

Listed are all feature vectors that achieve an error rate below 5%. For this case, only
features from the Signal and the Space Vector Signal were selected. It can be seen that only
one of the six results shows a correlation between 0.47 and 0.85, while the rest is below 0.05.
This result calls for a detailed view on the data. Unfortunately, none of the enumerated
results can be accepted. The first selection with the highest correlation between the feature
and the AM shows neither a sequence of the AM levels nor the primary classes.

A more interesting pattern is shown by selection 2, which is depicted in Figure 11.
The pattern shows a clear separation of the primary classes with the same load, but

the classes intersect. A detailed analysis shows that the reason for the low error rate is
the issue with gaps described in Section 2.2.2. Due to the fact that this issue still occurred
even after reducing the step sizes for the load, it is unclear whether a diagnosis of AM is
possible based only on electric signals. It appears that AM does not have an effect on any
characteristic feature and only small effects on the load of the machine. For the test data,
sensitivity equals 0.239 and specificity equals 0.102.
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Figure 11. Feature vector for diagnosing AM of a 7.5 kW motor with two components and an error
rate of 0.59%. (Left) data for the analysis; (right) test data.

Finally, the case of AM of a 1.1 kW motor will be discussed. An overview of some
results is shown in Table 6.

Table 6. Reduced list of results for angular misalignment of the 1.1 kW motor.

Feature Extractor Metric 1

Error Rate (%) Correlation (1)

Analysis Test
Analysis Test

Load PM AM Load PM AM

Selection 1
Space vector (r) RMS 0.961 0.008 −0.018 0.962 −0.009 −0.015
Spectrum (I1, Seg. 11) peak pos. 0.56 0.412 −0.425 0.222 −0.677 −0.846

complete vector 0.642 0 / / / / / /

Complete list of results in Appendix A; 1 Details in Appendix B.

In this case, too, the enumeration only shows the results that achieved an error rate
below 5%, which were only four feature vectors. Nevertheless, compared to the bigger
motor with 7.5 kW, more features correlating with AM are listed. Considering the discussion
above, this is a hint that the step size of the load was too big for the larger motor and was
only suitable for the smaller one. A future iteration of KDD with adjustments made within
the experiment will clarify this.

Figure 12 depicts the pattern of the first selection, which is similar to the other selections.
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Figure 12. Feature vector for diagnosing AM of a 1.1 kW motor with two components and an error
rate of 0.64%. (Left) data for the analysis; (right) test data.

With this pattern, all primary classes can be seen, but there is an intersection especially
close to the rated load. This pattern is similar to Figure 9 except for two observations: In the
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case of the analysis data, the second level of misalignment also intersects the other groups;
in the case of the test data, the sequence of the groups is not adequate, as misalignment
levels one and two are interchanged. The fact that the same features were found as for PM
means that it is not possible to distinguish between PM and AM using this data set. In
addition, the correlation coefficients show a relationship between AM and PM. In order
to clarify this, a new experiment is needed that considers mixed types of misalignment so
that the KDD for misalignment has to consider PM and AM as a dominant influence. For
the test data, sensitivity equals 1 and specificity equals 1.

4. Discussion and Outlook

With this study, it was possible to show the power of KDD in the context of techni-
cal diagnostics and misalignment. Using the proposed KDD process, it was possible to
enumerate several load-independent feature vectors for diagnosing PM of a 7.5 kW motor,
taking the causal dependencies into account for the final selection. In addition, the selection
could then be confirmed with independent test data measured on a different machine. The
findings can now be used to implement or improve the technical diagnostics for AM of an
electric machine.

Further important results were achieved with the other examined cases. Although
no clear patterns for PM of the 1.1 kW motor and for AM were found, promising feature
vectors were identified during the examination. To clarify the interrelationships, further
improvements of the experiment and the KDD process were also identified. It was found
that, despite the implementation of small step sizes for the load, the patterns still showed
gaps in the case of AM. This observation leads to the assumption that the effect of AM is
smaller than that of to PM.

During the design of the KDD process, simultaneous declaration of PM and AM as
a dominant influence was excluded, but the data show that features correlate with both.
Tolerance for a small portion of the unwanted magnitude is not sufficient to understand all
findings. The solution is to consider these dependencies within a new experimental design.
This represents one of the benefits of including the experiment in the KDD definition, as
this enables additional possibilities during exploration.

KDD has been shown to be an important framework for research in the field of
technical diagnostics. It helps to use data from experiments or the field in combination
with already available knowledge of electric machines to find rules for different cases of
technical diagnostics.

Author Contributions: Conceptualization, S.B. and S.U.; methodology, S.B.; software, S.B.; validation,
S.B.; formal analysis, S.B.; investigation, S.B.; resources, S.U.; data curation, S.B.; writing—original
draft preparation, S.B.; writing—review and editing, S.B.; visualization, S.B.; supervision, S.U.; project
administration, S.U.; funding acquisition, S.U. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the German Federal Ministry of Education and Research
(BMBF) grant number 03IHS254A.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

IM Induction Motor
MCSA Motor Current Signature Analysis
KDD Knowledge Discovery in Database
DM Data Mining



Machines 2023, 11, 827 18 of 22

DUT Device Under Test
PM Parallel Misalignment
AM Angular Misalignment

Appendix A

Table A1. Complete list of results for parallel misalignment of the 7.5 kW motor.

Feature Extractor Metric 1

Error Rate (%) Correlation (1)

Analysis Test
Analysis Test

Load PM AM Load PM AM

Selection 1
MCSA (I1) BB2 (k1+) −0.087 0.962 0.619 −0.23 0.929 0.808
Signal (I2) SRM 0.96 0.011 0.045 0.962 0.002 0.009

complete vector 0 0.17 / / / / / /

Selection 2
MCSA (I1) ECC1 (k1-) −0.087 0.962 0.619 −0.23 0.929 0.808
Signal (I1) SRM 0.962 −0.007 0.003 0.962 0.01 0.007

complete vector 0 0.17 / / / / / /

Selection 3
MCSA (I1) ECC2 (k1-) −0.087 0.962 0.619 −0.23 0.929 0.808
Signal (I1) RV 0.962 −0.008 0.003 0.962 0.015 0.011

complete vector 0 0.17 / / / / / /

Selection 4
MCSA (I2) BB2 (k1+) −0.094 0.965 0.61 −0.237 0.956 0.828
Signal (I3) SRM 0.958 0.033 0.01 0.962 −0.005 −0.001

complete vector 0 0 / / / / / /

Selection 5
MCSA (I2) ECC1 (k1-) −0.094 0.965 0.61 −0.237 0.956 0.828
Signal (I3) RV 0.958 0.035 0.013 0.962 −0.005 −0.001

complete vector 0 0 / / / / / /

Selection 6
MCSA (I2) ECC2 (k1-) −0.094 0.965 0.61 −0.237 0.956 0.828
Signal (I3) MS 0.958 0.036 0.016 0.961 −0.006 −0.003

complete vector 0 0 / / / / / /

Selection 7
MCSA (I3) BB2 (k1+) −0.098 0.968 0.59 −0.249 0.953 0.838
Signal (I1) RMS 0.962 −0.01 0.001 0.962 0.02 0.014

complete vector 0 0 / / / / / /

Selection 8
MCSA (I3) ECC1 (k1-) −0.098 0.968 0.591 −0.249 0.953 0.838
Signal (I1) MS 0.961 −0.01 0.001 0.961 0.02 0.015

complete vector 0 0 / / / / / /

Selection 9
MCSA (I3) ECC1 (k1+) −0.139 0.96 0.576 −0.254 0.947 0.826
Space Vector (r) SF −0.254 −0.396 −0.432 −0.063 −0.619 −0.433

complete vector 0.742 6.13 / / / / / /

Selection 10
MCSA (I3) BB2 (k3+) −0.139 0.96 0.576 −0.254 0.947 0.826
MCSA (I2) n −0.939 −0.07 −0.065 −0.91 −0.092 −0.127

complete vector 1.075 0.3 / / / / / /
1 Details in Appendix B.
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Table A2. Complete list of results for parallel misalignment of the 1.1 kW motor.

Feature Extractor Metric 1

Error Rate (%) Correlation (1)

Analysis Test
Analysis Test

Load PM AM Load PM AM

Selection 11
SV (r) mean 0.961 0 0 0.962 0.011 −0.001
Spectrum (I1, Seg. 11) peak position 0.52 −0.299 0 0.284 −0.883 0.499

complete vector 0.217 0 / / / / / /

Selection 12
SV r RV 0.961 0 0 0.962 0.011 −0.007
Spectrum (I3, Seg. 10) peak position 0.577 −0.26 0 0.225 −0.897 0.511

complete vector 0.383 0 / / / / / /

Selection 13
SV (r) SRM 0.961 0.001 0 0.962 0.011 −0.007
Spectrum (I2, Seg. 9) peak position 0.441 −0.381 0 −0.293 0.035 0.005

complete vector 1.6 1.03 / / / / / /

Selection 14
SV (r) RMS 0.961 0 0 0.962 0.011 −0.007
Spectrum (I3, Seg. 10) 2. peak position 0.509 −0.244 0 0.052 −0.669 0.387

complete vector 3.625 2.3 / / / / / /

Selection 15
SV (r) MS 0.96 −0.001 0 0.691 0.01 0.007
Spectrum (I1, Seg. 10) peak position −0.179 0.435 0 0.101 −0.442 0.327

complete vector 3.908 19.7 / / / / / /
1 Details in Appendix B.

Table A3. Complete list of results for angular misalignment of the 1.1 kW motor.

Feature Extractor Metric 1

Error Rate (%) Correlation (1)

Analysis Test
Analysis Test

Load PM AM Load PM AM

Selection 16
Space vector (r) RMS 0.961 0.008 −0.018 0.962 −0.009 −0.015
Spectrum (I1, Seg. 11) peak pos. 0.56 0.412 −0.425 0.222 −0.677 −0.846

complete vector 0.642 0 / / / / / /

Selection 17
Space vector (r) MS 0.96 0.009 −0.018 0.961 −0.009 −0.015
Spectrum (I3, Seg. 10) peak pos. 0.63 0.405 −0.398 0.17 −0.681 −0.863

complete vector 1.175 12.77 / / / / / /

Selection 18
Space vector (r) SS 0.96 0.009 −0.018 0.961 −0.009 −0.015
Spectrum (I2, Seg. 9 ) peak pos. 0.475 0.384 −0.459 −0.327 0.015 −0.078

complete vector 2.867 1.5 / / / / / /

Selection 19
Space vector (r) RSS 0.961 0.008 −0.0178 0.962 −0.009 −0.015
Spectrum (I3, Seg. 10) 2. peak pos. 0.553 0.354 −0.346 0.048 −0.548 −0.683

complete vector 4.583 16.23 / / / / / /
1 Details in Appendix B.
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Table A4. Complete list of results for angular misalignment of the 7.5 kW motor.

Feature Extractor Metric 1

Error Rate (%) Correlation (1)

Analysis Test
Analysis Test

Load PM AM Load PM AM

Selection 20
Signal (I3) N6M −0.166 −0.94 −0.737 0.866 0.043 0.014
Signal (U1,2) SF 0.4 0.846 0.842 0.682 −0.45 0.472

complete vector 3.325 14.9 / / / / / /

Selection 21
Space vector (r) SRM 0.962 0.005 0.003 0.962 0.005 −0.004
Space vector (LF) MS 0.958 −0.03 −0.023 0.956 0 0.004

complete vector 4.592 39.13 / / / / / /

Selection 22
Space vector (r) mean 0.962 0.004 0.002 0.962 0.005 −0.004
Space vector (LF) SS 0.958 −0.03 −0.023 0.956 0 0.004

complete vector 4.617 39.23 / / / / / /

Selection 23
Space vector (r) RV 0.962 0.004 0.002 0.962 0.005 −0.004
Space vector (LF) Var 0.958 −0.03 −0.023 0.956 0 0.004

complete vector 4.625 39.23 / / / / / /

Selection 24
Space vector (r) RMS 0.962 0.001 0 0.962 0.005 −0.004
Space vector (LF) RMS 0.962 −0.03 −0.023 0.961 0 0.004

complete vector 4.683 39.37 / / / / / /

Selection 25
Space vector (r) MS 0.961 0.001 0 0.961 0.005 −0.004
Space vector (LF) RSS 0.962 −0.03 −0.023 0.961 0 0.004

complete vector 4.542 39.53 / / / / / /

Selection 26
Space vector (r) SS 0.961 0.001 0 0.961 0.005 −0.004
Space vector (LF) SD 0.962 −0.03 −0.023 0.961 0 0.004

complete vector 4.642 39.53 / / / / / /
1 Details in Appendix B.

Appendix B

BB2 =

(
k
p
(1− s)± s

)
· fsupply (A1)

ECC1 =

(
1± k

p
· (1− s)

)
· fsupply (A2)

ECC2 =

(
k
p
(R± nd)(1− s)± v

)
· fsupply (A3)

RV =
1
N

N

∑
i=1
|xi| (A4)

SRM =

(
1
N

N

∑
i=1

√
|xi|)

)2

(A5)

RMS =

√√√√ 1
N

N

∑
i=1

(xi)2 (A6)
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MS =
1
N

N

∑
i=1

(xi)
2 (A7)

SF =
xEff
|x| (A8)

mean =
1
n

n

∑
i=1

xi (A9)

N6M =
∑ [(xi − x̄)6]

(XSRM)6 (A10)

Var =
1
N

N

∑
i=1

(xi − x̄)2 (A11)

SS =
N

∑
i=1

(|xi|)2 (A12)

RSS =

√√√√ N

∑
i=1

(|xi|)2 (A13)

SD =

√√√√ 1
N

N

∑
i=1

(xi − x̄)2 (A14)
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