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Abstract: This paper introduces a parameter-estimation-based sensorless adaptive direct voltage
maximum torque per ampere (MTPA) control strategy for interior permanent magnet synchronous
machines (IPMSMs). In direct voltage control, the motor’s electrical parameters, speed, and rotor
position are of great significance. Thus, any mismatch in these parameters or failure to acquire
accurate speed or position information leads to a significant deviation in the MTPA trajectory, causing
high current consumption and hence affecting the performance of the entire control system. In view
of this problem, a fuzzy logic control-based cascaded model reference adaptive system (FLC-MRAS)
is introduced to mitigate the effect of parameter variation on the tracking of the MTPA trajectory and
to provide precise information about the rotor speed and position. The cascaded scheme consists
of two parallel FLC-MRAS for speed and multiparameter estimation. The first MRAS is utilized to
estimate motor speed and rotor position to achieve robust sensorless control. However, the speed
estimator is highly dependent on time-varying motor parameters. Therefore, the second MRAS is
designed to identify the quadratic inductance and permanent magnet flux and continuously update
both the speed estimator and control scheme with the identified values to ensure accurate speed
estimation and real-time MTPA trajectory tracking. Unlike conventional MRAS, which uses linear
proportional-integral controllers (PI-MRAS), an FLC is adopted to replace the PI controllers, ensuring
high estimation accuracy and enhancing the robustness of the control system against sudden changes
in working conditions. The effectiveness of the proposed scheme is evaluated under different speed
and torque conditions. Furthermore, a comparison against the conventional PI-MRAS is extensively
investigated to highlight the superiority of the proposed scheme. The evaluation results and our
quantitative assessment show the ability of the designed strategy to achieve high estimation accuracy,
less oscillation, and a faster convergence rate under different working conditions. The quantitative
assessment reveals that the FLC-MRAS can improve the estimation accuracy of speed, permanent
magnet flux, and quadratic inductance by 19%, 55.8% and 44.55%, respectively.

Keywords: direct voltage control (DVC); fuzzy logic control (FLC); interior permanent magnet
synchronous motor (IPMSM); model reference adaptive system (MRAS); multiparameter estimation

1. Introduction

In the past few years, the usage of interior permanent magnet synchronous motors
(IPMSMs) has drawn much attention in many industrial applications because of their
distinguishing characteristics, namely their robustness, high power and torque production
compared to volume, and extended speed range [1–4]. As a result of the buried placement
of permanent magnets (PMs), the IPMSM generates a reluctance torque along with magnetic
torque due to the flux of the PMs [5,6]. The particular placement of permanent magnets
causes the saliency effect to appear. This leads to a much larger quadratic inductance, Lq,
than the direct inductance, Ld [7]. Thus, a cross-magnetization phenomenon is generated
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as a result of this inequality. In addition to cross-magnetization, many factors, such as
magnetic saturation and temperature variations, increase the non-linearity of the motor [8].
Under different load conditions, the magnetic saturation causes nonlinear variation in motor
inductance, while the temperature increase causes a decrease in the PM flux linkage [9,10].
Therefore, accurate speed regulation of the IPMSM is not easy due to the many uncertainties
and external disturbances [11]. The most commonly used control strategy that could fulfill the
earlier-mentioned requirements is maximum torque per ampere control (MTPA) [7,12,13].

Many methods have been studied to achieve better MTPA tracking at a wide range of
speeds and torques. The main idea behind these control strategies is to force the system
to operate within the trajectory of the MTPA, utilizing less copper losses and achieving
high torque production with minimum stator current [14]. In model-based MTPA control
strategies, which are considered the most conventional MTPA approach, the MTPA points
are obtained using nominal machine parameters [13,15]. However, these parameters may
vary according to the working conditions.

In an attempt to reduce the complexity and the tuning efforts associated with con-
ventional current regulation-based MTPA control structures, direct voltage MTPA control
for IPMSM has been studied in [16–21]. The main feature of this strategy is that it acts
directly on the voltage vector through its magnitude and angle [17]. Direct voltage MTPA
is a model-based control strategy where the voltage amplitude and angle control laws are
derived directly from the motor’s electrical model and addressed as a function of motor
parameters [18]. Furthermore, the shaft speed and position are of great importance in these
strategies. Therefore, precise machine parameters, rotor position, and speed signals are
essential to achieve high-performance direct voltage MTPA control. Heretofore, the few
developed direct voltage MTAs have been achieved considering constant motor param-
eters. However, in practical applications, the machine’s parameters may change due to
magnet saturation, cross-coupling, temperature, etc. As a result, the accuracy of the MTPA
operation may be affected, causing the MTPA points to deviate from the ideal. Thus, the
system may not achieve the required maximum torque [22,23]. Therefore, it is desirable to
develop a parameter-estimation-based adaptive MTPA control method that could track the
motor parameters to achieve high-efficiency operation of the IPMSM. Using encoders for
position and speed information results in the increased volume, cost, and complexity of the
drive system, as well as degradation of the system’s reliability and robustness [24]. Thus,
integrating a speed estimation scheme with control strategies can significantly mitigate the
drawbacks of mechanical sensors [25].

To overcome the adverse effect of parameter variations and the drawbacks of me-
chanical sensors, various strategies have been investigated for online parameter and speed
estimation, such as the recursive extended least squares (RELS) algorithm [26], the extended
Kalman filter (EKF) observer [27], and the model reference adaptive system (MRAS) [24].
RLS is capable of providing a fast convergence rate, but its sensitivity to noise and dis-
turbance is relatively high, which may cause degradation in its estimation accuracy [28].
Despite its insensitivity to noisy measurements, EKF exhibits some limitations, such as
being computationally demanding due to complex matrix calculations [29,30]. Thanks to its
simplicity, ease of convergence, reduced computational cost, and high accuracy, MRAS has
been studied and widely applied to many types of PMSM for speed and multiparameter
estimation. In [31], a MRAS observer based on Popov hyperstability was employed for
a surface-mounted PMSM to estimate rotor speed. However, the estimated speed was
achieved directly without considering the effect of parameter mismatch, which could affect
the estimation accuracy. Similarly, [32] implemented an MRAS for electrical parameter
identification. Speed and rotor position information was obtained using a mechanical
sensor, increasing the system’s complexity and restricting the system’s robustness against
sensor failure. A linear PI-based MRAS for multiparameter identification was designed
in [33,34] for the sensorless control of the IPMSM drive system. Nevertheless, fixed-gain
proportional integral controllers necessitate a precise mathematical model, continual gain
adjustment, and precise gain values to achieve high-performance drive. Furthermore,
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PI controllers exhibit high sensitivity to external disturbances and uncertainties. Thus,
fixed-gain PI controllers may not be able to provide the level of performance required for
these applications [35].

With the rapid development of intelligent algorithms, numerous intelligent control
algorithms have been integrated with MRAS as alternatives to the PI-based adaptation
mechanism to improve identification accuracy during changes in working conditions and in
the presence of external disturbances. A fuzzy logic controller (FLC) was utilized in [35–37]
to substitute for a PI controller in an adaptive mechanism for speed regulation. In [38], the PI
was still used in the adaptive mechanism, but an FLC was integrated to modify the gains of the
PI regulator in the speed observer. However, the developed fuzzy techniques still suffer from
the adverse effects of parameter changes on the MRAS. Therefore, multiparameter identification
integration is essential to achieve high-accuracy sensorless direct voltage MTPA control.

In this manuscript, a sensorless adaptive direct voltage MTPA control strategy that
considers the influence of parameter variation is presented. The objectives of this work
are to alleviate the effect of parameter variation and simultaneously track the MTPA
trajectory without incorporating mechanical sensors. A fuzzy logic control-based cascaded
model reference adaptive system (FLC-MRAS) is designed to accurately track the motor
parameters and update them accordingly and to provide precise information regarding
rotor speed and position, eliminating the use of mechanical sensors. The superiority of the
proposed strategy lies in three parts. (1) Compared to the existing direct voltage MTPA
strategies that ignore the effect of parameter mismatches and use mechanical sensors to
obtain speed and position information, a cascaded FLC-MRAS is adopted to estimate the
speed, track the time-varying electrical parameters online, and update them according
to the changes in working conditions. Thus, the MTPA trajectory is tracked online, and
the effect of parameter variation is eliminated. Furthermore, the robustness of the control
system against speed sensor failures or misreadings is ensured by utilizing a cost-effective
sensorless control method. (2) A multiparameter estimation scheme is used in parallel with
the speed estimator to identify and update the electrical parameters of the speed estimator
and the control system online. Thus, the parameter variation effect seen in conventional
MRAS approaches is abolished, ensuring accurate speed and position information, and
precise MTPA operation points are guaranteed. To the best of the authors’ knowledge, this
research is one of the first initiatives, if not the first, to achieve sensorless direct voltage
MTPA control for IPMSM considering the effect of parameter variation. (3) Due to its
ability to handle highly nonlinear systems and its independence in precise mathematical
modelling, an FLC is combined with the MRAS to overcome the limitations of classical
PI controllers and improve the system’s robustness against sudden changes in speed and
load torque.

The effectiveness of the proposed strategy is evaluated under different speed and load
trajectories. Additionally, the superiority of the designed scheme is highlighted through an
extensive comparison against both the conventional PI-MRAS and direct voltage control
with nominal fixed parameters. The evaluation results show that the introduced strategy
improves the estimation accuracy, convergence time, and system robustness compared
to the PI-MRAS. Furthermore, the MTPA points are tracked online, and the motor is
constrained to work within the MTPA trajectory, even in the case of parameter variation.

The remaining part of this paper is arranged as follows. Section 2 describes the d–q
model of the IPMSM. Section 3 briefly describes the direct voltage MTPA. Section 4 compre-
hensively illustrates the proposed model. Section 5 provides a detailed description of speed
and multiparameter estimation based on cascaded MRAS, including conventional and
proposed strategies. Section 6 presents the evaluation results, validating the effectiveness
of the proposed approaches. Finally, a conclusion is drawn in Section 7.

2. IPMSM d–q Model

The mathematical model of the IPMSM in the rotating synchronous reference frame
can be expressed as follows [8]:
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vd = Rid + Ld
d
dt

id − Lqweiq (1)

vq = Riq + Lq
d
dt

iq + Ldweid + λwe (2)

Te =
3
2

p[(Ld − Lq)idiq + λiq] (3)

The motion’s mechanical equations are described by

d
dt

w =
1
J
(Te − TF − TL) (4)

d
dt

θ = pω (5)

where vd, vq are the stator voltages, id and iq are the direct and quadratic representations of
the stator currents of the IPMSM, Ld and Lq represent the direct and quadratic inductance,
R represents the per-phase resistance of the stator winding, λ is the PM flux linkage, ωe
and ω are the electrical and mechanical speed of the motor shaft, p is the number of pole
pairs, J is the inertia of the motor and load, θ is the electrical angle of the motor shaft, τ and
τL represent the motor and load torques, and τF represents the friction torque.

3. Description of Direct Voltage MTPA

A direct voltage maximum torque per ampere speed control (DVC) of IPMSM was
developed and confirmed against the well-known field-oriented control (FOC) in [21],
where the effect of motor parameter variation was not considered. A schematic diagram
of DVC is shown in Figure 1. Unlike the cascaded control structures, which indirectly
control the motor’s applied voltage through multiple current control loops, direct voltage
MTPA control entails developing the desired torque by directly controlling the applied
voltage vector through its magnitude and angle (v and ∆θ). As a result, the need for current
control loops is eliminated. Since infinite combinations of v and ∆θ can generate a given
torque and speed, DVC aims to extract the optimum pairs to develop the maximum torque
with the minimum current consumption. Considering the motor is under steady-state
working conditions, and its parameters are constant, the voltage amplitude (v) and angle
(∆θ) control laws are derived directly from the motor’s electrical model, as follows [21]:

v = ω

(
λ +

L2
d + (Ld − Lq)2

6λ

(
2λ

3(Ld − Lq)2

) 2
3
(1 + 2τ)

)
(6)

∆θ =
Lq
√

1 + 2τ

λ
√

3
+ 3

√
2λ

3(Ld − Lq)2 +

(
Kpeω + Ki

∫
eω

)
(7)

where v and ∆θ are the voltage amplitude and angle, respectively, Kp and Ki are the PI
controller gains, and eω is the speed error.

Figure 1. Schematic representation of the direct voltage control.
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It is evident from (6) and (7) and Figure 1 that the designed control method highly
depends on the accuracy of the machine’s electrical parameters Ld, Lq, and λ, as well as
the shaft speed and position. However, computing the MTPA in such a way and assuming
the machine parameters are unchangeable throughout the entire operating range of the
motor makes the proposed strategy invalid when the parameters of the motor are subjected
to change due to magnet saturation, cross-coupling, temperature, etc. As a result of
this variation, the actual MTPA trajectory deviates from the optimal one, causing high
current consumption and hence affecting the performance of the entire control system.
Furthermore, integrating mechanical sensors to acquire motor shaft speed and position
information is subject to several limitations, including high costs, decreased reliability,
poor noise immunity, and increased mounting space. Therefore, precise parameters and
accurate information regarding rotor speed and position are critical for direct voltage
control techniques to track the MTP trajectory precisely.

4. Proposed Sensorless Adaptive Direct Voltage MTPA with Multiparameter Estimation

To reduce the system’s cost and complexity, suppress the effect of parameter mis-
matches, and achieve high-performance direct voltage MTPA control, a sensorless adaptive
direct voltage maximum torque per ampere (SADVC) scheme was developed. In this
scheme, a fuzzy logic control-based cascaded model reference adaptive system (FLC-
MRAS) was designed for speed and multiparameter estimation. In the cascaded scheme,
two FLC-MRAS observers operate in parallel. The first is used to estimate rotor speed and
position, while the other is a multiparameter observer utilized for permanent magnet flux
and quadratic inductance identification. The identified parameters are used to update the
speed estimator for precise position and speed estimation and, eventually, in the control
system to guarantee accurate MTPA trajectory tracking. The proposed scheme is illustrated
in Figure 2. Due to its ability to handle highly nonlinear systems and independence in
precise mathematical modeling [38], a fuzzy logic controller (FLC) was used to replace
the PI controller in the adaptive mechanism to enhance system robustness against sudden
variations in speed and load torque and to eliminate the limitations of conventional PI con-
trollers. As has been demonstrated in [39,40], the variation in Ld is due to the saturation being
much smaller than in Lq and the flux linkage (λ), which has the dominant effect. Therefore,
Ld is considered constant for the whole process to avoid the rank-deficient problem for the
multiparameter observer.

Figure 2. Structure of the proposed adaptive direct voltage control.

5. Speed and Multiparameter Estimation Based on Cascaded MRAS
5.1. Principle of Conventional MRAS for Speed Estimation

The model reference adaptive system (MRAS) is a model-dependent algorithm. It
mainly consists of two models: the reference model (actual motor) and the adjustable
model, in addition to the adaptive mechanism. The reference model is used to determine
the desired states, while the adaptive model is used to determine the estimated states.
The output of the reference and the adjustable models are the actual (id,iq) and estimated
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currents (îd, îd). The difference between the output of the two models produces an error
signal, which is applied to a PI-based adaptation mechanism [41]. The role of the adaptive
mechanism is to estimate the rotor speed (ω̂e) and continuously update the adjustable
model [35]. The rotor position can then be calculated by integrating the speed. The
configuration of conventional MRAS is illustrated in Figure 3.

Figure 3. Block diagram of conventional MRAS for speed estimation.

According to (1) and (2) and considering the d–q axis currents as state variables, the
state-space representation of the reference model of the IPMSM is described as follows:

d
dt

[
id
iq

]
=

[
− R

Ld
ωe

Lq
Ld

−ωe
Ld
Lq
− R

Ld

][
id
iq

]
+

[
1

Ld
0

0 1
Lq

][
ud
qq

]
+

[
0

− λ
Lq

ωe

]
(8)

We define

A =

[
− R

Ld
ωe

Lq
Ld

−ωe
Ld
Lq
− R

Ld

]
, B =

[
1

Ld
0

0 1
Lq

]
, C =

[
0

− λ
Lq

ωe

]
, i =

[
id
iq

]
, u =

[
ud
uq

]

Therefore, the state representation of the reference model can be simplified as

d
dt

i = Ai + Bu + C (9)

The state-space representation of the adjustable model of the IPMSM can be written in
terms of estimated values as follows [42]:

d
dt

[
îd
îq

]
=

[
− R

Ld
ω̂e

Lq
Ld

−ω̂e
Ld
Lq
− R

Ld

][
îd
îq

]
+

[
1

Ld
0

0 1
Lq

][
ud
uq

]
+

[
0

− λ
Lq

ω̂e

]
(10)

d
dt

î = Âî + Bu + Ĉ (11)

where ω̂e, îd and îq denote the estimated values of the electrical rotor speed and the d–q-
axis currents.

After developing the adaptive and reference models, an adaptation mechanism was
constructed in such a fashion as to produce the estimated speed value and derive the error
between the reference and the estimated d–q axis stator currents at its minimum value [43].

The error between the estimated and reference values of the d–q axis can be defined as

ε =

[
εd
εq

]
=

[
id − îd
iq − îq

]
(12)

Therefore, the state error equation can be expressed as follows:
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d
dt

[
εd
εq

]
=

[
− R

Ld
ωe

Lq
Ld

−ωe
Ld
Lq
− R

Ld

][
εd
εq

]
−
[ Lq

Ld
îq

− Ld
Lq

îd − λ
Lq

]
(ω̂e −ωe) (13)

Equation (13) can be written as follows:

ε̇ = Aε−W (14)

A =

[
− R

Ld
ωe

Lq
Ld

−ωe
Ld
Lq
− R

Ld

]
, W =

[ Lq
Ld

îq
− Ld

Lq
îd − λ

Lq

]
(ω̂e −ωe)

where A is the state matrix, ε is the state error vector, and W is the output vector of the
feedback loop.

To ensure system hyperstability, two conditions must be fulfilled [44]. The matrix of
the forward path must be strictly positive and real:

H(s) = (sI − A)−1 (15)

The nonlinear feedback must follow Popov’s criterion for stability,

η(0, t0) =
∫ t0

0
εTW dt ≥ −γ2

0 (16)

where γ2
0 is a finite positive real number, and t0 ≥ 0.

Lastly, the estimated speed from the MRAS can be achieved based on the proportional
integral adaptation law, as follows:

ω̂e = (kp +
ki
s
)

(
Lq

Ld
(id − îd)îq −

Ld
Lq

(iq − îq)îd −
λ

Lq
(iq − îq)

)
+ ω̂e(0) (17)

We define

εω =

(
Lq

Ld
(id − îd)îq −

Ld
Lq

(iq − îq)îd −
λ

Lq
(iq − îq)

)
(18)

Therefore, Equation (17) can be written as

ω̂e = (kp +
ki
s
)εω (19)

where kp and ki are the PI controller gains and ω̂e(0) is the initial estimated rotor speed.

5.2. Modified Conventional MRAS for Speed and Multiparameter Estimation

From (6), (7), and (10), it can be inferred that both the DVC and the previously
developed conventional MRAS for speed estimation are highly dependent on machine
parameters. However, these parameters are subject to changes during motor operations [8].
Compared to other parameters, variations in the permanent magnet flux (λ) and quadratic
inductance (Lq) significantly affect both the MTPA operating points and the estimation
of the rotor speed and position [39]. Therefore, a PI-based cascaded MRAS (PI-MRAS)
for speed and multiparameter estimation is constructed to estimate motor speed and λ
and Lq and update them simultaneously in the control system and speed estimator. The
configuration of the PI-based cascaded MRAS is depicted in Figure 4.

With the same reference model described in (8), the adjustable model of the IPMSM
for parameter estimation is described as follows [45]:

d
dt

[
îd
îq

]
=

 − R
Ld

ωe
L̂q
Ld

−ωe
Ld
L̂q
− R

L̂q

[îd
îq

]
+

[ 1
Ld

0
0 1

L̂q

][
ud
uq

]
+

[
0

− λ̂
L̂q

ωe

]
(20)
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d
dt

î = Âî + Bu + Ĉ (21)

The state error equation is expressed as follows:

d
dt

[
εd
εq

]
=

[
− R

Ld
ωe

Lq
Ld

−ωe
Ld
Lq
− R

Lq

][
εd
εq

]
−

 (
L̂q
Ld
− Lq

Ld
)ωe îq

( 1
L̂q
− 1

Lq
)[uq −ωeLd îd − Rîq]−ωe(

λ̂
L̂q
− λ

Lq
)

 (22)

Equation (22) can be written as follows:

ε̇ = Aε−W (23)

A =

[
− R

Ld
ωe

Lq
Ld

−ωe
Ld
Lq
− R

Lq

]
, W =

 (
L̂q
Ld
− Lq

Ld
)ωe îq

( 1
L̂q
− 1

Lq
)[uq −ωeLd îd − Rîq]−ωe(

λ̂
L̂q
− λ

Lq
)



Figure 4. Block diagram of PI-based cascaded MRAS.

Based on Popov’s theory of hyperstability, the nonlinear feedback loop must satisfy
the following formula [41]:

η(0, t0) =
∫ t0

0
εTW dt ≥ −γ2

0 (24)

Substituting W and ε in (24) leads to

η(0, t0) =
∫ t0

0
[(

L̂q

Ld
−

Lq

Ld
)ωe îq]εd − [(

1
L̂q
− 1

Lq
)
(
uq −ωeLd îd − Rîq

)
−ωe(

λ̂

L̂q
− λ

Lq
)]εq dt ≥ γ2

0 (25)

Equation (25) can be divided into two sub-inequalities as follows [45]:
η1(0, t0) =

∫ t0

0
(

1
L̂q
− 1

Lq
)[(uq −ωeLd îd − Rîq)εq − (

Ld
Lq

ωe L̂q îq)εd] dt ≥ γ2
0

η2(0, t0) =
∫ t0

0
−ωe(

λ̂

L̂q
− λ

Lq
)εq dt ≥ γ2

0

(26)

The adaptive law for L̂q and λ̂ can be expressed as follows:

1
L̂q

= (kp +
ki
s
)[(ud −ωeLd îd − Rîq)εq − (

Ld
Lq

ωe L̂q îq)εd] +
1
L̂q

(0) (27)

λ̂

L̂q
= −(kp +

ki
s
)εqωe +

λ̂

L̂q
(0) (28)

We define
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εLq = [(ud − Rîq −ωeLd îd)(iq − îq)− (
Ld
Lq

ωe L̂q îq)(id − îd] (29)

ελ = −ωe(iq − îq) (30)

Thus, Equations (27) and (28) can be written as follows:

1
L̂q

= (kp +
ki
s
)εLq (31)

λ̂

L̂q
= (kp +

ki
s
)ελ (32)

5.3. Application of Fuzzy Logic Control for Speed and Multiparameter Estimation

Conventional MRAS schemes commonly use PI controllers in their adaption mech-
anism to estimate the desired variable in a way that minimizes the error between the
two models. However, PI controllers necessitate a precise mathematical model and con-
tinual gain adjustment. Furthermore, their sensitivity to working conditions changes.
Contributing to its ability to handle highly nonlinear systems [46], and independence in
precise mathematical modeling, a fuzzy logic control-based cascaded MRAS (FLC-MRAS)
is designed. In this scheme, a Mamdani-type fuzzy logic controller with dual input and
single output is designed to replace all the PI regulators that were used in the cascaded
PI-MRAS, ensuring high dynamic performance and less sensitivity to changes in working
conditions. The configuration of the FLC-based cascaded MRAS is depicted in Figure 5. The
errors (εω , εLq , ελ) and their changes (∆εω , ∆εLq , ∆ελ) are used as input, while the output is
the rate of change of the estimated variables (∆ω̂e, ∆λ̂, and ∆L̂q), which passes through a
discrete integrator to generate the estimated value of ω̂e, λ̂, and L̂q. The FLC inputs and
output can be defined as follows:

εω(K), ∆εω(K) = εω(K)− εω(k− 1), ω̂e(k) = ω̂e(k− 1) + ∆ω̂e(k) (33)

εLq(K), ∆εLq(K) = εLq(K)− εLq(k− 1), L̂q(k) = L̂q(k− 1) + ∆L̂q(k) (34)

ελ(K), ∆ελ(K) = ελ(K)− ελ(k− 1), λ̂(k) = λ̂(k− 1) + ∆λ̂(k) (35)

where k and k− 1 are indices denoting each variable’s current and past sample.

Figure 5. Schematic representation of the proposed FLC-based cascaded MRAS.

The two inputs and the single output of each controller were normalized by scaling
factors δ1, δ2, and δ3, respectively. These factors constrain the variables to the desired limit,
and their value selection is dominant in the system’s performance and stability. As usual,
the scaling elements were tuned using trial and error techniques. For clarity, a detailed
diagram of the FLC for speed estimation is shown in Figure 6.
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Each controller’s crisp inputs and output values were translated to fuzzy values
through a set of membership functions, as shown in Figure 7. Apart from the two fuzzy
sets at the extreme ends, which were trapezoidal, 50% overlapped symmetrical triangular
membership functions with a universe of discourse between [−1,1] were chosen to represent
the three variables. The linguistic representation of these fuzzy sets is NB = negative big,
NM = negative medium, NS = negative small, ZE = zero, PS = positive small, PM = positive
medium, and PB = positive big. The matrix of fuzzy rules is depicted in Table 1. Of all the
commonly utilized defuzzification algorithms, the center of gravity was used to calculate
the crisp value of the estimated variables.

Figure 6. Block diagram of the fuzzy logic controller for speed estimation.

(a) (b)

(c)

Figure 7. Membership functions of fuzzy logic controller input and output. (a) Membership func-
tions of errors (εω , εLq , and ελ). (b) Changes in error membership functions (∆εω , ∆εLq , and ∆ελ).
(c) Membership functions of rate of change of the estimated variables (∆ω̂e, ∆λ̂, and ∆L̂q).

Table 1. Linguistic fuzzy rules.

∆εε NB NM NS ZE PS PM PB

NB NB NB NB NB NM NS ZE
NM NB NB NB NM NS ZE PS
NS NB NB NM NS ZE PS PM
ZE NB NM NS ZE PS PM PB
PS NM NS ZE PS PM PB PB
PM NS ZE PS PM PB PB PB
PB ZE PS PM PB PB PB PB

The first column and row are the inputs.
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6. Results and Discussion

In order to examine the effectiveness of the introduced parameter-estimation-based
sensorless adaptive direct voltage maximum torque per ampere control strategy, various
simulation studies were carried out using MATLAB/Simulink. A 3.7 kW IPMSM with
the parameters listed in Table 2 was implemented in this study. Since this work aims to
introduce two new techniques, namely fuzzy logic control-based cascaded MRAS (FLC-
MRAS) and sensorless adaptive direct voltage MTPA control (SADVC), various scenarios
were adopted and extensively investigated.

Table 2. IPMSM’s rated parameters.

Parameter Symbol Value and Unit

Rated power P 3.7 kW
Rated speed ω 1800 rpm
Rated torque τ 19.8 N.m
Flux linkage λ 0.28 Wb

Pole pairs p 3
Direct axis inductance Ld 4.2 mH

Quadratic axis inductance Lq 8.3 mH
Resistance of stator winding R 0.2 Ω

The first scenario mainly investigated the effectiveness of the proposed FLC-MRAS,
where the obtained results were compared with the conventional PI-based cascaded MRAS
(PI-MRAS). Thus, the proposed and conventional MRAS were implemented to estimate the
machine’s speed and nominal parameters under different speed and load conditions. The
results are depicted in Figures 8 and 9.

6.1. Performance under Speed Variation

In this test, the commanded speed was set to start from zero and then stepped up to
1500 rpm at t = 5 s; it then suddenly increased to its rated value of 1800 rpm at t = 30 s until
t = 50 s, when the speed was brought back to 1500 rpm. At steady state, 10 N.m of load
torque was introduced to the machine at t = 15 s and released at t = 60 s. The commanded,
measured, and estimated speeds of the proposed FLC-MRAS and conventional PI-MRAS
are presented in Figure 8a. As shown, both the estimated speed signals of FLC-MRAS
and PI-MRAS overlap the measured speed and steadily converge to the reference speed.
Compared to the PI-MRAS, the designed FLC-MRAS shows excellent performance with
less estimation error and quick convergence when the speed is stepped up and down.
Figure 8b shows the measured and estimated rotor position of the FLC-MRAS during the
start-up period. The obtained results demonstrate that excellent tracking accuracy is achieved.

Figure 8c,d shows the actual and estimated permanent magnet flux and quadratic induc-
tance, respectively. It can be observed that the designed FLC-MRAS exhibits better tracking
accuracy with fast settlement and negligible oscillation during transient and speed changes. In
flux estimation, the increase and decrease in the oscillation recovery times of the FLC-MRAS
during transient and speed changes are 0.97 s, 1.152 s, and 0.935 s, respectively, while these
values for the PI-MRAS are 1.514 s, 1.784 s, and 1.716 s. Additionally, the trends seen in
inductance estimation with the FLC-MRAS were better than the PI-MRAS. Lastly, the esti-
mation errors of the speed, permanent magnet flux, and quadratic inductance are depicted
in Figure 9. The figures show that the proposed FLC-MRAS’s estimation accuracy is higher
than that of the conventional PI-MRAS, especially during transient and speed step changes.
During the start-up period and speed changes, the maximum absolute estimation errors of the
FLC-MRAS for the speed, permanent magnetic flux, and quadratic inductance are 0.077 rpm,
1.967 × 10−5 Wb, and 4.332 × 10−7 H, respectively, which are very small quantities compared
with the 0.0976 rpm, 4.515 × 10−5 Wb, and 1.32 × 10−6 H attained by PI-MRAS.



Machines 2023, 11, 861 12 of 20

0 10 20 30 40 50 60 70

 Time (s)

0

500

1000

1500

2000

 S
p

ee
d

 (
rp

m
)

30.05 30.1

1505

1515

1525

50.05 50.1

1775

1785

1795

(a)

5 5.1 5.2 5.3 5.4

 Time (s)

0

1

2

3

4

5

6

7

 P
o

si
ti

o
n

 (
ra

d
)

(b)

0 10 20 30 40 50 60 70

 Time (s)

0.2796

0.2798

0.28

0.2802

0.2804

 F
lu

x
 (

W
b

)

5 6 7

0.28

30 31 32

0.28

50 51 52

0.28

0.28004

0.28002

0.27998

(c)

0 10 20 30 40 50 60 70

 Time (s)

8.285

8.29

8.295

8.3

8.305

8.31

8.315

 L
q

 (
H

)

10
-3

5 6 7

8.299

8.3

8.301

10
-3

30 31 32

8.2995

8.3

8.3005

10
-3

50 51 52

8.2995

8.3

10
-3

(d)
Figure 8. Evaluation results under changes in speed. (a) commanded, measured, and estimated
speed; (b) measured and estimated rotor position at start-up; (c) actual and estimated flux; and
(d) actual and estimated quadratic inductance.
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Figure 9. Estimation error comparison under variable speed. (a) speed estimation error; (b) flux
estimation error; (c) inductance estimation error.

6.2. Performance under Load Variations

In this evaluation, the speed was set to start from zero and then stepped up to its rated
value of 1800 rpm at t = 5 s; this same speed was then maintained until t = 70 s. At steady state,
10 N.m of load torque was suddenly applied to the machine at t = 15 s until t = 35 s, when the
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load was increased to reach 15 N.m and then released at t = 60 s. The system’s performance is
illustrated in Figures 10 and 11. Figure 10a shows the signals for the commanded, measured,
and estimated speeds of FLC-MRAS and PI-MRAS. As can be seen, both the estimated speed
signals precisely track the measured rotor speed. The introduction of a sudden load torque
and the torque’s release result in a remarkable momentary speed oscillation. In PI-MRAS, it is
observed that at the beginning of the loading period, a speed drop of 10 rpm occurs at t = 15 s,
and the speed recovers at t = 15.8 s, while in FLC-MRAS, a slight speed drop of 2 rpm is
observed and immediately compensated for at t = 15.4 s. This denotes that the settling time of
the designed FLC-MRAS control is remarkably less than for PI-MRAS. In the unloading period,
PI-MRAS shows a speed overshoot of 11 rpm at t = 60 s, and it recovers at t = 61.25 s. In contrast,
the FLC-MRAS exhibits only an overshoot of 2 rpm, and it immediately recovers at t = 60.25 s.
Thus, the designed MRAS’s ability to perform disturbance rejection is excellent. The measured
and estimated electrical rotor position of the FLC-MRAS during start-up are illustrated in
Figure 10b. As shown, the estimated position precisely tracks the measured value of the
rotor position. Figure 10c,d shows the actual and the estimated permanent magnet flux and
quadratic inductance of the PI and FLC MRAS under varying torque conditions. Compared
to PI-MRAS, the FLC-MRAS control achieved high estimation accuracy. As revealed, both
strategies exhibit oscillations during the loading and unloading period of the load torque.
However, the oscillation seen with the FLC-MRAS control is negligible compared with the
PI-MRAS. Furthermore, the convergence time of the FL-MRAS control is very short. Figure 11
presents the estimated errors of speed, permanent magnet flux, and quadratic inductance.
In comparison to the PI-MRAS control method, which shows maximum absolute estimation
errors of (0.143 rpm, 5.266 × 10−5 Wb, 1.975 × 10−6 H) for speed, permanent magnetic flux,
and quadratic inductance, respectively, the proposed FLC-MRAS achieves a reduced estimation
error of 0.114 rpm, 1.928 × 10−5 Wb, 6.325 × 10−7 H and quickly converges to zero for the
three values.
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Figure 10. Results of evaluation carried out with changes in load torque. (a) commanded, measured,
and estimated speed; (b) measured and estimated rotor position at start-up; (c) actual and estimated
flux; (d) actual and estimated quadratic inductance.
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Figure 11. Estimation error comparison under variable load. (a) speed estimation error; (b) flux
estimation error; (c) inductance estimation error.

6.3. Performance under Parameter Variation

Direct voltage maximum torque per ampere control (DVC) is a parameter-dependent
technique. However, these parameters are time-varying and may change due to many
factors (saturation, temperature, working condition changes, etc.). Therefore, the sec-
ond scenario investigates the effectiveness of the proposed SADVC against parameter
variation. Two evaluations are carried out to express the performance of the designed
scheme under variations in the permanent magnet flux and quadratic inductance. Lastly, a
comparison against the DVC is conducted to highlight the merits of the proposed SADVC.

6.3.1. Performance under Permanent Magnet Flux Variation

In this test, the commanded speed started from zero, then stepped up to 1500 rpm
at t = 5 s and continued until t = 70 s. A 10 N.m load torque was applied to the machine
at t = 20 s and continued to t = 70 s. The permanent magnet flux started at its nominal
value and suddenly increased by 20% at t = 40 s. These conditions were applied to the
DVC without using any parameter estimation technique and the proposed SADVC. The
achieved outcomes are depicted in Figures 12 and 13. The commanded speed, measured
and estimated speed of SADVC, and measured speed of DVC under flux variation are
presented in Figure 12a. It is clear that when the permanent magnet flux is increased, the
measured speed of DVC exhibits a speed deviation of 15 rpm and gradually recovers in
1.15 s. In comparison to the DVC, the estimated speed of the proposed SADVC overlaps the
measured speed and smoothly converges to the reference in 0.25 s because the magnetic flux
is identified online and updated in the control system. Figure 12b portrays the stator current
magnitude based on both methods. As a result of flux increase, a high current consumption
of about (15.7 A) is observed in the DVC due to the lack of online identification of flux
increase, while in SADVC, the current magnitude is (6.7 A). This denotes that the proposed
SADVC is constrained within the MTP operating points. Compared to the SADVC, the
voltage amplitude and angle of DVC due to flux increase are entirely different from the
optimal pairs that force the motor to work within the MTPA points, as seen in Figure 12c,d.
Lastly, the estimation accuracy of the proposed FLC-MRAS during flux change is contrasted
to the conventional PI-MRAS, and the results are displayed in Figure 13. From the results, it
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can be inferred that when the magnetic flux is stepped up, the PI-MRAS shows an oscillation
around the actual value with a maximum undershoot of 0.306 Wb and adjustment time
of 0.086 s, whereas the FLC-MRAS exhibits a slight oscillation with a maximum undershoot
of 0.32 Wb and recovers within 0.03 s. Therefore, less oscillations and quick convergence are
achieved on FLC-MRAS. Furthermore, the estimated and reference currents are a perfect match.
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Figure 12. Comparison between proposed SADVC and DVC under flux variation. (a) commanded,
measured, and estimated speed; (b) stator current magnitude; (c) applied voltage magnitude; (d) ap-
plied voltage angle.
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Figure 13. Estimation accuracy under flux variation. (a) actual and estimated flux; (b) measured and
estimated dq-axes currents.

6.3.2. Performance under Quadratic Inductance Variation

In this test, the reference speed was set to start from zero and then stepped up to reach
1500 rpm at t = 5 s; this continued until t = 70 s. A 10 N.m external load torque was applied
to the machine at t = 20 s and continued until the end of the test. The quadratic inductance
was initiated with its nominal value and suddenly reduced by 20% at t = 40 s. Both strategies
were evaluated under the previously mentioned conditions, and the achieved results are
illustrated in Figures 14 and 15. Figure 14a shows the signals of the commanded, measured,
and estimated speed of the SADVC and the measured speed of the DVC under inductance



Machines 2023, 11, 861 16 of 20

variation conditions. Compared to the measured speed of the designed SADVC, a speed
oscillation with a maximum overshoot of 10 rpm at t = 40 s is observed in the measured speed
of the DVC, which continues for 1 s. The estimated speed of the SADVC precisely tracks the
measured speed, and both converge to the reference speed in 0.25 s with negligible oscillations.
Figure 14b–d reveal that in DVC, the change in the quadratic inductance has a relatively small
impact on the stator current, voltage amplitude, and angle but still maintains its effect on the
accuracy of speed estimation. Figure 15 portrays the estimated quadratic inductance using
PI-MRAs and FLC-MRAS. As can be seen, both strategies exhibit oscillations when the actual
value of the inductance is stepped down. In comparison to the PI-MRAS, which shows a
maximum overshoot of 0.0068 H and an adjustment time of 0.07 s, the FLC-MRAS shows
only a maximum overshoot of 0.0064 H and a recovery time of 0.014 s. Consequently, the
proposed FLC-MRAS offers better tracking accuracy in terms of oscillations and convergence
time. Furthermore, the estimated currents precisely track the actual currents.
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Figure 14. Comparison between proposed SADVC and DVC under quadratic inductance variations.
(a) commanded, measured and estimated speed; (b) stator current magnitude; (c) applied voltage
magnitude; (d) applied voltage angle.
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Figure 15. Estimation accuracy under quadratic inductance variation. (a) actual and estimated
inductance; (b) measured and estimated dq-axes currents.
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6.4. Performance Evaluation under Low-Speed Profile

To further assess the performance of the suggested FLC-MRAS under a low-speed profile,
an additional test was carried out. In this assessment, the reference speed was set to start
from zero, then stepped up to reach 75 rpm (4% of the rated speed) at t = 5 s and continued
until t = 70 s. A 5 N.m load torque was applied to the motor at t = 15 s and then released at
t = 60 s. The evaluation outcomes are illustrated in Figure 16. Figure 16a shows the signals
of the commanded, measured, and estimated speed of the FLC-MRAS. As can be seen, the
estimated speed signal overlaps the measured signal and steadily converges to the commanded
speed. At the beginning of the loading period, a slight speed drop of 0.6 rpm is observed
and immediately compensated for in 0.55 s, while in the unloading period, a small overshoot
of 0.5 rpm occurs and is recovered from in 0.52 s. This denotes that the designed strategy
maintains its fast convergence even in low-speed operations. Figure 16b reveals that the
estimated and the measured rotor positions are a perfect match. Figure 16c,d shows the actual
and estimated permanent magnet flux and quadratic inductance under low-speed conditions.
It can be inferred that the designed FLC-MRAS exhibits high tracking accuracy with a slight
overshoot during the transient phase, which is recovered in 0.94 s. Lastly, the estimation error
of the speed, permanent magnet flux, and quadratic inductance are shown in Figure 16e–g. The
obtained results reveal that high estimation accuracy is achieved under low-speed operations,
where the maximum absolute estimation error for the speed, permanent magnetic flux, and
quadratic inductance are 1.5 × 10−5 rpm, 2.95 × 10−7 Wb, and 4 × 10−9 H, which are very
small quantities.
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Figure 16. Cont.
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Figure 16. Evaluation results under low speeds. (a) commanded, measured, and estimated speed;
(b) measured and estimated rotor position at start-up; (c) actual and estimated flux; (d) actual and
estimated quadratic inductance; (e) speed estimation error; (f) flux estimation error; (g) inductance
estimation error.

6.5. Quantitative Assessment

To quantitatively assess the performance of the suggested FLC-MRAS, the accuracy
with which this method tracked the estimated speed, permanent magnet flux, and quadratic
inductance was considered in this task. The integral of absolute error (IAE) was used as a
quantitative tracking metric and was calculated as

IAE =
∫ t f

t0

∣∣∣eω, eλ, eLq

∣∣∣ dt (36)

where t0 and t f are the time intervals and e is the error between the actual and the estimated
values. The results in (Section 6.2) were used for this evaluation. The evaluation results
were compared with the conventional PI-MRAS, and the obtained numeric values are
displayed in Table 3. As revealed, the proposed method shows better estimation accuracy
with an improvement of 19%, 55.8%, and 44.55% for speed, permanent magnet flux, and
quadratic inductance, respectively.

Table 3. Performance evaluation.

IAE FLC-MRAS PI-MRAS Improvement

Speed (ω) 0.1210 0.1488 19%
Permanent magnet

flux (λ) 1.383 × 10−5 3.1306 × 10−5 55.8%

q-Inductance (Lq) 5.3097 × 10−7 9.5765 × 10−7 44.55%

7. Conclusions

This paper introduces a sensorless adaptive direct voltage maximum torque per
ampere control strategy for interior permanent magnet synchronous machines (IPMSMs).
To reduce the system’s cost, complexity, and the effect of parameter variation on both
direct voltage MTPA and speed estimation at the same time, a cascaded MRAS for speed
and multiparameter estimation is designed. In order to avoid the drawbacks of PI-based
conventional MRAS, fuzzy logic controllers with two inputs and a single output are adopted
to replace them. Extensive evaluation studies under different speed and load conditions
are conducted to examine the effectiveness of the proposed scheme. Furthermore, the
designed FLC-MRAS is tested under changes in the permanent magnet flux and inductance.
A comparison against the conventional PI-MRAS is carried out. The obtained results
reveal that the introduction of fuzzy logic controllers leads to better transient performance
and quick convergence time, in addition to the ability to reject disturbances. Compared
to the conventional PI-MRAS, the proposed FLC-MRAS shows fewer estimation errors
for the three estimated variables. The online estimated values are applied to the control
system, and high-efficiency sensorless adaptive direct voltage (SADVC) MTPA operation is
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achieved under various conditions. Thus, the effects of parameter variations are mitigated.
Finally, a comparison against fixed-parameter-based DVC is carried out, and the results
highlight the advantages of the proposed method. To further investigate the effectiveness
of the proposed strategy on the basis of simulation studies or real-time implementations,
future work will focus on high-power applications or experimental validation.
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