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Abstract: Improving the prediction accuracy of aerospace engine production line yields is of sig-
nificant importance for enhancing production efficiency and optimizing production scheduling in
enterprises. To address this, a novel method called Convolutional Neural Networks-Improved
Support Vector Regression (CNN-ISVR) has been proposed for predicting the production line yield
of aerospace engines. The method first divides the factors influencing production line yield into
production cycle and real-time status information of the production line and then analyzes the key
feature factors. To solve the problem of poor prediction performance in traditional SVR models
due to the subjective selection of kernel function parameters, an improved SVR model is presented.
This approach combines the elite strategy genetic algorithm with the hyperparameter optimization
method based on grid search and cross-validation to obtain the best penalty factor and kernel function
width of the Radial Basis Function (RBF) kernel function. The extracted features of production data
are then used for prediction by inputting them into the improved support vector regression model,
based on a shallow CNN without dimensionality reduction. Finally, the prediction accuracy of the
CNN-ISVR model is evaluated using the three commonly used evaluation metrics: Mean Absolute
Percentage Error (MAPE), Root Mean Square Error (RMSE) and coefficient of determination (R2).
The model’s prediction results are then compared to those of other models. The CNN-ISVR hybrid
model is shown to outperform other models in terms of prediction accuracy and generalization ability,
demonstrating the effectiveness of the proposed model.

Keywords: aerospace engine production line; convolutional neural networks; support vector regression;
genetic algorithm; yield prediction

1. Introduction

The accurate prediction of production line output can provide intelligent decision
support for enterprises. How to accurately determine production line yield has become
a critical decision-making problem in order management for these companies. The issue
of production forecast is addressed by predicting based on production data and real-time
production line conditions, subsequently guiding the formulation of production plans
and scheduling schemes. This is of significant importance for driving the development of
intelligent manufacturing in enterprises.

The issue of production yield has long been a focus of study for scholars both do-
mestically and internationally. Support Vector Regression (SVR) is a widely used ma-
chine learning method and a traditional algorithm for predicting yield. For example,
De Leone et al. [1] and others used SVR to predict the energy yield of photovoltaic power
plants. Li et al. [2] proposed an SVR model based on the Symbiotic Organism Search (SOS)
algorithm to predict the production of printed circuit boards in surface mount technology
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production lines, while Hu [3] used the Genetic Algorithm (GA) to optimize SVR parame-
ters and predict the yield of fully automated cylinder yarn printing and dyeing production
lines. Overall, SVR performs well in predicting production data, but it requires high-quality
input data. Therefore, it is usually necessary to use it in combination with other algorithms
or to improve it before use.

SVR is a technique that maps low-dimensional data to high-dimensional space to solve
nonlinear problems [4]. As the aerospace engine production line studied in this paper is
affected by multiple factors, it is a nonlinear model. Therefore, we use SVR to establish the
production line yield model. However, the quality of the prediction results in SVR directly
depends on the selection of the kernel function parameters and penalty coefficients. If the
initial parameter selection is improper, the prediction results will not be very ideal.

Traditional methods for parameter optimization, such as grid search and empirical
approaches, are subject to significant subjectivity. Therefore, this study opts for an enhanced
technique known as GA to optimize the parameters of the SVR model. Addressing the issue
of initial parameter selection in SVR, Nandi et al. [5] were the first to propose the utilization
of GA for parameter optimization in SVR. By using the optimal solution obtained from the
GA as the initial parameters for SVR, the prediction accuracy of the SVR can be improved.
GA is a global search and optimization algorithm that simulates the survival probability
of individuals based on fitness. It has the advantages of global search and fast iteration
speed [6]. However, in the iteration process of the GA, the commonly used strategy of
selecting good individuals from the parent generation as offspring is the roulette wheel
selection method. This method may lead to the loss and disruption of individuals with
higher fitness in the parent generation, resulting in premature convergence in the later
stages of training and less noticeable global optimization effects. Therefore, it is necessary
to improve the iteration process of the traditional GA in order to enhance the prediction
accuracy of the SVR model.

Thanks to the flourishing development of deep learning methods in computer vision,
speech recognition, and other fields and the powerful feature extraction capability of con-
volutional neural networks, various neural network-based yield prediction methods have
gained widespread application. Zhang et al. [7] proposed a production line yield prediction
method based on a novel fuzzy neural network (FNN), which effectively improves the
prediction accuracy of the yield model. Federico et al. [8] developed prediction models for
different scales of production lines, achieving maximum or near-maximum yield prediction
using the Response Surface Methodology (RSM) and Artificial Neural Network (ANN).
Neural network algorithms can autonomously extract data features and demonstrate good
prediction accuracy for production process data. However, the models built with neural
networks are complex and challenging to train, therefore they are typically applied to
small-scale data sets for prediction [9].

The prediction method based on neural networks for production forecasting aims to
optimize the empirical risk and unfortunately cannot avoid the problem of converging
to local minima [10]. On the other hand, the prediction method based on Support Vector
Machines (SVM) can reduce structural risk [11]. By introducing a regularization term, it
effectively solves the issue of overfitting. However, it requires quadratic programming to
partition the separating hyperplane. Constructing a prediction model using this method on
large-scale aerospace engine production process data significantly increases computational
complexity and consumes a considerable amount of processing time, thereby increasing
training difficulty. This is not economically efficient in practical production.

Considering the drawbacks associated with using traditional single machine learning
algorithms for production forecasting, this study combines the neural network algorithm
with the support vector machine regression algorithm [12–14]. This paper proposes an
engine yield prediction method based on Convolutional Neural Networks (CNNs) and
Improved Support Vector Regression (ISVR). On one hand, the neural network algorithm
is utilized for preliminary feature extraction, thereby enhancing the accuracy of SVR pre-
dictions. On the other hand, considering the limitations of traditional GA optimization
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in SVR during the iterative process, an improved SVR model based on an elite strategy
selection operator is introduced, significantly enhancing the global convergence capability
of the conventional GA. Finally, the extracted features are used as input for the improved
SVR model. By combining the grid search (GS) and cross-validation (CV) techniques, the
SVR model parameters are optimized to predict the engine production line yield. Exper-
imental results demonstrate that the proposed yield prediction method based on CNNs
and ISVR exhibits improved prediction accuracy, generalization ability, and convergence
speed compared to traditional prediction methods, thus validating the effectiveness of the
proposed approach.

2. Analysis of Yield Prediction Problems

The aerospace engine production line serves as a representative scheduling production
environment, offering an abstract model for manufacturing enterprises and service indus-
tries to address scheduling issues with wide engineering applications. Consequently, this
study focuses on the engine production line as a research subject to analyze the influencing
factors on yield and design predictive algorithms based on these factor characteristics. The
engine production line under investigation is a flexible assembly line suitable for the final
assembly and sub-assembly production of various engine models. It involves numerous
processes for both final assembly and sub-assembly lines, adhering to the principle of
simultaneous processing of multiple models. The yield prediction problem for the engine
production line can be described as follows: Assuming there are n different models of
engines processed in m workstations following the “first come, first served” principle, each
engine model has its unique processing route and time, and each station can only process
one process of the product at the same time, the engine yield that is the number of engines
manufactured at the end of the last process in a certain production cycle.

The factors affecting the production yield of the engine assembly line consist of the
machine’s operational speed, also known as the production cycle time at each workstation,
and the real-time status of the production line [15]. The production line status encompasses
equipment load, equipment condition, and production line schedule. Equipment load
is described by the type and quantity of workpieces awaiting processing. Equipment
condition is indicated by the average utilization and failure rate of the equipment up to
time t. The production line schedule represents the operating time of the production line
for the day. These pieces of information collectively serve as the feature variables of the
sample data, as shown in Table 1:

Table 1. Factors affecting production line yield.

Influencing
Factors

Symbolic
Representation Descriptions

Production cycle p1, p2 . . . pn pi represents the time required to complete the ith process

Equipment load q11, q12 . . . qnm
qij represents the number of the ith workpiece to be processed on

the jth machine at moment t

Equipment
condition

r1, r2 . . . rm
z

rj represents the average utilization of the jth device at time t and
z represents the failure rate of the device at time t

Production line work system h h represents the operating time of the production line for the day

Assuming the relationship between production yield and the various feature variables
is denoted by the function F(), it is necessary to employ machine learning algorithms for
estimation. SVR is based on statistical learning theory and possesses robustness and non-
linear mapping capabilities. Therefore, this study opts for the SVR model to establish the
relevant F() regression model and facilitate prediction. Given that actual production line
data encompass numerous production process characteristics, to overcome the SVR model’s
reliance on feature selection and manual pre-extraction, the paper constructs a powerful
CNN model with strong learning capabilities. This model performs extraction compu-
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tations and abstract representations on production data that include multiple features.
The extracted results are utilized as inputs for the SVR prediction model. Additionally,
other algorithmic techniques are introduced to optimize the model parameters, thereby
reducing training complexity while enhancing prediction accuracy. This achieves engine
yield prediction based on CNN-ISVR.

3. CNN-ISVR Yield Prediction Model
3.1. Convolutional Neural Networks

CNNs are a type of neural network algorithm that is based on convolution oper-
ations, incorporates parameter sharing mechanisms, and exhibits a deep structure [16].
As one of the fundamental algorithms in the field of deep learning, CNNs demonstrate
translational invariance when extracting features from images [17]. CNNs perform well
in recognizing distorted, shifted, and scaled images, making them widely applicable in
various domains such as image classification, object recognition, instance segmentation,
and scene classification.

The structure of CNNs typically comprises three types of neural network layers:
pooling, convolution, and fully connected layers [18]. Each type of layer has distinct
effects on feature extraction. The convolutional layer is primarily used for extracting image
features. It involves scanning the input matrix with convolution kernels of different sizes
to perform localized feature extraction. The extracted features are then mapped using
non-linear functions such as tanh, relu, sigmoid, etc., which serve as activation functions.
The pooling layer comes in various types, including max pooling and average pooling. Its
main purpose is to preserve features while reducing feature dimensions through sampling.
The fully connected layer is typically located at the bottom of the neural network structure
and is responsible for merging the extracted features. The merged features are then passed
to the output layer, where exponential or logistic functions are used to output the final
classification labels.

3.2. Support Vector Regression

SVR is a versatile machine learning technique. It demonstrates significant advantages
in addressing small-sample and nonlinear problems, exhibiting excellent generalization
performance [19]. Its fundamental concept involves mapping the feature vectors of the
dataset to a higher-dimensional space using a transformation function. This transforma-
tion allows the conversion of low-dimensional nonlinear problems into linear regression
problems in the higher-dimensional space. The process of modeling and solving can be
summarized as follows:

1. Given the set of training samples

X = {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)} (1)

where xi and yi are the ith feature vector and target label value, i.e., sample input and
output, respectively; n are the number of training samples.

2. Construct regression models

f (X) = wT ϕ(X) + b (2)

where f (X) is the regression estimation function of the support vector; ϕ(X) is the nonlinear
transformation function that maps the sample to the high-dimensional feature space; and w
and b are the parameters to be determined, which are also key to the SVR model training.

3. Model parameters solution
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As shown in Figure 1, an interval band of width 2ε is constructed with f (X) as the
center. Then introduce the ε insensitive loss function lε:

lε(xi, yi) =

{
0 |yi − f (xi)|≤ ε

|yi − f (xi)|−ε |yi − f (xi)|> ε

}
(3)
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When the training samples fall within this margin, meaning the difference between
the regression function’s output f (xi) and the sample output value yi is less than or equal
to ε, the loss is considered to be 0. This indicates that the training samples can be correctly
predicted. The samples that fall outside the margin are referred to as support vectors. Thus,
the SVR problem can be formalized as follows:

min
1
2
‖w‖2 + C

n

∑
i=1

lε{ f (xi − yi)} (4)

By introducing slack variables ξi and ζi, Equation (4) can be rewritten as follows:

min
ξi ,ζi ,b,w

L = min 1
2 + ‖w‖2 + C

n
∑

i=1
(ξi + ζi)

s.t. :


f (xi)− yi ≤ ε + ξi
f (xi)− yi ≥ ε + ζi
ξi ≥ 0, ζi ≥ 0
i = 1, 2 . . . , n

(5)

where: L represents the objective function; C is the regularization constant, also known as
the penalty parameter, where a larger C implies a stronger penalty for samples with errors
exceeding ε; ε specifies the error tolerance for the SVR function.

By minimizing the structural risk, we can obtain the values of w and b from Equation (5).
To facilitate the solution, we introduce the Lagrange function and apply the Wolfe duality
theorem to perform secondary optimization, transforming L into its dual form, which leads to
the dual problem:

maxL
a,α

=
n
∑

i=1
(yi(ai − αi)− ε(ai + αi))− 1

2

n
∑

i=1

n
∑

j=1
(ai − αi)(aj − αj)K(xi, xj))

s.t. :


n
∑

i=1
(ai − αi) = 0

0 ≤ αi, ai ≤ C

(6)



Machines 2023, 11, 875 6 of 22

where K
(

xi, xj
)
= ϕ(xi)

T ϕ
(
xj
)

represents the kernel function, while αi and ai denote the
Lagrange multipliers.

The optimal solution for Equation (6) can be obtained as follows:{
α = [α1, α2, . . . , αn]
a = [a1, a2, . . . , an]

(7)

Therefore, we can further derive the parameters w and b as follows:
w =

n
∑

i=1
(αi − ai)ϕ(xi)

b = 1
nsv

∑
0<αi<C

[yi − ∑
xi∈SV

(αi − ai)K(xi, xj)− ε]

+ 1
nsv

∑
0<αi<C

[yi − ∑
xj∈SV

(αj − aj)K(xi, xj) + ε]

(8)

where: nsv is the number of support vectors. Thus, substituting Equation (8) into Equation (2),
we obtain the decision function of the optimal hyperplane as follows:

f (x) = wT ϕ(x) + b =
n
∑

i=1
(ai − αi)ϕ(xi)

T ϕ(x) + b

=
n
∑

i=1
(ai − αi)K(xi, x) + b

(9)

4. Selection of Kernel Functions
There are generally five major categories of kernel functions:

a. Linear kernel function
k(xi,, xj) = xT

i xj (10)

b. Polynomial kernel function

k(xi,xj) = (xT
i xj + d)

q
, q > 0 (11)

c. Laplacian kernel function

K(xi,xj) = exp(−γ
∣∣xi − xj

∣∣), γ > 0 (12)

d. Sigmoid kernel function

K(xi, xj) = tanh(βxT
i xj + θ) (13)

e. Radial basis kernel function

K(xi,xj) = exp(−γ
∣∣xi − xj

∣∣2), γ > 0 (14)

SVR addresses the issue of high dimensionality caused by complex models by utilizing
a kernel function, enabling the mapping of nonlinear data from a low-dimensional space to
a high-dimensional space. This simplifies the data processing procedure and effectively
resolves the challenge of handling large-dimensional datasets [20]. Among the available
kernel functions, the Radial Basis Function (RBF) kernel exhibits strong local characteristics
and possesses robust interpolation capabilities within specific ranges. Therefore, this study
adopts RBF as the kernel function for constructing SVR.

3.3. CNN-ISVR Model

This paper combines a CNN with an improved SVR, presenting a novel shallow non-
dimensional reduction CNN as a feature extractor. This network has the ability to au-
tonomously learn the correlation between various yield influencing factors and their high-
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dimensional features. The employed ISVR model efficiently utilizes memory and transforms
the nonlinear problem into a linear one in high-dimensional space. It then constructs an
optimal hyperplane for yield regression prediction based on the extracted features.

Traditional CNNs are primarily used for extracting image features and classification,
performing computations on matrix-formatted data during the process. Therefore, the
data undergo matrix transformation before entering the input layer. Since the resulting
data matrix has relatively low dimensions, there is no need for additional dimensionality
reduction operations. Hence, the stride of all convolutional layers in the CNN is set to 1,
and the pooling layers, which are typically used in neural networks for dimensionality
reduction through sampling, are removed. To prevent potential loss of data features due to
excessive network depth, a shallow non-degenerate convolutional network is constructed,
comprising a matrix transformation layer, an input layer, two convolutional layers, two
fully connected layers, and an output layer, for the purpose of feature extraction from
the data.

The matrix transformation process can be divided into three steps, involving prepro-
cessing operations such as filtering and normalization on the production data from the
engine production line. After processing, the input data are obtained, which are repre-
sented as h vectors of size 1 × l. Subsequently, the original h one-dimensional vectors of
size 1 × l need to be converted into h matrices of size

√
l ×
√

l. If h is not an integer, the
original data need to be zero-padded until h can be square-rooted into an integer. Finally,
the matrix-transformed data are stored as a four-dimensional matrix and fed into the input
layer of the CNN. At this point, the data size in the input layer is h×

√
l ×
√

l × 1.
Within the structure of the CNN model, the data undergo convolutional computations

and nonlinear mapping through the convolutional layers to extract features. Due to the
stride of 1 in the convolutional layers, the computed data retain their matrix form with
a size of h ×

√
l ×
√

l × c, where the number of feature channels, c, varies during the
computation. Furthermore, the extracted features are fed into the fully connected layers for
matrix dimensionality reduction, transforming the four-dimensional matrix output from
the convolutional layers into a two-dimensional matrix with a size of h× l × c.

Upon the completion of training the CNN model, the output from the fully connected
layer serves as the extracted final features, which are then used as inputs for the ISVR
model. In the case where the CNN model is still undergoing training, the output of this
layer acts as intermediate features and is forwarded to the output layer of the CNN. At
the output layer, the h vectors produced by the fully connected layer are individually
multiplied by weights and added with bias coefficients to obtain the prediction results. At
this stage, the matrix takes on the form of h × 1, with each row representing a predicted
yield value. Since the input data have already been normalized, the predicted yield values
fall within the range of (0–1). As a result, there is no need for further mapping calculations
using functions like sigmoid or softmax in the input layer. Instead, within the ISVR model,
the data are mapped to a high-dimensional space through nonlinear functions, aiming to
solve for the optimal hyperplane and achieve yield prediction.

This study employs cross-entropy as the loss function for the CNN model to determine
training completion. Cross-entropy is utilized to measure the distance in probability
distribution between the true and predicted outcomes. Throughout the training process,
cross-entropy undergoes continuous changes and is computed using the Adam gradient
descent algorithm [21]. Experimental results demonstrate that in the CNN model utilized
in this study the variation in cross-entropy before and after training for 10 epochs does not
exceed 0.05. Hence, the training iterations for the CNN model are set to 10.

The predicted process flow of the engine production line based on CNN-ISVR is
depicted in Figure 2. Initially, actual production line data are obtained and normalized, fol-
lowed by division of the data into training and testing sets. Concurrently, the ISVR model is
subjected to parameter optimization to attain the optimal combination of hyperparameters.
Subsequently, a production yield prediction model is established, and the model is trained
using the training set. The trained model is then utilized to predict and store the results for
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the testing set after 10 iterations of training. Finally, the predicted results are output and
compared to select the optimal production yield prediction model.
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4. Improved GA-SVR Algorithm

Most machine learning algorithms require some level of manual guidance and are
not fully automated. The hyperparameters of machine learning algorithms need to be
determined in advance through search, optimization, or heuristic techniques. When utiliz-
ing the SVR regression model for predicting engine production line yields, it is crucial to
incorporate intelligent algorithmic improvements to optimize the key parameters of the
SVR model and achieve its optimal performance.

This study primarily focuses on optimizing the penalty parameter C and the kernel
parameter γ of the RBF. The penalty parameter C signifies the level of punishment for
model errors larger than ε in the samples, while the width parameter γ determines the
local width of the model and the complexity of its boundaries. In this study, a method
is proposed that combines an elite strategy-enhanced GA with a parameter optimization
approach based on GS and CV. This combined approach effectively optimizes the parameter
selection of the regression prediction model and enhances its prediction accuracy.

4.1. Genetic Algorithm

In GA, the individuals within a population are referred to as chromosomes, represent-
ing potential solutions to the problem being addressed. Through the continual evolution
of chromosomes, the potential solutions to the problem gradually converge towards the
correct solution. The fundamental principles of GA have been extensively documented
in earlier literature and numerous books. The improvements in GA primarily encom-
pass encoding schemes, initial populations, fitness functions, and elite selection genetic
operators [22,23].

Genetic operators constitute a vital component of GA, comprising selection operators,
crossover operators, and mutation operators. The selection operator significantly enhances
the convergence speed of the algorithm, while the crossover and mutation operators expand
the population diversity, preventing premature convergence of the algorithm.
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During the iterative process of GA, the selection operator utilizes the roulette wheel
selection algorithm to choose superior individuals from the parent generation for the
offspring. The probability of an individual being selected in the offspring population is
calculated based on Equation (15), and individuals are chosen accordingly to form the
offspring population for the next iteration. The probability of selection increases with
higher fitness values of the individuals.

Pi =
f (i)

n
∑

i=0
f (i)

(15)

where: Pi represents the probability of each individual being selected, f (i) denotes the
fitness of individual i, and n signifies the population size.

The crossover operator serves as a primary method for generating new individuals
and determines the global search capability of the algorithm. During the early stages
of evolution within the population, increasing the number of individual crossovers is
advisable to accelerate the exploration in the solution space. However, in the later stages of
evolution, reducing the number of individual crossovers is necessary to preserve excellent
genetic traits. The optimized crossover probability, denoted as Pc, is adaptively defined
through the following arithmetic operation.

Pc =
(( L−l

L Pcmax +
l
L Pcmin) +

Pcmax
fmax

fmin)

2
(16)

where L represents the total number of generations in the evolutionary process, while l
denotes the current generation of the population. Pcmax and Pcmin refer to the maximum
and minimum values of the crossover probability, respectively. Similarly, fmin and fmax
correspond to the minimum and maximum fitness values within the current population.

The mutation operator serves as an auxiliary method for generating offspring in the
population, and it determines the local search capability of the GA. As the algorithm iterates
and the number of generations increases, the chromosomes in the population gradually
approach the optimal solution. In the later stages of evolution, even though the algorithm
can explore new spaces through mutation, it is necessary to set the mutation probability to a
lower value. This is because a high mutation probability can increase the convergence time
of the algorithm and even disrupt the current patterns. The optimized mutation probability
is defined as [23].

Pm =
L− l

L
Pmmax +

l
L

Pmmin (17)

where: Pmmax and Pmmin represent the maximum and minimum values of the mutation
probability, respectively.

4.2. Elite Strategy Genetic Algorithm

In the iterative process of traditional GA, the commonly used strategy for selecting
offspring from the parent population is the roulette wheel selection method. This method
leads to the loss and disruption of individuals with higher fitness in the parent population,
resulting in problems such as premature convergence and limited global optimization
effectiveness in the later stages of training.

To address the aforementioned issues and consider the shortcomings of traditional
GA during the iterative process, this study proposes the incorporation of an elite strategy
selection operator into the traditional GA. This involves preserving and replacing low-
fitness individuals in the offspring population with superior individuals from the parent
population. These exceptional individuals form an elite population that serves as a backup,
ensuring that elite individuals are not lost or disrupted during the evolution process
through selection, crossover, and mutation operations.
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The top k high-performing individuals from each population POPi(i = 1, 2, . . ., n)
are preserved in their respective elite populations EPOPi(i = 1, 2, . . ., n). Throughout
each iterative cycle, it is ensured that each elite population consistently retains the top k
individuals from their respective population’s developmental process.

By employing the elite selection operator to choose the optimal solution from the
current population and performing elite backup, the algorithm iteratively identifies the best
solution. This approach effectively prevents the conventional genetic algorithm from being
trapped in local optima, enhances convergence speed, and further improves the predictive
accuracy of the SVR model.

4.3. Optimization of Hyperparameters for SVR Model

GS is a method for hyperparameter tuning, which involves exhaustively searching all
possible parameter combinations within a given range to find the optimal set of hyperparame-
ters that yield the best model performance [24]. CV is a statistical technique used to assess the
performance of a classifier, effectively preventing overfitting and underfitting [25].

The two key hyperparameters in the SVR model training process are denoted as (C,
γ). Since their selection does not rely on prior knowledge, combining the aforementioned
methods is employed to optimize the hyperparameters of the SVR model. The specific steps for
optimization are as follows:

Step 1: Determine the range of values for the hyperparameters (C, γ). The commonly
used range is [2−10, 210].

Step 2: Perform GS on the hyperparameters. Since the parameter range spans a wide
range, taking the logarithm base 2 of the hyperparameter values gives us
(log2C, log2λ) ∈ [10, −10]. Using an interval of 0.25, we can obtain a total
of 81 × 81 = 6561 hyperparameter combinations.

Step 3: K-fold CV. Choose 600 samples out of 500 as training data and 100 samples as
testing data. Let K = 5, then divide the training data into 5 equal parts and use
each part in turn as the validation set to evaluate the quality of the model trained
by the remaining 4 parts. Finally, select the hyperparameters with the minimum
root-mean-square error as the optimal hyperparameters in the CV process.

Step 4: Hyperparameter combination grid search. Repeat step 3 for the next group of hy-
perparameter combinations until the combination with the smallest mean squared
error is found, which becomes the optimal SVR model hyperparameters for the
current sample set. When different parameter combinations (C, γ) correspond
to the same cross-validation accuracy during the model training process, it is
generally preferable to choose the combination with smaller C to improve the
model’s generalization ability.

4.4. Optimization Process of the SVR Model

For this section, the chosen criterion for iteration is the evolutionary generation, which
defaults to ending when the evolutionary generation reaches 50. The fitness function is
responsible for evaluating the quality of individuals in the population and determining the
direction of population evolution. Therefore, the fitness function is critical throughout the
entire iteration process. In this article, Mean Squared Error (MSE) is chosen as the fitness
function, defined by the following arithmetic operations:

MSE =
1
m

m

∑
i=1

(( f (xi)− yi))
2 (18)

where m represents the number of samples used for training, yi stands for real values of the
samples, and f (xi) serves as the predicted value of the samples. It is evident that a smaller
MSE signifies higher accuracy in the predicted values.

The basic steps for optimizing the parameters of the SVR model in this article are
as follows:
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1. Determine the optimized parameters and encode them, setting the initial range for
the optimization.

2. Generate an initial population by randomly producing individuals and setting rele-
vant parameters to improve the GA.

3. Calculate the fitness using MSE as the evaluation criterion in the sense of the GS-CV
algorithm, verifying the classification accuracy.

4. Employ adaptive crossover and mutation techniques, as well as conduct elite selection
and backup.

5. Determine the termination condition: if the number of iterations is met or the solution
converges, then decode and output the optimal SVR parameter solution; otherwise,
repeat step 2 and continue the process.

4.5. Optimization Results of SVR Model Parameters

To obtain the optimal model parameters, it is necessary to predefine the initial pa-
rameters and the optimization parameter value range in the genetic algorithm, as well as
provide an appropriate number of CV times to ensure the trustworthy optimal solution
while avoiding heavy computation. This section first presents the selection of three essen-
tial elements for mathematically designing optimized models based on GA optimization
of SVR model parameters. The optimally designed mathematical model often takes the
form of: 

opt. z = f (x, y) x, y ∈ D
s.t. hi(x, y) = 0 (i = 1, 2, 3 . . . n)

gj(x, y) ≤ 0 (j = 1, 2, 3 . . . n)
(19)

where z represents the objective function, which in this paper is the minimum value of the
cumulative mean squared error generated by the GS-CV method. The functions hi(x, y) and
gj(x, y) serve as inequality constraints, both of which are utilized in this study to constrain
the GS-CV hyperparameter optimization. Specifically, they require that the MSE produced
from a single iteration of optimization be less than 1× 10−4 and that the maximum number
of iterations falls below a predetermined number. The design variables encompass the
penalty parameter C and the amplitude γ of the RBF kernel function for the SVR regression
model. The variable space and elite strategy genetic algorithm (E-GA) parameters can be
found in Table 2:

Table 2. Parameter settings for elite strategy genetic algorithm.

Relevant Parameters Take Values (Range)

Maximum number of evolution generations 50
Population size 20

Range of values for C [2−10, 210]
Number of folds for CV (K) 5

Range of values for (γ) [2−10, 210]
Probability of crossover [0.5, 0.7]
Probability of mutation [0.01, 0.05]
Elite selection operator 0.025

According to the parameter setting method shown in Table 2, the GA-SVR and E-GA-
SVR models were subjected to hyperparameter optimization under GS-CV. The fitness
variation curves of the C/γ search algorithm for optimization were obtained and are shown
in Figures 3 and 4, respectively.

Under the GS-CV hyperparameter optimization with K = 5, the best penalty factor
C, optimal kernel function width γ, and MSE values for the two SVR models obtained
through GA and improved GA via elitist strategy are presented in Table 3:
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Table 3. Optimal hyperparameters combination.

Hyperparameters GA-SVR E-GA-SVR

Penalty parameter C 97.934 122.418
kernel function γ 0.6953 0.7884

MSE 9.35 × 10−5 9.12 × 10−5

Figures 3 and 4 depict the fitness evolution curves of two SVR yield models. Compared
to the GA-SVR model, the E-GA-SVR model achieves a stable fitness rate faster within the
same number of 50 iterations. After only 4 iterations, it reaches the global optimum value of
fitness, with a clear decrease in fitness compared to the GA-SVR model. Therefore, the SVR
model that is proposed in this paper, which is based on elite strategy genetic algorithm,
improves convergence speed and prediction accuracy relative to the traditional GA-SVR
model. Afterwards, the output of the fully connected layer is used as the final extracted
feature and input into the improved SVR model to predict engine production line yield.
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5. The Production Prediction for Aerospace Engine Production Lines
5.1. The Acquisition of Production Line Data

The acquisition of production data on aerospace engine assembly lines heavily relies
on Industrial Communication Protocols (ICPs). ICPs are protocols utilized in industrial
environments to connect systems, interfaces, and machinery. They facilitate real-time
retrieval of machine monitoring data from the production line, empowering real-time data
analysis platforms for tasks such as predictive analytics. However, the effectiveness of
these protocols remains largely unknown, and there is a lack of experiential evaluation
comparing their performance. Tapia [26] embraced the concept of edge computing and
evaluated the performance of ICPs using three different machine tools. From a software
perspective, it was found that Modbus provides optimal latency data, offering advanced
experiential insight for selecting ICPs in industrial settings.

The Communication between Devices and Modbus TCP

This text discusses the process of extracting data from production equipment on the
engine assembly line using the Modbus TCP Python library. When connecting to the
production equipment, it is crucial to ensure that it is within the same network range. Next,
the device’s IP address and the Modbus TCP port should be specified. After determining
the input register addresses and their respective data types provided by the manufacturer,
it is necessary to define the address range to ensure the provision of the starting and ending
addresses of the registers to be read.

Among the most relevant monitoring variables in the engine production line devices
are the device status, production data, and device parameters. The device status enables
the monitoring of the device’s operational state and load conditions, such as power on,
power off, running, and stopping. Production data allow for the monitoring of data during
the production process, such as production quantity, production cycle time, and processing
quality. Device parameters enable the monitoring of operational parameters, such as
temperature, pressure, current, and voltage.

5.2. Reprocessing of Production Data

The aerospace engine production line studied in this paper is a small sample, non-
linear model. In previous research, the applicability of machine learning algorithms has
been tested on small datasets, including their instances and inputs [27]. However, these
conditions are not common in practical production environments. Additionally, small-scale
experimental datasets have been shown to potentially decrease the efficiency of machine
learning algorithms or result in some prediction model failures, such as overfitting. If the
dataset size increases, most machine learning algorithms will provide better results [28],
although they may include noise effects.

Therefore, this paper takes into account the reduction in performance of machine
learning models in the case of small sample datasets. Using the method of ensemble
learning [29], the size of the dataset is increased through experimental repetition under the
same production conditions to achieve higher accuracy of the machine learning models.

5.3. Display of Production Data

The data in this article are derived from the production line of a certain model of
aerospace engine. In the actual production line, Modbus TCP is used to collect the pro-
duction cycle of each device, the load of each device, and the utilization of the devices.
The enhanced integration method is employed to repeat experiments under the same
production conditions, aiming to increase the size of the dataset. This method replaces the
traditional approach of using data averages, thus enhancing the predictive performance of
the machine learning model. The first column of the selected data serves as the output indi-
cator for regression prediction, while the remaining columns act as input features, forming
the core matrix parameters of the model. Table 4 presents a subset of the production line
data collected continuously over a certain period of time.
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Table 4. Production line data for a certain model of aerospace engine.

Serial
Number

Engine
Yield
/Unit

Production
Cycle

p1/Hour

Production
Cycle

p2/Hour

Facility
Load

q11/Unit

Facility
Load

q12/Unit

Facility
Utilization

r1/%

Facility
Utilization

r2/%

Facility
Failure

Rate z/%

Work
System/Hour

1. 8 6.97 6.00 0 1 81.50 85.42 11.1 8
2. 7 6.99 5.9 1 0 81.13 84.58 10.5 8
...

...
...

...
...

...
...

...
...

...
599 5 7.15 6.08 0 1 70.41 60.49 11.8 8
600 4 7.16 6.23 1 0 59.13 58.12 12.86 8

5.4. Design of Evaluation Metrics

To evaluate the performance of different yield models, this study employs Root
Mean square Error (RMSE), Mean Absolute Percentage Error (MAPE), and coefficient
of determination (R2) as accuracy measures for prediction results. RMSE compares the
deviation between predicted and true values, while MAPE measures the accuracy of a
model’s prediction results (R2) is the square of the correlation coefficient, with a value range
of (0–1). The larger the value, the higher the degree of explanation of the independent
variables for dependent variables, indicating a better fit. The corresponding calculation
formulas are shown in Equations (20)–(22).

R2 = 1−

M
∑

i=1
(yi − ŷi)

2

M
∑

i=1
(yi − y)2

(20)

RMSE =

√√√√ 1
M

M

∑
i=1

(yi − ŷi)
2 (21)

MAPE =
1
M

M

∑
i=1

∣∣∣∣ (yi − ŷi)

yi

∣∣∣∣ (22)

where M represents the number of samples; yi represents the actual production of the i-th
set of data; ŷi represents the predicted production of the i-th set of data; and y represents
the mean value of the actual production.

5.5. Normalization Process

To enhance the recognition accuracy of the subsequent engine production line capacity
prediction model training and to ensure physical significance in the computation, it is
necessary to perform normalization on the sample output data in Table 4 before training
and predicting the model.

x =
xi − xmin

xmax − xmin
(23)

where xmax and xmin represents the maximum and minimum values of the input sample xi,
respectively; and x refers to the normalized value obtained through processing.

5.6. Experimental Design

The experiment conducted for this study used the Windows 11 operating system. We
used PyCharm as our development environment and implemented the experiment using
Python 3.6. Throughout this process, we employed TensorFlow 2.0’s Keras deep learning
module to construct CNN-ISVR, CNN-SVR, and CNN models. Furthermore, we utilized
the scikit-learn library to build an SVR model, employed the DEAP library to construct a
genetic algorithm model, and ultimately implemented a genetic algorithm based on elite
strategy improvement using the PyGAD library.
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5.6.1. The Pre-Processing and Matrixing of Input Data

The simulation-generated first 400 sets of production data are used as the training set
for the model, and the following 100 sets of data are used for testing the model. Here is the
procedure of the input data pre-processing and matrixing process.

1. The column padding operation is performed on the input production data to enable
each sample vector to be matrixed. Five zero vectors are added after the original
220 columns of data, and the size of the data matrix becomes 500 × 225.

2. Normalize the data. Considering the requirements of CNN on data, the data are nor-
malized to [0, 1] according to Formula (20), which eliminates the interference of dimen-
sional disturbance of data while ensuring that the data distribution
remains unchanged.

3. Matrixize each row sample vector. Each row sample changes from a 1 × 225 vector
form to a 15 × 15 matrix form.

4. Up-sample the data as the input for the CNN model. The corresponding sample matrix
of 200 × (15 × 15) is up-sampled to a 4-dimensional matrix of size 500 × 15 × 15 × 1.

5.6.2. Parameters of CNN-ISVR Model

The CNN model architecture is composed of an input layer, two convolutional layers,
two fully connected layers, and an output layer. The number of convolutional kernels in
the two convolutional layers are, respectively, 32 and 64, with a kernel size of 2 × 2 and
a feature size of 8 × 8. The details of the parameters of the CNN model framework are
shown in Table 5:

Table 5. CNN framework parameters.

Layer Structure Feature Size Feature Channel Convolutional Kernel

Input layer 8 × 8 1 -
Convolutional layer 8 × 8 32 2 × 2
Convolutional layer 8 × 8 64 2 × 2

Fully connected layer 1 × 512 1 4096 × 1
Fully connected layer 1 × 512 1 4096 × 1

Output layer 1 - -

In the SVR model with the RBF kernel, selecting the appropriate penalty parameter
C and kernel function parameter γ is crucial for prediction accuracy. This article employs
a combination of the genetic algorithm with the improved elitist strategy proposed in
Section 3 and hyperparameter optimization methods based on GS-CV to optimize the kernel
function parameters in CNN-ISVR, obtaining the optimal combination of hyperparameters
as shown in Table 3.

To validate the effectiveness and generalizability of the CNN-ISVR production fore-
casting model, we employed the CNN and SVR algorithms to predict the engine production
on the test set. Furthermore, we compared these predictions with those obtained from
typical regression algorithms such as Linear Regression (LR), Ridge Regression (RG), and
Random Forest (RF).

Regarding the traditional SVR model, this article utilizes the GS method to search
for the optimal combination of C and γ hyperparameters. The set of possible values for
γ includes {0.01, 0.1, 0.25, 0.5, 1}, while the set of possible values for C includes {0.001,
0.01, 0.1, 1, 10, 50, 100, 1000}. Due to the susceptibility of grid-search to local optima,
the combination parameter that is recorded the most number of times is selected as the
experimental parameter. Each group is repeated 10 times in total, and the average prediction
results are shown in Table 6. The model performs best when γ is “scale” and C is 4, which
is why this combination is selected as the optimal model parameter.
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Table 6. Average prediction results for different parameter combinations.

C γ R2 MAPE RMSE

5 0.6 0.9158 6.8716% 4.3879
8 0.6 0.9188 6.9654% 4.4247
4 0.8 0.9167 6.8921% 4.4549
4 scale 0.9265 6.6756% 4.1651

The LR model fits the data using the least squares method. Since the data are not
centralized, the resulting model does not pass through the origin. Therefore, the model
intercept is set to True. Additionally, the data set has been normalized during construction,
and normalization is set to False in this case.

The RG regularization coefficient is set to 2, and the model intercept is set to True.
Iterations are performed using the Stochastic Average Gradient (SAG) descent method. For
the RF, the maximum number of iterations for learning is set to 100, and the evaluation
criterion for features is MSE. The parameter settings for each model are presented in Table 7.

Table 7. Parameters of other regression models.

Model Parameter Configuration

SVR C = 4, γ = ‘scale’, k(xi, xj) = ‘RBF’
LR fit_intercept = True, normalize = False, copy_X = True
RG alpha = 2.0, fit_intercept = True, solver = ‘sag’
RF n_estimators = 100, criterion = ‘MSE’, max_features = auto’

5.7. Analysis of Production Line Yield Model Prediction Results

The model training process selected 300 sets of production data from a certain model
of engine production line. The first 200 sets of data were used as the training set for the
model, and the remaining 100 sets of data were used as the test set for the model. In order
to verify the differences between the CNN-ISVR, CNN-SVR, SVR, and CNN yield models
established in this study, the yield models of LR, RG, RF, SVR, CNN, CNN-SVR, and
CNN-ISVR were trained using the training set. Then, the yield of the engine production
line was predicted using each of the yield prediction models. The test set prediction results
of each yield prediction model are shown in Figures 5–11, and the comparison between the
true values and the predicted values of each model is shown in Figure 12.
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Based on Figures 5–12, it is evident that the proposed CNN-ISVR model exhibits
superior predictive performance. Compared to the SVR, CNN, and CNN-SVR models, the
CNN-ISVR model demonstrated markedly higher prediction accuracy and better fitting
with true values.

To quantify the superior generalization ability of the CNN-ISVR regression model,
a comparison of relative errors was conducted for four different methods, namely SVR,
CNN, CNN-SVR, and CNN-ISVR, within the same prediction period. The obtained results
are presented in Figure 13:
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Based on the comparison of the relative errors obtained, the yield prediction results
from all four methods appear to be relatively conservative. Due to the fact that the CNN-
ISVR model has a large penalty parameter C, which was optimized through a GA, its
punishment power on the erroneous samples is relatively strong. Therefore, most of the
predicted values are biased towards the true values. The majority of relative errors are
positive, which suggests that, within a certain production period, the predicted yield is
higher than the actual yield. In practice, engine manufacturers typically adopt a strategy
of optimizing bottleneck workstations, using automated and intelligent equipment to
replace manual labor, and enhancing the skills and knowledge of the operators, in order to
further improve the overall efficiency of the production line. Therefore, the analysis of the
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relative error comparison chart indicates that the actual production line conditions and the
predicted yield trend are consistent.

Based on the predicted error trend, the proposed CNN-ISVR model in this study
demonstrated a significant reduction in variance of relative error compared to the SVR
model, CNN model, and CNN-SVR model within the same prediction cycle, with reduc-
tions of 84.81%, 92.64%, and 72.65%, respectively. Furthermore, the CNN-ISVR model
exhibited a clear decrease in accumulated relative error compared to the SVR model, CNN
model, and CNN-SVR model. These findings suggest that using the CNN-ISVR method
for prediction results in a more stable overall numerical fluctuation of errors and effectively
improves the model’s generalizability.

The accuracy assessment of the prediction results is presented in Table 8:

Table 8. Comparison of prediction results.

Model R2 RMSE MAPE

LR 0.9088 4.0517 6.4354
RG 0.9122 4.1235 6.3290
RF 0.9075 4.5775 6.8126

CNN 0.9183 5.0982 8.2477
SVR 0.9116 4.1651 6.6756

CNN-SVR 0.9241 3.5759 5.5916
CNN-ISVR 0.9265 2.1428 4.4758

According to Table 8, the RMSE of the CNN-ISVR model is 2.1428. This represents a
reduction of 47.11%, 48.03%, 53.19%, 48.55%, 57.97%, and 40.07% compared to the LR, RG,
RF, SVR, CNN, and CNN-SVR models, respectively. Furthermore, the MAPE of the CNN-
ISVR model is 4.4758%, indicating a decrease of 32.95%, 45.73%, and 19.95% in comparison
to the SVR, CNN, and CNN-SVR models, respectively. These results clearly demonstrate
the superior predictive accuracy of the CNN-ISVR regression model.

6. Conclusions

The proposed method presents an innovative approach for predicting the production
yield of aerospace engine assembly lines, based on the CNN-ISVR hybrid model.

Considering the machining characteristics of the engine production line, the factors
that affect the production yield are determined and quantified from two aspects: production
pace and real-time line status, including production pace, equipment load, equipment
status, and line operation.

By utilizing the key production process data of the engine assembly line as model
input, an adaptive feature extraction is performed using a shallow, non-dimensional reduc-
tion CNN. This eliminates the need for feature pre-extraction, effectively overcoming the
limitations of support vector regression. The resulting extracted features are then used as
input for the improved SVR model, which incorporates an elite strategy genetic algorithm.
This enables accurate prediction of the engine production line yield, providing an intuitive
reflection of the line’s production capacity.

To validate the effectiveness and generalization of the constructed CNN-ISVR quality
prediction model, a comparison is made with other commonly used regression prediction
models. The results demonstrate that the CNN-ISVR model exhibits superior fitting
performance and smaller prediction errors, enabling accurate and effective prediction of
the engine production line yield.

This method proposed in the study offers a practical reference solution for predicting
the production yield of aerospace engine assembly lines, assisting enterprises in enhancing
production efficiency and optimizing production scheduling. However, further investi-
gation is required to address factors that currently remain unquantifiable or difficult to
collect, such as material supply efficiency and operator skill levels. Therefore, future re-
search efforts will be devoted to exploring approaches for acquiring and integrating these
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production process data, aiming to obtain more accurate predictions that closely align with
the actual production line conditions.
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Nomenclature

Full Name Abbreviations
Support Vector Regression SVR
Improved Support Vector Regression ISVR
Radial Basis Function RBF
Convolutional Neural Networks CNN
Genetic Algorithm GA
Grid-Search GS
Cross-Validation CV
Radial Basis Kernel Function RBF
Mean Squared Error MSE
Root Mean Square Error RMSE
Mean Absolute Percentage Error MAPE
Linear Regression LR
Ridge Regression RG
Random Forest RF
Industrial Communication Protocols ICPs
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