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Abstract: The calibration of articulated arms presents a substantial challenge within the manu-
facturing domain, necessitating sophisticated calibration systems often reliant on the integration
of costly metrology equipment for ensuring high precision. However, the logistical complexities
and financial burden associated with deploying these devices across diverse systems hinder their
widespread adoption. In response, Industry 4.0 emerges as a transformative paradigm by enabling
the integration of manufacturing devices into networked environments, thereby providing access
through cloud-based infrastructure. Nonetheless, this transition introduces a significant concern in
the form of network-induced delays, which can significantly impact realtime calibration procedures.
To address this pivotal challenge, the present study introduces an innovative framework that adeptly
manages and mitigates network-induced delays. This framework leverages two key components:
controller and optimiser, specifically the MPC (Model Predictive Controller) in conjunction with
the Extended Kalman Filter (EKF), and a Predictor, characterised as the Dead Reckoning Model
(DRM). Collectively, these methodologies are strategically integrated to address and ameliorate the
temporal delays experienced during the calibration process. Significantly expanding upon antecedent
investigations, the study transcends prior boundaries by implementing an advanced realtime error
correction system across networked environments, with particular emphasis on the intricate man-
agement of delays originating from network traffic dynamics. The fundamental aim of this research
extension is twofold: firstly, it aims to enhance realtime system performance on open networks,
while concurrently achieving an impressive level of error correction precision at 0.02 mm. The
employment of the proposed methodologies is anticipated to effectively surmount the intricacies and
challenges associated with network-induced delays. Subsequently, this endeavour serves to catalyse
accurate and efficient calibration procedures in the context of realtime manufacturing scenarios.
This research significantly advances the landscape of error correction systems and lays a robust
groundwork for the optimised utilisation of networked manufacturing devices within the dynamic
realm of Industry 4.0 applications.

Keywords: robotics calibration; network delays management; resource sharing; temporal delays;
realtime calibration; realtime application over the network

1. Introduction

Large-scale, complex, and low-volume manufacturing systems, particularly in the
aerospace industry, rely heavily on robotics for automation. The precision required for tasks
like position accuracy, module assembly, inspection, and fastening poses unique challenges
due to robot kinematics and environmental factors. Existing packages provid-ed by robot
manufacturers for error correction and compensation suffer from cost and lack of realtime
capabilities, resulting in static correction and dedicated resources. The research addressed
these challenges by developing a dynamic and realtime error correction system, achieving
error correction in the range of 0.02 mm. [1] The study extends the existing re-search by
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implementing the proposed system over the network and addressing the chal-lenge of
managing delays caused by network traffic.

Considering the implications of connecting the tracker or measurement device to a
singular network switch, its utility is limited to a specific robotic cell as a result. In such a
scenario, the tracker’s functionality would be exclusive to that particular cell, rendering
it inaccessible to other cells that might require its services. The tracker’s mobility, which
allows it to orient itself towards different cells as needed, would be compromised. The
cost-effectiveness also comes into play when optimizing resource utilisation. Employing
a single tracker for multiple cells, numbering around 10 or more, and coordinating this
shared resource via a resource management system, emerges as a strategic approach. This
allows the tracker’s capabilities to be harnessed across multiple cells while minimizing
redundant costs. The paper could further emphasise these considerations to underscore
the rationale behind the chosen network configuration.

The issue of delay represents a prominent challenge within Network Control Systems
(NCS) and other systems reliant on network infrastructure. This delay stems from two pri-
mary factors: network traffic and the limited bandwidth of the communication channel. The
use of Kalman filter [2,3] and MPC for NCS can help to eliminate the noise and both types
of delays but still there is a need to implement a strategy to handle network delays to obtain
a realtime effect in the system [4,5]. The system in question is the distributed application.

There are lots of techniques available to handle network delays for distributed Interactive
applications (DIAs) [6]. Some of the techniques can be benchmarked; for example, the DRM [7]
is a popular technique in positioning systems. DRM is widely used in DIA for the predictive
contract agreement mechanism in managing network latencies [8]. A study shows that the
use of DRM can enhance the Network speed and optimise the performance [9].

The same DRM technique can be used for NCS to predict the information about the
position of the robot arm using extrapolation and the smoothing function can help to
smooth the extrapolated position and real position [9,10].

MPC has also been used to deal with variable data losses and time delays in a realtime
environment [4], which proves itself the most suitable method to be induced in realtime
error compensation over the network. To handle delays in the NCS, the observer algorithm
was proposed [11]. It proposed the two feedback loops one for the control system the
other for the observer. They further used two more controllers for the anticipated and
non-anticipated data. The Kalman filter [2] was proven to be useful for the environment in
which data losses are common, and data are received intermittently [12]. This approach is
particularly useful for a chaotic (where multiple cells are running at the same time on the
network) and realtime sensitive environment (where time is crucial).

To make the system extendable, configurable, manageable, and distributed, some
techniques need to be used, for example, Service Oriented Architecture (SOA) on the
application level [13]. SOA is becoming popular for developing distributed and manageable
manufacturing systems [14,15].

The gap here is to combine the realtime error correction with the network so the re-
sources can be shared amongst other operations, significantly reducing cost and increasing
flexibility. This study will need to deal with network issues while using the robot and
measurement device connected to the network. The study will be more gelled with Indus-
try 4.0 [16], which will be automating the error correction procedure and also allowing the
resources to be shared and available over the network. The data about the resources, their
scheduling, and their programs will be stored in the databases [17] which can be used as a
knowledge base in the future [18].

Another study addresses compliance modeling and error compensation for an indus-
trial robot’s application in ship hull welding [19]. The Cartesian stiffness matrix is obtained
through the virtual-spring approach, a method that considers factors like actuation and
structural stiffness, arm gravity, and external loads. While this approach enhances accuracy,
it’s important to note that it doesn’t operate in real-time error correction on the network.
The derived stiffness model offers the foundation for error compensation. This compensa-
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tion method is demonstrated using an industrial robot executing a welding trajectory. The
outcomes reveal that this compensation approach effectively enhances the robot’s opera-
tional accuracy. It aligns the robot’s actual trajectory, even when influenced by auxiliary
loads, to closely match the intended trajectory.

In precision-demanding industrial robotic applications, a novel hybrid computational
method is introduced for error compensation [20]. Combining Local POE calibration and
Gaussian Process Regression, it reduces positioning errors by up to 37.2% compared to
existing methods. While it proposes an innovative hybrid method for error compensation
in precision industrial robotic tasks, it doesn’t address network integration or real-time
adjustments, which are crucial aspects in modern manufacturing environments.

The novelty of the present study lies in addressing the intricate calibration challenges
faced by articulated arms within the manufacturing domain. Traditionally, calibrating
these arms necessitates costly and physically attached metrology equipment, impeding
a widespread adoption due to cost and practical limitations. Leveraging Industry 4.0
principles, this study introduces an innovative approach by incorporating manufacturing
devices into a networked ecosystem, thereby enabling cloud accessibility. However, the
subsequent issue of network delays emerges as a significant hurdle, particularly concerning
realtime calibration procedures.

To surmount this predicament, this study introduces a pioneering solution. It in-
tegrates an optimiser, the EKF, in tandem with a Predictor, the DRM. These techniques
collectively combat and resolve network-induced delays encountered during calibration
processes. A significant aspect of novelty lies in the integration of the DRM into the realm of
robotics, with a specific focus on estimating position and error. This innovative application
of DRM directly addresses the challenge associated with managing delays linked to the
reception of measurements from a tracking device. By incorporating DRM, the system
ensures realtime compensation by predicting and adapting to potential errors, thus en-
hancing the accuracy and efficiency of the compensation process. Furthermore, building
upon earlier research efforts [1], this study extends the boundaries by implementing a
realtime error correction system across a network. Notably, it homes in on mitigating delays
stemming from network congestion.

The choice to adopt a realtime approach stems from catering to sectors characterised
by a demand for substantial variability, such as shipbuilding and aircraft manufacturing.
In these industries, the imperative for precision, quality, and efficiency is paramount. The
offline provision of information and training, while potentially time-consuming, could lead
to inefficiencies in meeting the stringent requirements of these sectors. Considering the
inherent variability in components and robot paths, opting for realtime solutions becomes
a pragmatic choice. The realtime approach aligns well with the need to swiftly adapt to
diverse scenarios and ensure the precision demanded by these industries, making it a
viable solution within this context.

This paper employs a three-section structure to systematically present its content.
Section 2 comprehensively elucidates the methodology behind Realtime Error Correction
over the network, encompassing aspects such as error prediction and estimation, the man-
agement of network delays, system development, and resource allocation. In Section 3,
a thorough exploration of results and discussions unfolds, offering insights into the con-
ducted tests aimed at assessing the system’s capabilities. Finally, Section 4 delves into a
meticulous analysis of these findings, fostering a detailed discourse that culminates in the
paper’s conclusive remarks.

2. Realtime Error Correction over the Network—Problem Realisation

The field of static Error Correction encompasses various technologies and systems, as
highlighted in the Introduction. However, an unexplored area of research lies in addressing
realtime error correction over regular or open networks. While the preceding section
discussed systems that have been developed for realtime error correction, they lack the
suitability to operate effectively over standard networks due to their stringent feedback
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requirements, which cannot be met within the required realtime constraints. The problem
at hand encompasses several dimensions, including Realtime Error Correction on the
Network, Handling Network Traffic and delays and making the resources sharable.

Figure 1 illustrates the resolution of the issues pertaining to static calibration and
resource wastage through the implementation of a realtime networked control system,
dynamic calibration techniques, and flexible resource management. The diagram visually
depicts the problem area encapsulated within a red rectangle, while the corresponding
solution is represented by the green region. The green arrows superimposed on the black
arrows symbolise the specific approaches and algorithms employed to address the problem.
The final rectangle, distinguished by a white background and a green outline, signifies the
complete resolution of the problem.
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Figure 1. Proposed Solution to the Problem.

The problem depicted in Figure 1 originates from the conventional static approach of
Robot Calibration utilizing a metrology device. In this static approach, the error correction
occurs through the Stop and Correct Approach, where the metrology device measures the
position, and the system performs calculations based on these measurements. However,
during this calculation period, both the system and the robot remain idle, leading to
suboptimal resource utilisation and increased overall process time.

To address this issue, a feedback control system and realtime infrastructure can be
employed. The realtime infrastructure encompasses hardware that supports realtime
processing and the implementation of appropriate algorithms. This transforms the sys-
tem into a continuous realtime error correction and compensation framework. However,
this approach introduces the challenge of dedicated resources, particularly the expensive
metrology equipment, which may be required by other processes on the factory shop floor.

This challenge can be overcome by incorporating a network and connecting the robot,
metrology device, and other equipment to a Networked Control System, integrated with
realtime infrastructure. This solution results in a Networked Resource with Realtime Error
Correction and Compensation, allowing for resource sharing within this setup. Nonetheless,
this approach gives rise to the problem of network delays, as the resources are intercon-
nected over a network shared with other systems that also transmit communication data.

To mitigate network delays, various techniques can be applied, such as Filtration tech-
niques to eliminate noise, Delay Handling Algorithms, Error Prediction (Anticipation), and
Network Traffic Prediction utilising realtime infrastructure. The resulting system would be a
Realtime Networked Control System for Error Correction and Compensation. However, such
a system may suffer from the drawback of un-configurable and non-flexible cells.
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To address the management and scheduling of resources when multiple systems and
cells require the metrology device simultaneously, the Flexa Control Approach [17] can
be applied. This approach integrates the Flexa Cell Controller into the system, ensuring
effective resource management and scheduling.

One of the key objectives of the study is to facilitate resource sharing. In the context of
automation, resources can be effectively shared through the utilisation of a network. DIA
enable users to connect to the network using the same application and seamlessly share the
application’s state in realtime. This synchronous sharing allows for collaborative activities
such as shared whiteboarding, collaborative editing of files, joint editing of files, shared
meeting rooms, and multiplayer games. Through DIA, users can interact and collaborate
over a computer network, engaging in interactive work on a single application.

A fundamental characteristic of all DIAs is the shared user space and concurrent
manipulation of the same data. However, the effective synchronisation and management
of resources pose significant challenges for distributed applications. The issue of synchro-
nisation becomes more complex in networked environments due to the presence of other
concurrent data communications on the network. In larger networks, the system for sharing
the status of each user can become time-consuming, potentially causing delays throughout
the entire network. To mitigate this issue, an estimation and filtering approach can be
employed to minimise the frequency of updates transmitted over the network. The DRM
serves as a foundational protocol within the IEEE Standard for DIAs, particularly in the
context of estimation techniques [6].

The Dead Reckoning algorithm is widely utilised in distributed network games, where
the delivery of realtime experiences to users is crucial, and factors such as speed and timing
play significant roles. This algorithm is derived from deduced reckoning principles and
serves as an effective approach in such gaming environments.

The Dead Reckoning Algorithm utilises previous packet information, performs ex-
trapolation to estimate future positions, and employs pre-reckoning to anticipate positions
before official reckoning, reducing network packet frequency.

By employing the Dead Reckoning algorithm, fewer packets need to be transmitted
over the network, leading to reduced network traffic while simultaneously improving
latency. This approach enables efficient utilisation of network resources and enhances the
realtime experience for users in distributed network games.

The term “dead reckoning” has a historical origin and was documented in the Oxford
Dictionary in 1613. This concept involves the estimation or prediction of a future position
based on knowledge of the initial starting position. When considering the concept in
terms of speed, it becomes straightforward to illustrate. For instance, let us consider a
hypothetical scenario where a ship sets sail at 0900 with a constant speed of 7 mph. The
question then arises: Where will the ship be located along its designated course at 1100?

By applying the distance equation, the distance covered by the boat after a duration of
2 h can be calculated as 14 units. This calculation provides an estimation or reckoning of
the distance travelled by the object at the specified time.

The concept of DIA has been prevalent for many years, and one of its notable examples
is network games, which enable realtime gameplay over a network. DIA aims to achieve
realtime interaction while maintaining robustness, reliability, security, scalability, and
consistency, among other qualities. However, latency poses a significant challenge for DIA
applications. Although increased bandwidth and processor speed have a positive impact
on latency control, latencies still exist due to network congestion. In realtime DIAs, these
latencies are deemed unacceptable. To address this, the DRM has emerged as a popular
technique in positioning systems, aiding in mitigating the impact of latency [3].

The DRM has gained widespread adoption as a predictive contract agreement mecha-
nism within DIA to effectively manage network delays [4]. A study conducted on optimis-
ing network performance utilizing DRM provides evidence that this approach can enhance
overall network performance and significantly reduce latencies. The findings of the study
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highlight the effectiveness of DRM in addressing the challenges posed by network delays
and its potential to improve the performance of DIA systems [5].

In the current problem scenario, the application of the DRM technique, in conjunction
with a smoothing function, can be utilised to extrapolate and predict data and positions.
DRM enables the prediction of positions between data updates. However, a potential issue
arises when the predicted position does not align with the actual position obtained from
the arrived data. To address this problem, a smoothing function, as suggested by [6], is
employed. The smoothing function aims to reduce discontinuities by considering time
compensation to compensate for packet latency. This approach helps to ensure a more
seamless and accurate representation of positions within the system.

2.1. Error Prediction and Estimations for Compensating Network Delays

The fundamental principle of the system is to operate on an open network, allowing for
the sharing of resources. In this context, the critical resource to be shared is the Laser Tracker,
which carries a significant cost of at least £150 k. However, this requirement of the system to
operate on a network introduces the challenge of managing variable network traffic.

Direct connectivity between a resource, such as a Laser Tracker, and a robot in isolation
enables fast and efficient communication. However, this approach limits the resource’s
usage exclusively to that particular system. The objective is to share the resource across the
network, allowing other cells or systems to benefit from the error correction capabilities.
Introducing the system to the network introduces the challenge of handling delays due to
the presence of normal network traffic. While this may not pose a problem for static error
correction, the goal is to perform a dynamic error correction [21]. In this dynamic scenario,
the error correction system cannot afford to wait for measurements from the laser tracker;
instead, it must ensure timely delivery to meet the realtime and dynamic demands of the
system. This situation is visually depicted in Figure 2.
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2.2. Dead Reckoning—Modelling (DRM)

In order to achieve realtime correction in the calibration system, it is crucial to have
regular and uninterrupted feedback from the measurement system. The Dead Reckoning
approach, described in previous section, provides a solution by estimating the current error
using past observations. By extrapolating or predicting data values between two updates,
Dead Reckoning enables the system to accommodate more connected stations and enhance
the reliability of receiving measurements from the tracker. This approach improves the
overall performance and robustness of the calibration system.
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The calibration system is represented as a player within the overall system, operating
independently from the tracker system. The term “players” is borrowed from online gaming,
where Dead Reckoning is commonly used to address network delays [4,16]. Player 1 repre-
sents the tracker system, which sends updates at unpredictable intervals over the network.
Player 2 represents the calibration system, which receives measurement information from
the laser tracker system. The system model, depicted in Figure 3, illustrates the independent
movement of the players and their periodic transmission of robot position updates.
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In the system, Player 1 (Laser Tracker System) transmits the measured position of the
robot, while Player 2 reports the number of the last received position. DRM is employed by
Player 2 (system performing the calibration) to estimate the subsequent measured position
provided by Player 1. Additionally, Player 1 utilises Dead Reckoning to track the updates it
has sent and confirms that they have been properly incorporated into Player 2’s system.
The network model accounts for latency, acknowledging that it takes time for updated
measurements to be delivered to the other system.

2.3. System Development

System development serves as the final stage of the research, encompassing various
aspects such as software modules and kinematics, which are essential for the development
of the system [17]. In order to undertake this development, the following equipment
was utilised: the Comau NM45 C4G robot, Leica Tracker AT901-MR along with a 3D
reflector (SMR) and T-MAC for 6D measurements, the NI CRIO-9024 Realtime Controller,
C# for interface development, C++ for realtime error correction and compensation module
development, and LabVIEW for running the system on CRIO. These components were
instrumental in facilitating the implementation and functionality of the developed system.

The interconnections between the equipment utilised in the research are depicted in
Figure 4. The Comau NM45 robot is linked to the Comau C4G Controller, which serves
as its controlling unit. The C4G Controller is connected to the Network Switch, with its
management being handled by the NRTEC Software 600 v1.20.
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The TMAC, an integral part of the robot’s End-Effector, is connected to the Leica Tracker,
which tracks its position and performs measurements. The Leica Tracker is also linked to the
Network Switch, enabling its management through the NRTEC Software 600 v1.20.

To enable realtime management and execution within the cell, the NRTEC Software
600 v1.20 operates on the Compact RIO realtime controller. The Compact RIO is connected
to the Network Switch, facilitating access to the equipment and management by the FLEXA
Cell Coordinator.

Steeplechase VLC, a software PLC employed by FLEXA, is responsible for controlling
and managing the cells and their resources. It is installed on a PC and connected to the
Network Switch.

For analysing the kinematics of the Comau NM45 robot and verifying the results,
Spatial Analyzer software was utilised in the research.

2.4. Resource Management System—Flexa Cell Coordinator

The Flexa Cell Coordinator (FCC) is an automated system that efficiently manages
the allocation and removal of resources within a Flexa Cell. It coordinates the execution
of received programs on the required resources in a non-conflicting manner. Multiple
cell coordinators can be run simultaneously by utilizing software Programmable Logic
Controller (Soft PLC), eliminating the need for the hardwired binding of resources. The
FCC receives programs in the form of recipes through web services, schedules them based
on resource availability, and activates sub coordinators equipped with SoftPLC controllers
to manage program execution and resource control. Data exchange between the FCC and
resources is facilitated, with the FCC acting as the application manager to handle data flow.
This bidirectional communication enables the FCC to accept recipe data and send back
processed data.

2.5. Integration of NRTEC with FCC

The integration involves several components, including the startup of the FCC and
the receipt of recipes, the generation and transmission of status reports, the scheduling and
execution of scheduled recipes, and the receipt of recipes from the FCC Database (FDB).
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The data flow within the FCC Architecture is depicted in Figure 5, which illustrates the
flow of information and interactions between the different components.
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Figure 5 provides a context-level or level 0 diagram of the data flow within the FCC
system. It illustrates how the FCC interacts with external entities and manages the flow
of data between them. On the other hand, Figure 6 presents a detailed level 1 Data Flow
Diagram, showcasing the internal components of the FCC and their respective data flows.
Notably, the programs executed on the NRTEC robot are overseen and managed by the
FCC Sub-Coordinator within the system [12].
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2.6. Dead Reckoning Model

The DRM has been employed in this research to forecast the robot’s error when mea-
surement data are unavailable. DRM is a widely utilised technique in various applications
such as positioning systems, online gaming, and navigation. It estimates the robot’s next po-
sition by considering the previous position data. However, it is important to note that DRM
is susceptible to errors since it relies on the accuracy of the measurement data obtained
from sensors.

Figure 7 illustrates the design and implementation of the DRM, which incorporates a
mechanism to trigger a network update if the error exceeds a predefined threshold. This
approach ensures that the system responds to significant errors by requesting an update
from the network, allowing for more accurate position estimation and error correction.
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The changes in position are determined through the application of dead reckoning, as
outlined by the equations provided below. This methodology involves estimating alter-
ations in position based on the robot’s prior position and movement data. The equations
encapsulate the relationships between the robot’s orientation and the alterations in its
x, y, and z coordinates, facilitating the prediction of its updated position in response to
incremental movements.

∆x = distance_per_step× cos(robot_orientation.Rz)

∆y = distance_per_step× sin(robot_orientation.Rz)

∆z = distance_per_step× sin(robot_orientation.Rx)× cos(robot_orientation.Rz)

The predicted position error is initialised randomly and computed through the utilisa-
tion of previous data and acquired error insights. Subsequently, the positions are updated
by employing the predicted position error, as demonstrated by the equations provided
below. This process involves integrating the anticipated error into the calculations, thereby
refining the accuracy of the position updates.

∆x with_error =
(
1 + predictedpositionerror

)
× ∆x

∆y with_error =
(
1 + predictedpositionerror

)
× ∆y

∆z with_error =
(
1 + predictedpositionerror

)
× ∆z

Subsequently, the robot’s position requires adjustment, accounting for the introduced
error. Likewise, the alteration in orientation can be computed employing dead reckoning
principles, delineated by the equations presented below:

∆Rx = angle_per_step× cos(robot_orientation.Ry)× cos(robot_orientation.Rz)

∆Ry = angle_per_step× cos(robot_orientation.Rz)× sin(robot_orientation.Rx)

∆Rz = angle_per_step

Similar to the positional error, the rotational error is initialised randomly, drawing
from previous data and acquired error insights. Subsequently, the rotations are refined
through the incorporation of the predicted position error, as depicted by the equations
provided below:

∆Rxwith_error = (1 + predicted_orientation_error_Rx)× ∆Rx

∆Rywith_error = (1 + predicted_orientation_error_Ry)× ∆Ry

∆Rzwith_error = (1 + predicted_orientation_error_Rz)× ∆Rz
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Figure 8 presents flowcharts that calculates the disparity between the predicted mea-
surement and the actual measurement by using the set of above equations. The details
of the pseudocode are presented in Appendix A. This enables a quantitative evaluation
of the variance between the anticipated and observed values. By comparing these val-
ues, the system can assess the accuracy and precision of the prediction generated by the
DRM. This evaluation is crucial for validating the effectiveness of the error correction and
compensation processes within the system.
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Figure 9 depicts the variation between the projected error and the actual error over the
system’s progression. The graph illustrates the performance improvement of the system as
it advances in time or through successive iterations. As the system evolves, the variance
between the anticipated and real errors diminishes, indicating the enhanced accuracy and
effectiveness of the error prediction and correction mechanisms. This graph serves as a
visual representation of the system’s ability to refine its error estimation and compensation
capabilities over time.

In the presented graph Figure 9, the red line represents the actual error, while the
blue line represents the predicted error. Initially, the real error is observed to be around
0 and −0.1. As the system progresses through approximately 15 cycles, the predicted
error gradually converges with the real error. This convergence indicates that the system
successfully achieves a close alignment between the predicted error and the actual error.
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2.7. EKF and MPC for the Identification of Errors

To mitigate the impact of noise and for the identification of errors, the system incorpo-
rates the use of an MPC in conjunction with an EKF. These control and filtering techniques
work together to minimise the influence of noise on the error estimation and correction
process. By employing the MPC and EKF, the system enhances its ability to accurately
predict and compensate for errors, resulting in an improved overall performance and
noise reduction.

Designing an EKF for a serial manipulator (NM45) involves defining the state vector,
measurement vector, process models, noise parameters, and the overall estimation process.
The state vector ‘x’ represents the robot’s pose in terms of position and orientation. For
NM45, the state vector includes:

x = [x, y, z, Rx, Ry, Rz]′

The measurement vector ‘z’ includes the tracker’s measurements of the robot’s pose.
The measurement vector is similar to the state vector:

z = [xmeasured, ymeasured, zmeasured, Rxmeasured, Rymeasured, Rzmeasured]
′

The state transition function, ‘f (x, u)’, or the process model, illustrates how the robot’s
condition changes over time with the influence of control inputs u. These inputs are the
joint velocities obtained through Jacobians that steer the robot’s movements. The specific
behaviour of this function is tied to the Comau NM45 robot’s forward kinematics [3]
and the merging of joint motions to modify its position. The Jacobian matrices ‘F’ and
‘H’ represent the partial derivatives of the state transition and measurement functions,
respectively. These matrices are crucial for predicting how changes in the state affect the
predicted state and the tracker measurements.

The covariance matrices ‘Q’ and ‘R’ represent process noise and measurement noise,
respectively. These matrices capture the uncertainty and noise associated with the system’s
dynamics and sensor measurements. Both metrices are tuned and initialised with 10−4 I6×6.
The state is predicted (predicted state vector (xpred) as below:
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xpred = f (x, u)

and the covariance prediction as:

Ppred = F · P · FT + Q

The equations below describe the essential steps of the Kalman filter update phase,
where the predicted state and covariance are adjusted based on measurements and the
calculated Kalman Gain. The Kalman gain equation (K) includes the covariance matrix
(PPred), measurement matrix (H) and the noise covariance matrix (R)

K = Ppred · HT ·
(

H · Ppred · HT + R
)−1

The innovation or residual (y) is determined:

y = z− h
(

xpred

)
The update state vector (x) is obtained by using the Kalman Gain (K), residual (y) and

predicted state vector (xpred)
x = xpred + K · y

Finally, the updated covariance matrix (P) is determined by subtracting the product of
the Kalman Gain matrix (K) and the measurement matrix (H) from the predicted covariance
matrix (PPred):

P = (I − K · H) · Ppred

The DRM and EKF seamlessly combine within the MPC optimisation loop for each
time step. The DRM is applied first to predict the state based on the current state and
control inputs. Then, the EKF is applied to estimate the state using the predicted state and
measurements. The estimated state is used in the MPC optimisation to find optimal control
inputs. The control inputs are applied to the robot, and the state is propagated using the
DRM. The covariance matrix P is updated based on the prediction error using the Q matrix.

3. Results and Discussion
3.1. Network Load Testing Using iPerf3

During the network load testing, iPerf3 was utilised on two systems to generate
network traffic, with a total of 30 packets sent and received within a duration of 90 s. The
network performance was monitored using the Capsa Network Analyzer. Despite the
visible activity observed in the monitoring windows, the performance of the calibration
system was not negatively affected.

Capsa Network Analyzer provided comprehensive insights into the network perfor-
mance during the iPerf3 test. It confirmed that all network links were properly connected
and operational throughout the test. The live communication between the sender and
receiver links was highlighted, indicating the successful data transmission. Despite the
network being fully occupied (as indicated by the 100% occupancy in the top right pane),
no link failures or disruptions were detected, as illustrated by the graph in the middle of
the screen illustrated in Figures 10 and 11.

The test was conducted with the robot operating at a speed of 0.1 m/s (100 mm/s).
This speed setting was used during the test to assess the system’s performance under
realistic operational conditions.
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3.2. Black Box Testing—Independent System Verification

Independent systems were employed to validate the effectiveness of the NRTEC sys-
tem and its claimed error correction capabilities. These independent systems were distinct
from the equipment and software utilised in developing the NRTEC system. They provided
the means to conduct tests independently by leveraging their software development kits
(SDKs). These SDKs were further enhanced as part of the testing phase to enable error
correction functionalities. Acting as impartial observers, these independent systems served
as neutral umpires, facilitating the analysis of the NRTEC system’s ability to execute er-
ror correction and compensation. Employing these diverse systems, such as the Nikon
K-Robot [22], ART Track System [23], and Leica Tracker AT960 [24], ensured a wider range
of test results that would not have been attainable solely through the use of the NRTEC
Software 600 v1.20 and equipment. The following sections provide comprehensive details
of the conducted tests.

3.3. System Verification Using Nikon K-Robot

The K-Robot is a robotic scanning and inspection technology primarily designed for
scanning applications. However, for the purpose of testing the NRTEC system’s error
correction capabilities, the scanning mode of the K-Robot was not utilised. Instead, the
K-Robot was employed in a camera capacity to measure the position of the robot. This
setup allowed for the collection of relevant data and facilitated the evaluation of the
NRTEC system’s ability to correct errors. Figure 12 provides a visual representation of the
configuration used, showcasing the integration of the K-Robot and the robot for position
measurement purposes.
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Due to health and safety considerations, the laser of the Nikon Scanner used in
the testing process was masked. Despite this precaution, the positional accuracy of the
Nikon Scanner remains at an impressive 5 microns. On the other hand, the Leica Tracker
(AT901) offers a positional accuracy of 5 microns plus an additional 5 microns per meter.
These accuracy specifications highlight the precision and reliability of the measurement
capabilities of both the Nikon Scanner and the Leica Tracker, making them suitable choices
for verifying and assessing the performance of the NRTEC system.

Figure 13 provides a visual representation of the verifications conducted using the
K-Robot system. The top two graphs illustrate the results of error correction compiled
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by the NRTEC system and verified by the K-Robot. While the K-Robot graph aligns with
the trend of residual error observed in the NRTEC system, there are discrepancies in the
actual values. For instance, at point 16, NRTEC claims a residual error of only 0.02 mm,
whereas K-Robot verifies it to be up to 0.03 mm. This difference in values can be attributed
to the physical location and characteristics of the two systems, as they may provide varying
measurements for the same point due to their distinct positions and properties.
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The bottom graphs display the original 3D points along the X, Y, and Z axes. It is
important to note that the measurements of these points differ between the NRTEC and
K-Robot systems due to their physical separation. The physical distance between the
two systems is depicted in Figure 13. Additionally, the distance between the two lines on
the bottom graphs represents the achieved calibration after completing 15 cycles. The red
lines indicate the data collected after the calibration process, while the blue lines represent
the desired positions for the robot’s path.

NRTEC’s graph (bottom left) suggests that the error has been reduced to 0.02 mm,
supporting the claim of error correction. Conversely, K-Robot’s graph (bottom right)
verifies the accomplishment of correction up to 0.03 mm. These results demonstrate the
effectiveness of the NRTEC system in reducing error and achieving the desired level of
accuracy, as validated by the independent verification performed by the K-Robot system.

The verification of the NRTEC system was primarily focused on 3D positional accuracy.
It was confirmed by Nikon, the manufacturer of the equipment, that the achieved accuracy
of the system was up to 0.03 mm. The verification process specifically utilised the 3D (XYZ)
data captured by the Nikon Camera.

In order to perform a comprehensive verification, additional add-ons and the Software
Development Kit (SDK) provided by Nikon were employed. These add-ons facilitated the
integration of the specific numerical data into the NRTEC system, allowing for a thorough
assessment of its performance and accuracy. By utilizing the Nikon SDK, the system was
able to process and analyse the 3D positional information obtained from the Nikon Camera,
enabling the verification of the NRTEC system’s capabilities in relation to the desired
accuracy levels.
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3.4. System Verification Using Advance Realtime System

Advanced Realtime Tracking (ART) Trackpack, a camera-based measurement system,
was employed to perform verifications on the corrections achieved by the NRTEC system.
The ART Trackpack utilises four cameras to monitor the movements and positions of three
target markers.

To conduct the verifications, a physical setup was arranged within the cell, as illus-
trated in Figure 14. In this setup, the NRTEC system, equipped with the Leica Tracker
AT901, and the test system developed with ART were simultaneously operated. This paral-
lel operation allowed for the collection of data from both systems at the exact same time,
enabling a direct and accurate comparison of their performance and correction capabilities.
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Figure 14. ART setup for NRTEC System Verification.

The following is the result. Figure 15 is the plot of two points of corrected and
uncorrected data in the Leica Tracker frame and in the ART Coordinate System. The
verifications are performed in 6DoF. The graphs on the left side are the data taken by
NRTEC. The graphs on the right side display the data taken by using the ART system. The
left and right side has two graphs each. The top one shows the 3D points in the space of
2D. The bottom ones show the original 3D points in an X, Y, Z axis. The points are different
for both NRTEC and ART systems, as the systems are physically on different locations and
give different value for the same point because of that reason. The physical distance can be
observed in Figure 15. The distance between two lines is displayed on the bottom graphs.
The blue lines on the graph show the desired position which is planned for the robot path,
and the red lines on the graph show the data collected after performing the calibration
process. The distance between the desired and measured points’ data is displayed on the
bottom 3D graphs.
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Figure 15. Verification of correction of points by ART.

The results obtained from the analysis of the bottom 3D graphs indicate that there is
a difference between the desired position and the measured position after the calibration
process. For the NRTEC system (graph on the bottom-left), the distance between these
two lines is calculated to be 0.023206, while for the ART system (graph on the bottom-right),
the distance is measured to be 0.0030978.

Based on these results, the NRTEC system claims to have achieved a correction of
approximately 0.02 mm, whereas the ART system verifies the correction to be around
0.03 mm. Therefore, the ART system’s verification supports the claim that the NRTEC
system has achieved an accuracy level of up to 0.03 mm.

3.5. System Verification Using AT960

The AT960 Leica Tracker system was utilised to verify the corrections made by the
NRTEC system. The AT960 system offers an accuracy of +/−15 µm when used in conjunction
with the TMAC, and it has a high measurement capacity of 210,000 points per second.

To obtain the 3D points, the AT960 Leica Tracker was used in the experimental setup.
The physical configuration of the cell where the testing took place is illustrated in Figure 16.
Both the NRTEC system with AT901 and the test system developed with AT960 were
simultaneously operated to ensure the collection of data for accurate comparison.

A system was developed to retrieve the points using the AT960 SDK (Software De-
velopment Kit). The obtained results are presented below Figure 17. illustrates the plot of
two points, depicting both corrected and uncorrected data in the Leica Tracker frame and
the AT960 Coordinate System. The verifications were conducted using three degrees of
freedom (3DoF) on the AT960 system.
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Due to the physical attachment of the TMAC to the AT901 using a wire, it acts as a
3D reflector for the AT960 system. Therefore, the data cannot be collected in six degrees
of freedom (6DoF) format from the AT960. The left side of the graphs represents the data
collected using the Leica Tracker AT901, while the right side displays the data collected
using the AT960 system. Each side consists of two graphs: the top graph shows the 3D
points in a 2D space, while the bottom graph illustrates the original 3D points in the X, Y,
and Z axes.

The points obtained by both the NRTEC and AT960 systems differ since the trackers
are physically located in different positions, resulting in varying values for the same
point. The physical distance between the two systems can be observed in Figure 17. The
distance between the lines depicted in the bottom graphs indicates the difference between
the corrected and uncorrected data. The green lines represent the data collected prior to
initiating the calibration process, while the blue lines represent the data collected after
performing the calibration process. The discrepancy between the corrected and uncorrected
data is displayed in the bottom 3D graphs.

The distance between the desired positions and measured positions for NRTEC is
0.024659, while the distance between those lines using the AT960 system is 0.024869.
This indicates that the AT960 system aligns with the correction measurements of NRTEC,
validating its accuracy.

The graph below in Figure 18 represents the difference between corrected and uncor-
rected points using both trackers. It illustrates the error correction captured by both the
AT960 and NRTEC trackers. The graph displays 6 points in the X, Y, and Z axes in both
positive and negative directions. The difference between the corrected and uncorrected
points, as measured by the AT960 and NRTEC systems, is indicated by the red error bars.
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The error bars have been drawn to depict the delta range between ±0.000015 and
±0.001029. The error bars are very small, indicating that the difference in the correction
measurements performed by both systems is negligible. The data displayed by the error
bars demonstrate the reliability of the NRTEC system in comparison to the AT960 system.

Based on the verifications and comparisons with independent systems such as K-
Robot, ARTTRACK, and AT960, it has been confirmed that the NRTEC system achieves
an accuracy of up to 0.02 mm. The results obtained from these independent systems align
with the claimed error correction capabilities of NRTEC, further validating its accuracy
and performance.

3.6. Verification Results

The NRTEC system has undergone verification by three independent systems: AT960
Laser Tracker, ART, and K-Robot Camera. Figure 19 showcases the verification of error
correction performed by these systems on the NRTEC system. The ART and K-Robot
systems validate the correction achieved by NRTEC to be around 0.03 mm. However, the
AT960 system, which closely resembles NRTEC’s measurement device AT901, confirms the
correction claimed by NRTEC to be around 0.02 mm.
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It should be noted that there are certain limitations associated with K-Robot, as it
was used in a camera capacity, and only 3D data could be retrieved from the screen. On
the other hand, the ART system utilises four cameras and provides data in 6D. The ART
system verifies NRTEC’s claim up to 0.030978 mm. While the ART system’s accuracy in
2D is reported to be 0.04 pixels, which is equivalent to 0.0105 mm (10 µm) according to
UnitConverters.net (2008), there is no available reference or technical information regarding
its accuracy in 3D or 6D. In contrast, the AT960 system has an accuracy of 15 µm in 3D
according to Metrology (2015).

Based on the available accuracy information for the ART and AT960 systems, it can be
concluded that NRTEC is capable of achieving the claimed accuracy of around 0.02 mm.

4. Discussion and Conclusions

The interactions between the robot’s position, orientation, control inputs, and mea-
surements involve non-linear relationships due to the complex nature of robotic motion
and sensor readings. The incorporation of the DRM further adds to the non-linearity as it
involves predicting positions and compensating for errors in a dynamic environment. As a
result, the overall system is best described as non-linear due to the complex interactions
and relationships between various variables and components.

Testing conducted with 100% network load demonstrated that the system operated
without delays. Dead Reckoning addresses network latency by replicating the environment
on the other side/node of the network, effectively hiding the latency issue. The system
aims to achieve realtime error correction by utilizing a network-based control system,
enabling continuous correction without the need for a measure, stop, and correct approach.
A Neural Network and Kalman Filter are utilised to improve the correction process, while
the Realtime Control System (NI CRIO) provides a suitable platform for network control.
Additionally, the cost-effectiveness of the metrology device is achieved by utilizing the Flexa
system, allowing multiple machines or robots to use the device through network setup.
The implementation of DRM compensates for potential disruptions caused by network
traffic, ensuring accurate error correction by predicting and compensating for inaccuracies.

Figure 20 illustrates the data collected at different robot positions during the testing
process. Each set of robot positions includes variations in the X, Y, Z axes, as well as
rotations in the RX, RY, and RZ axes. The data reveals that after a certain number of
correction cycles, the rate of error reduction reaches a plateau. Specific data points have
been highlighted to evaluate the differences.
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In the first graph (top-left), it can be observed that at cycle 15, the achieved error reduction
was 0.0254 mm. Comparatively, at cycle 29, the error reduction was 0.02535 mm, indicating
a very minor difference of 0.00005 mm. Continuing the correction cycles beyond cycle 15
only impacts the error reduction in nanometres. Similarly, in the fourth graph (middle-right),
where 34 cycles of correction were performed, the difference in error reduction between
cycle 17 and cycle 30 is only 10 nanometres. The remaining four data sets exhibit a similar
trend. The optimal number of cycles depends on the nature of the application and its accuracy
requirements. For this particular study, the cycles were stopped at the point where the
improvement in error reduction was in the micrometre range. Based on the graphs below, the
optimal number of cycles was determined to be between 15 and 17.

The system achieves the correction threshold of 0.02 mm after 15 cycles, with no
further improvement observed. Each cycle takes 225 min, and the overall experimentation
and data compilation require approximately 6 weeks. The system demonstrates its learning
capability as the accuracy improves with repeated robot path execution. This enhance-
ment is achieved through Neural Network based MPC, enabling the system to learn and
correct errors at each path point. After completing the 15 cycles, the Leica Tracker can be
disconnected and utilised by other systems as needed.

The system has made significant progress in achieving error correction of 0.02 mm
after 15 iterations. This precision has been accomplished by effectively handling network
delays through the innovative use of DRM, which leverages gaming technology algorithms.
Notably, the system has been rigorously tested and proven to deliver a reliable performance
even in busy network environments.

The decision to transition from PID (Proportional-Integral-Derivative) control to MPC
was primarily driven by the system’s evolving requirements related to multiple inputs and
outputs. During the initial stage of the research, PID control sufficed as it provided a simple
and straightforward approach for static positional calculations in the three-dimensional space.

However, as the research progressed, the system encountered the need to operate
within a normal open network, specifically the university campus network. This posed
challenges due to significant packet delays experienced before and after the application of
DRM. To address these issues and enhance the system’s performance and adaptability, the
decision was made to introduce the DRM.
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By incorporating MPC into the control architecture, the system gained several advan-
tages. Firstly, MPC enabled simultaneous optimisation of control actions for all inputs
and outputs, accommodating the system’s multiple requirements more comprehensively.
Secondly, MPC’s predictive control capabilities allowed for the proactive handling of time-
varying dynamics and consideration of network delays, ensuring optimal control decisions
based on the anticipated future behaviour. Moreover, MPC’s ability to handle constraints
facilitated the effective management of system limitations and boundaries on parameters
such as position and speed.

The utilisation of MPC reflects the system’s commitment to achieving high perfor-
mance and robustness. It offers the flexibility to integrate advanced algorithms and strate-
gies, enabling adaptation to changing network conditions. Furthermore, the adoption of
MPC ensures future adaptability and flexibility, facilitating the incorporation of additional
variables, constraints, and objectives as the research progresses.

The adoption of MPC was motivated by the system’s evolving needs, including
multiple inputs and outputs, time-varying dynamics, and the management of constraints.
The system’s impressive error correction results, coupled with the ability to handle network
delays through DRM, highlight the effectiveness and suitability of MPC in enhancing
performance and adaptability within this complex environment.

Figure 21 presents the average completion time in seconds for moves within each
cycle. The orange line represents data from the system’s stage 1, where PID control was
implemented without DRM. The highest average time occurred during the 3rd cycle
at stage 1, taking 1498 ms to complete a move. The graph illustrates the performance
improvement in terms of time after the implementation of DRM and MPC. Despite some
remaining delays, DRM allows for local predicted error calculations using players. The
average move time reduced from 1401.467 ms in 15 cycles at stage 1 to an average of
758.8667 ms, which is a 46% decrease after DRM and MPC implementation. The change in
robot manipulators between stages 1 and 2 has a minimal impact, since the same equipment
is utilised.
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Notably, the graph reveals the trend of move completion times as cycles progress
within each stage. In stage 1, the average time to complete a point remains consistent across
cycles. However, in stage 2, there is a significant reduction from 895 s in the first cycle
to 663 s, indicating the system’s learning capability and improved error prediction with
repeated path executions.

In summary, the system successfully handles network delays and achieves realtime
error correction. Utilising advanced algorithms and techniques, the system improves its
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performance and accuracy over multiple cycles. The cost-effectiveness of the metrology
device is achieved through a flexible setup that allows its use by multiple machines. By
predicting and compensating for inaccuracies, the system ensures accurate error correction
even in the presence of network traffic disruptions. The analysis of data collected at
different robot positions reveals that the optimal number of correction cycles falls between
15 and 17. The system demonstrates its learning capability, as accuracy improves with
repeated execution of the robot’s path. The transition from a previous control approach
to the current system was driven by the evolving requirements and challenges posed by
the network environment. The system’s current approach offers improved optimisation,
control prediction, and constraint handling, resulting in high performance and adaptability.
The system’s adoption of these techniques highlights its commitment to achieving accurate
and reliable performance, even in challenging network conditions.
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Appendix A

A1: Pseudocode Details for the Dead Reckoning Model:
Initialise:
robot_position = starting_position //Initial position (x, y, z)
robot_orientation = initial_orientation //Initial orientation (Rx, Ry, Rz)
time_step = 0.1 //Time interval between updates
distance_per_step = 0.05 //Distance the robot’s end effector moves per time step
angle_per_step = 0.01 //Angle the robot’s orientation changes per time step
error_factor_position = 0.02 //Factor to simulate error in position estimation
error_factor_orientation = 0.01 //Factor to simulate error in orientation estimation
While path_not_complete:
//Calculate change in position using dead reckoning
delta_x = distance_per_step * cos(robot_orientation.Rz)
delta_y = distance_per_step * sin(robot_orientation.Rz)
delta_z = distance_per_step * sin(robot_orientation.Rx) * cos(robot_orientation.Rz)

//Example z update
//Apply error prediction to position estimation
predicted_position_error = calculate_predicted_position_error()
delta_x_with_error = (1 + predicted_position_error) * delta_x
delta_y_with_error = (1 + predicted_position_error) * delta_y
delta_z_with_error = (1 + predicted_position_error) * delta_z
//Update robot position with error
robot_position.x = robot_position.x + delta_x_with_error
robot_position.y = robot_position.y + delta_y_with_error
robot_position.z = robot_position.z + delta_z_with_error
//Calculate change in orientation using dead reckoning
delta_orientation_Rx = angle_per_step * cos(robot_orientation.Ry) * cos(robot_

orientation.Rz)
delta_orientation_Ry = angle_per_step * cos(robot_orientation.Rz) * sin(robot_

orientation.Rx)
delta_orientation_Rz = angle_per_step
//Apply error prediction to orientation changes
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predicted_orientation_error_Rx = calculate_predicted_orientation_error_Rx()
predicted_orientation_error_Ry = calculate_predicted_orientation_error_Ry()
predicted_orientation_error_Rz = calculate_predicted_orientation_error_Rz()
delta_orientation_with_error_Rx = (1 + predicted_orientation_error_Rx) * delta_

orientation_Rx
delta_orientation_with_error_Ry = (1 + predicted_orientation_error_Ry) * delta_

orientation_Ry
delta_orientation_with_error_Rz = (1 + predicted_orientation_error_Rz) * delta_

orientation_Rz
//Update robot orientation with error
robot_orientation.Rx = robot_orientation.Rx + delta_orientation_with_error_Rx
robot_orientation.Ry = robot_orientation.Ry + delta_orientation_with_error_Ry
robot_orientation.Rz = robot_orientation.Rz + delta_orientation_with_error_Rz
//Update time
time_step = time_step + 1
//Check whether the robot has reached the target position
if distance (robot_position, target_position) < threshold_distance:
path_not_complete = false
//Pause for a short time to simulate real-world movement
Wait (time_step)
End While
//Robot has reached the target position
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