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Abstract: This paper proposes an adaptive shift schedule design framework based on dynamic
programming (DP) algorithm and fuzzy logical control to promote the shift schedule’s adaptability
whilst improving the comprehensive performance of the multi-gear automated manual transmission
(AMT) electric vehicles in real-time application. First, the DP algorithm is employed to extract an
offline optimal gear-shift schedule based on a set of driving conditions, including 11 groups of typical
driving cycles. Second, a fuzzy logical controller is formulated considering the variation in the
vehicle load and acceleration, where a velocity increment is exported online to adjust the gear-shift
velocity of the predesigned DP-based schedule to develop a Fuzzy-DP shift schedule. In addition,
multi-objective particle swarm optimization (MOPSO) is utilized to construct a comprehensive shift
schedule by simultaneously considering the dynamic and economic performance of the vehicle.
Then, the dynamic and economic shift schedules are deployed as the benchmark to examine the
performance of the proposed shift schedule. Finally, the effectiveness of the Fuzzy-DP shift schedule
is evaluated by comparison with others under various combined driving cycles (including vehicle
load and velocity). The comparisons demonstrate the remarkable promotion in the adaptability of the
Fuzzy-DP shift schedule in terms of acceleration time, energy-saving potential, and shift frequency.
The most significant improvements in the dynamic, economic, and shift frequency can reach 8.86%,
10.12%, and 8.56%, respectively, in contrast to the MOPSO-based shift schedule.

Keywords: shift schedule; AMT; electric vehicles; dynamic programming; fuzzy logical control

1. Introduction

At present, the environmental crisis and shortage of petroleum resources have signifi-
cantly revolutionized the automobile industry [1]. A global concensus has been reached
that electric vehicles (EVs) are key to achieving zero emissions, along with the rapid devel-
opment of electrification technology, mechanical technique, and blockchain technology [2,3].
Automated manual transmission (AMT) has been extensively implemented in battery elec-
tric vehicles due to its advantages of a simple structure, high efficiency, and low cost. It
can not only be used to downsize the driving motor but also to improve the climbing and
high-velocity performance [4,5]. Moreover, a reasonable shift schedule can adjust the work-
ing points of the drive motor to ensure it works in the efficient zone, thereby promoting
the economy of the EVs. Therefore, it is of great significance to develop a reasonable shift
schedule to improve the performance of AMT powertrain, especially for multi-gear AMT
EVs [6,7].

Gear-shifting is a complicated process influenced by various factors, leading to a
significant challenge in formulating an effective shift schedule. Abundant investigations
have been conducted to address this problem [8,9]. Conventional shift schedules can be
divided into three categories according to the number of control variables: single-parameter,
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double-parameter, and three-parameter shift schedules. Due to its simplicity and reliabil-
ity, the two-parameter schedule, with velocity and accelerator pedal opening as control
parameters, has been widely accepted in industrial applications [10,11]. The traditional
shift schedule is usually formulated as a gear shift map that is manually determined based
on engineering experience or the results of bench test calibration [7,12]. However, this
may be time-consuming and strongly dependent on engineering knowledge. Even so,
it may still be impossible to thoroughly realize the electrical powertrain’s energy-saving
potential due to the complexity and variability of driving conditions [13]. Therefore, many
researchers have focused on this issue and are making great efforts to develop a reasonable
shift schedule to improve the overall performance of AMT EVs.

In [14], the design methods of dynamic and economic shift schedules are respectively
proposed based on the driving motor’s characteristics. The simulation and bench test results
proved the proposed method’s effectiveness in improving vehicle dynamics and economy.
A similar approach has also been applied to a hybrid electric vehicle, successfully solving
the conflict between mode transition and dual-clutch transmission shifting [15]. To further
improve the conventional dynamic and economic shift schedules, a power-based integrated
shift schedule is presented and exhibits a better performance in terms of both the dynamics
and economy [16]. Nevertheless, a reasonable regulation should be designed to coordinate
the two shift schedules during practical application [17]. Moreover, some investigations
are also conducted to promote shift quality and driving comfort through a well-designed
shift schedule. The test results demonstrate the reasonability of the established shift-control
strategies [18,19]. Considering the strong coupling between shift schedules and gear ratios,
some researchers a particular interest in systematically integrating their design to maximize
the comprehensive performance of shifting schedules, and the results indicate that the
systematic design can effectively eliminate the potentially non-optimal vehicle performance
caused by inappropriate gear ratio evaluation [20,21].

Recently, various advanced algorithms have been widely researched and implemented
in shift schedule optimization problems aiming to further improve the comprehensive
performance of the vehicle [22]. Note that determination of the appropriate gear position
can be interpreted as a discrete optimization problem, and some discrete programming
methods may be a suitable solution to this problem. In [23], a technique based on a
genetic algorithm (GA) is presented to optimize the gear ratios and design parameters of
the shift schedule simultaneously to promote the vehicle’s economy, and a considerable
improvement was achieved. Compared with GA, particle swarm optimization (PSO),
which has no need for previous knowledge after each evolution, attracted increasing
attention due to its ability to solve complicated optimization problems. Thus, a PSO-
based method was employed to solve the integrated optimization problem for energy
management and gear-shifting to achieve a superior vehicle economy performance [7,24].
Since the dynamics and economy of vehicles are usually contradictory, they are hard to
synchronously optimize using a single-objective optimization method. Multi-objective
optimization algorithms are becoming more and more popular. The gear ratios or shift
schedules can be constantly optimized by simultaneously considering the vehicle’s dynamic
and economic performance based on the non-dominated sorting genetic algorithm II
(NSGA-II) or multi-objective particle swarm optimization algorithm (MOPSO) [25,26].
As a well-known global optimization algorithm, the dynamic program (DP) has been
widely accepted as the most popular way to extract an optimal shift schedule based on a
prior known driving cycle [7,11,27]. Moreover, the gearshift process can be converted to
a mixed integer nonlinear optimization problem, then solved by the branch and bound
method to achieve a preferable performance [28]. Similarly, in [29], a switching nonlinear
mixed-integer model is established to describe the engine and transmission optimal control
problem, and converted into a nonlinear programming problem by a knotting technique and
the Legendre pseudospectral method to acquire the optimal engine torque and transmission
gear position. Although these globally optimal shift schedules can be derived from a
specific drive cycle, they may be unsuitable for real-time application due to the extensive
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computational effort required and the unpredictable future driving information. However,
they could be deployed as benchmarks to evaluate the effectiveness of other shift schedules.

To promote the online optimization of shift schedules, instantaneous optimization
methods have become increasingly attractive, since their optimal solution can be achieved
by minimizing optimization objectives at each time step. In [30], Pontryain’s Minimum
Principle (PMP) is utilized to obtain the optimal solutions, including torque distribution
and AMT working points, and the results proved that the PMP can be implemented more
efficiently due to the significant time savings it achieves compared to DP. Also, in [31],
the PMP-based optimal control solution is extended to the velocity profile optimization
problem whilst the gear-shifting schedule and piecewise constant speed limit constraints
are considered simultaneously and achieve a satisfactory effect. However, the PMP-based
method may lead to frequent gearshifts and even unexpected driveability due to unpre-
dictable driver intentions, as well as unfeasible gearshift frequent constraints. Another
methodology is based on a stochastic rolling optimization framework, such as the moving
horizon-based method [32], stochastic dynamic programming [33], and model predic-
tive control (MPC) strategy, which have been broadly employed to online optimize shift
schedules by minimizing energy consumption over a prediction horizon [9,22]. In [34],
a shift schedule combined with PMP and the bisection method is presented to optimize the
gearshift command based on the MPC framework, and the results confirm the proposed
method’s increases energy savings and computational efficiency. However, the perfor-
mance has an excessive dependence on prediction accuracy and moving horizon length,
which may still lead to significant challenges in real-time implementation.

With the development of artificial intelligence, learning-based methods are growing
to play a vital role in the online optimization of shift schedules. In [35], a learning-based
approach for online optimization of the gear shift and velocity control is proposed, aim-
ing to decrease fuel consumption whilst promoting driving comfort, and the simulations
indicate the superiority of the proposed strategy. In [36], a neural network architecture is
constructed to implement the online shift schedule based on the DP solution, and achieves
a reasonable compromise between energy-saving and gear shift frequency. Reinforcement
learning-based (RL-based) methods have become increasingly popular due to their model-
free attribute and remarkable adaptability. In [37], an RL-based approach, together with
an actor–gear–critic framework, is established online to acquire the continuous traction
force trajectory and the gear shift schedule, and the results illustrate the advantage of the
proposed method in terms of economy and driving safety. Unfortunately, the effect of
the learning-based method is mainly dependent on the complexity of the neural network,
which may lead to a steep computational burden and overfitting, causing disadvantages in
its real-time application for shift schedule optimization. With the progress of vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) technology, some scholars have devoted
themselves to optimizing the shift schedule by taking advantage of the information on
forward-road conditions [38]. This may facilitate the online optimization of the shift sched-
ule for a multi-gear AMT electric vehicle, as the vehicle information could be reliably
predicted by the leverage vehicle connectivity and driving automation [39]. In [40], a
hierarchical optimization architecture is constructed based on the incoming traffic informa-
tion to overcome the computational defects in the simultaneous optimization of the speed
and gearshift control, and the results show a better performance in terms of energy and
computational efficiency. However, the online computing burden and data updates are still
a considerable challenge, although energy optimization based on remote cloud computing
can overcome some of the aforementioned disadvantages [41].

Generally speaking, optimization-based and learning-based methodologies in gear
shift optimization still have a limitation in practical application. Three main issues must
be overcome to realize online gearshifts whilst ensuring the vehicle’s overall performance.
First, although the driving conditions can be obtained based on forecasting or V2I technical,
some stochastic conditions (e.g., driving style or random loading) in vehicle operation
are hard to make explicit. This will significantly impact the robustness of the formulated
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shift schedule. Second, the shift delay time between adjacent gears is not considered,
which may lead to an unexpected frequent gear shift during the optimization. Third,
a specific shift schedule with a straightforward control strategy should be more appropriate
than a complicated algorithm considering a vehicle processor’s computing limits and
costs. Inspired by [42,43], a Fuzzy logical-based controller was designed, considering
the variation in the vehicle load and acceleration to regulate the gear shift velocity of a
predesigned shift map online, which was extracted from the offline DP solution to promote
the comprehensive performance of the vehicle in practice.

The main innovation and contribution are summarized as follows. (1) An adaptive
shift schedule design framework is formulated based on DP and fuzzy logical control to
promote the comprehensive abilities of the multi-gear AMT electric vehicles. (2) Abundant
typical driving cycles are employed to calculate the optimal working points of the vehicle
based on DP, whilst an offline optimal shift schedule is derived according to the optimiza-
tion results. (3) A fuzzy logical controller is designed with the variation in the vehicle
load and acceleration, which are considered as input to adjust the gear shift velocity on-
line. (4) Three benchmark shift schedules, including dynamic-oriented, economic-oriented
and MOPSO schedules, are constructed to evaluate the effectiveness of the proposed shift
schedule, and the results indicate the superior performance of the proposed Fuzzy-DP
method in terms of the dynamics, economy, and shift frequency.

The remainder of the paper is organized as follows. Section 2 presents the studied
multi-gear AMT powertrain models and vehicle dynamic models. In Section 3, three bench-
mark shift schedules are formulated: dynamic-oriented, economic-oriented, and MOPSO
schedules. The adaptive shift schedule design architecture is formulated in Section 4, where
the DP is adopted to derive an offline optimal shift schedule, and an online Fuzzy logical
controller is designed for shift velocity adjustments. Section 5 exhibits the validation results
of the proposed method in terms of dynamics, economy, and shift frequency. Finally, core
conclusions are summarized in Section 6.

2. Modeling of Powertrain
2.1. Configuration of the Electric Vehicle

The powertrain of a multi-gear AMT electric vehicle is usually composed of electric
motors, automated manual transmission (AMT), and power batteries. The modeling quality
of these components has a significant impact on the performance of the shift schedule.
Hence, the numerical models of the critical components are established according to the
studied electric vehicle.

As shown in Figure 1, the motor and the AMT are directly connected to constitute the
drive system. The power battery can provide both the driving and braking energy while
the motor is working as a drive motor or a generator, respectively. The main parameters of
the multi-gear AMT electric vehicle are listed in Table 1.

TCU

AMTMotor

Inverter

MCU

Battery

BMSHCU
Final 

drive

Figure 1. Configuration of the electric vehicle powertrain.
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Table 1. Key parameters of the electric vehicle.

Components Descriptions

Vehicle Curb mass: 4015 kg, Gross mass: 9000 kg@Max
Front area: 4.76 m2, Tire rolling radius: 0.391 m, Air drag coefficient: 0.55

Motor Peak torque: 450 N·m, Peak power: 90 kW, Peak rational speed: 5400 rpm

AMT 4-speed, Speed ratio: 5.66/3.11/1.67/1

Final drive Speed ratio: 4.785

Battery Capacity: 200 A·h, Rated voltage: 354 V

2.2. Powertrain Models

A permanent magnet synchronous motor with a peak power of 90 kW is used in the
electric vehicle, whilst a steady-state numerical efficiency model of the electric motor is
utilized to calculate the motor’s power. Since the motor’s efficiency is considered to be the
same when the torque of the motor is defined as positive and negative, the electric motor’s
power can be expressed as follows [4].

Pm =
Tm · nm · ηm

−sgn(Tm)

9550
, (1)

where Pm represents the power of the electric motor. Tm and nm represent the torque
and rational speed of the electric motor, respectively. ηm is the mapping relationship of
the motor efficiency, which can be interpolated by the motor’s torque and rational speed,
as shown in Figure 2. Then, the efficiency of the electric motor is expressed as follows.

ηm = ηm(nm, Tm). (2)

Moreover, sgn(·) is a sign function that can be defined as follows.

sgn(Tm) =

{
1, i f Tm ≥ 0
−1, otherwise

. (3)

A 4-speed AMT is utilized to downsize the motor’s output torque and improve the
motor’s work zone by adjusting the rotational speed and torque. Thus, the AMT model is
expressed as follows. {

Tb = Tm · ig(n) · ηg(n)
nb = nm/ig(n)

, (4)

where Tb and nb represent the AMT’s output torque and output rational speed, respectively.
ig(n) denotes the speed ratio of the AMT for the nth gear. ηg(n) is the AMT efficiency for the
nth gear, which can be obtained from a bench test. The AMT efficiency is shown in Figure 3.

Figure 2. Efficiency of the motor.
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rd

Figure 3. Efficiency of the AMT.

The lithium iron phosphate battery pack is employed for the studied electric vehicle,
and its nominal capacity and rated voltage are 200 A·h and 354 V, respectively. The battery
is simplified as the equivalent circuit based on the internal resistance model, and the open
circuit voltage and the internal resistance can be considered as the function of the battery
state-of-charge (SOC), as shown in Figure 4. Therefore, the relationship between the open
circuit voltage, battery power, and battery current is described as follows [4,41].

Pbatt = Uoc(SOC) · I − I2 · R0(SOC), (5)

where Pbatt denotes battery power. Uoc, I, and R0 denote the open circuit voltage, the battery
current, and the internal resistance, respectively.

(a) (b)

Figure 4. (a) Internal resistance; (b) open circuit voltage.

According to the solution of Equation (5) for the current I, the variation in the bat-
tery SOC can be calculated, and the dynamics of the battery pack can be described as
follows [4,7].  I = Uoc(SOC)−

√
Uoc(SOC)2−4·PbattR0(SOC)

2R0(SOC)
SȮC = − I

Qbatt
= f (SOC, Pbatt)

, (6)

where SȮC represents the changing of the battery SOC. Qbatt is the nominal capacity of
the battery.
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2.3. Vehicle Dynamic Model

The longitudinal dynamic model is usually simplified as a point-mass model, neglect-
ing the impact of the lateral dynamics and vertical dynamics on the vehicle. The simplified
model is expressed as follows [4,41].{

M · du
dt = Tr

rwh
− 1

2 Cd Aρdu2 −Mg( fr cos θ + sin θ)

Tr = Tm · ig · i0 · ηT + Tbrk
, (7)

where M is the gross mass of the vehicle, composed of the curb mass and vehicle load.
Tr, rwh, Cd, A, ρd, and u denote the required torque, wheel radius, air drag coefficient,
front area, air density, and vehicle velocity, respectively. g, fr, θ, and ηT represent the
gravity acceleration, rolling resistance coefficient, road slope, and transmission efficiency.
Tbrk means the mechanic braking torque provided by conventional friction brakes when
regenerative braking is insufficient to ensure the desired braking torque. The mechanical
braking torque Tbrk can be described as follows.

Tbrk =

{
0
Tbrq − Tg_ max

Tbrq ≤ Tg_ max
Tbrq > Tg_ max

, (8)

where Tbrq is the required braking torque for vehicle. Tg_ max represents the maximum
regenerative braking torque provided by the electric motor.

3. Benchmark Shift Schedule Design

The conventional shift schedule can be divided into a dynamic-oriented shift schedule,
as well as an economic-oriented shift schedule. The former ensures the vehicle has a
more robust dynamic performance, while the latter provides lower energy consumption.
Furthermore, a comprehensive shift schedule based on multi-objective particle swarm
optimization (MOPSO) is also established to verify the effectiveness of the proposed
adaptive shift schedule.

3.1. Dynamic-Oriented Shift Schedule

To ensure the vehicle’s dynamic performance, the intersection of the acceleration
curves for the adjacent gear corresponding to the same accelerator pedal opening is selected
as the best shift point of the dynamic-oriented shift schedule. The acceleration of the vehicle
can be expressed as [9]:

du
dt

=
1

δM

(
Tmigi0ηT

rwh
−Mg fr cos θ − 1

2
Cd Aρdu2

)
. (9)

It should be noted that if there is no intersection between the adjacent gear, the gear
corresponding to the higher velocity should be considered the shift point. As shown
in Figure 5a, a shifting curve for the dynamic-oriented shift schedule can be extracted by
fitting the points into a curve when the intersection of the acceleration curves for different ac-
celerator pedal openings are collected. Furthermore, the upshift and downshift points need
to be different to avoid frequent shifting, where a velocity difference of about 5∼8 km/h is
always set between the upshift and downshift points [9], as shown in Figure 5b.
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40% 20%

(a)

Figure 5. (a) Acceleration of different pedal openings; (b) dynamic shift schedule.

3.2. Economic-Oriented Shift Schedule

To ensure the vehicle’s economic performance, the intersection of the electric motor
efficiency of adjacent gears corresponding to the same accelerator pedal opening is selected
as the best shift point. According to Equation (2), the electric motor efficiency can also be
expressed as a function of vehicle velocity and motor torque [9]:

ηm = f (
igi0u

0.377rwh
, Tm). (10)

Then, the upshift curve can finally be obtained by fitting the intersection under differ-
ent accelerator pedal openings. In other words, the economic-oriented upshift curve can
also be obtained by taking the efficiency surface’s crossover line of the motor at the adjacent
gear position, as shown in Figure 6a. Like the dynamic-oriented shift schedule, the velocity
difference must also be set to avoid undesired frequent shifting for the economic-oriented
shift schedule, as depicted in Figure 6b.

E
ff

ic
ie

n
c
y
 (

%
)

(a) (b)

Figure 6. (a) Motor efficiency surface for different gears; (b) economic shift schedule.

3.3. MOPSO Shift Schedule

There is a contradiction between dynamic-oriented and economic-oriented shift sched-
ules. The former requires the vehicle to shift as late as possible, while the latter is the
opposite. It is necessary to consider the impact of shifting point velocity on both of them
to ensure a better vehicle performance. Therefore, a multi-objective particle swarm op-
timization (MOPSO) algorithm is employed to optimize the shift schedule to acquire a
comprehensive shift schedule.

In this problem, the objective function is composed of dynamic and economic objec-
tives, where the velocity of the upshift points is considered a design variable. It can be
described as follows.

min F([u1, u2, u3]) = ( f1, f2)
T . (11)
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The dynamic objective is determined based on the acceleration time (i.e., the time
for the vehicle to accelerate from zero to a target speed) [21]. It can be calculated by the
following equations.

f1 = 1
3.6

∫ u1
0

δ1 M
Tmigi0ηT

rwh
−Mg fr cos θ− 1

2 Cd Aρdu2
·du

+ 1
3.6

∫ u2
u1

δ2 M
Tmigi0ηT

rwh
−Mg fr cos θ− 1

2 Cd Aρdu2
·du

+ 1
3.6

∫ u3
u2

δ3 M
Tmigi0ηT

rwh
−Mg fr cos θ− 1

2 Cd Aρdu2
·du

+ 1
3.6

∫ 80
u3

δ4 M
Tmigi0ηT

rwh
−Mg fr cos θ− 1

2 Cd Aρdu2
·du

, (12)

where u1, u2, u3 represent the velocity of the upshift points from 1st gear to 2nd gear, 2nd
gear to 3rd gear, and 3rd gear to 4th gear corresponding to a specific accelerator pedal
opening, respectively. δ1, δ2, δ3, δ4 are the rotation mass coefficients for different gears.
The target speed of the vehicle is designed as 80 km/h.

Accordingly, the vehicle’s energy consumption during the acceleration from 0 to
80 km/h is taken as an economic objective and described as follows.

f2 =
∫ t1

0

Pm

ηg · ηT
· dt +

∫ t2

t1

Pm

ηg · ηT
· dt +

∫ t3

t2

Pm

ηg · ηT
· dt +

∫ t4

t3

Pm

ηg · ηT
· dt, (13)

where t1, t2 and t3 represent the vehicle running time during the 1st gear, 2nd gear, and
3rd gear, respectively. t4 is the total time during vehicle acceleration. Moreover, the up-
shift velocity is respectively constrained within a scope based on dynamic-oriented and
economic-oriented shift schedules at the same acceleration pedal opening to improve the
optimization efficiency of the MOPSO. This can be expressed as follows.

s.t.


min(ud1, ue1) ≤ u1 ≤ max(ud1, ue1)
min(ud2, ue2) ≤ u2 ≤ max(ud2, ue2)
min(ud3, ue3) ≤ u3 ≤ max(ud3, ue3)

, (14)

where ud1, ud2, ud3 represent the upshift velocity of the dynamic-oriented shift schedule for
1st to 2nd gear, 2nd to 3rd gear and 3rd to 4th gear, respectively. ue1, ue2, ue3 represent the
upshift velocity of the economic-oriented shift schedule for 1st to 2nd gear, 2nd to 3rd gear
and 3rd to 4th gear, respectively.

In the solving process, the maximum number of iterations is 500, and the particle
swarm size is 100. Figure 7a gives the optimal solution and Pareto frontier when the
accelerator pedal opening is 100%. To provide compromise between the dynamic and
economic objectives, a linear weighting method is utilized to integrate two of them, which
can be described as follows [21].

f =
ω1

s1
· f1 +

ω2

s2
· f2, (15)

where ω1 and ω2 represent the weighting factor of the dynamic objective and economic
objective. s1 and s2 are scale factors to balance the order of magnitude between the two
objectives. When the linear objective is determined, the optimal particle (i.e., the optimal
upshift velocity) can be obtained, as shown in Figure 7b.

Accordingly, the upshift velocity of the comprehensive shift schedule can be obtained
by the MOPSO method when the accelerator pedal opening is set as 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%, and 100%, respectively.The results are listed in Table 2,
and the downshift velocity can be obtained by setting a velocity difference similar to the
previous method.
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Figure 7. (a) Pareto solution of optimization objective; (b) particle swarm and optimal solution.

Table 2. Upshift velocity of the MOPSO shift schedule.

Pedal Openings 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

u1 (km/h) 12 13 13 17 19 19 19 19 17 18
u2 (km/h) 19 17 23 30 35 35 32 34 33 30
u3 (km/h) 35 28 43 57 55 56 58 56 57 55

4. Adaptive Shift Schedule Design

Dynamic programming (DP) is considered one of the most popular methods to explore
the global optimal solution for multistage decision-making problems while some necessary
prior knowledge is known [7,21]. As the decision of the gear position can be regarded as a
discrete-time dynamic optimization problem with a given driving cycle, DP is utilized to
decide the optimal gear position based on a combined driving cycle in this paper. Although
abundant historical driving cycles can be adopted to acquire the shift schedule based on DP,
it cannot completely adapt to the complicated and changeable actual driving conditions,
which may lead to an unexploited energy-saving potential in the multi-gear AMT electric
vehicle. Hence, a fuzzy logical control method is utilized to adjust the shifting point of the
DP-based shift schedule to promote adaptability to various driving cycles. Noting that the
vehicle load and acceleration considerably impact the vehicle’s dynamics and economy;
they are deployed as the fuzzy logical controller’s input. At the same time, the velocity
of the shifting points will be dynamically adjusted by the fuzzy logical controller. This
means that the vehicle load and acceleration are obtained in real-time, and the fuzzy
logical controller will output a velocity increment (or reduction) to adjust the shift speed of
the DP-based shift schedule corresponding to the real-time vehicle load and acceleration.
The diagram of the adaptive shift schedule framework is shown in Figure 8.
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Figure 8. Adaptive shift schedule based on DP and fuzzy logical control.
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4.1. Dynamic Programming Formulation

Considering the characteristics of the DP-solving process, the driving cycle needs to be
discretized. Meanwhile, the vehicle powertrain model in Section 2 should also be described
in a discrete recursion equation. Hence, the shift schedule optimization problem can be
described as follows [7,21]. 

x(k + 1) = f (x(k), u(k))
x(k) = [SOC(k), gx(k)]T

u(k) = shi f t(k)
, (16)

where f (·) represent the state equation of the dynamic system. x(k) denotes the state vector
of the vehicle, which is composed of the battery SOC and gear position. u(k) is the gear
shift command shi f t(k) containing upshift, downshift, and maintaining. k denotes the
discrete-time sequence (k = 0, 1, 2, . . . , N − 1). Thus, the discrete state equation of the state
variable can be expressed by the following equation [7,21].

SOC(k + 1) = SOC(k)− Uoc(k)−
√

U2
oc(k)−4R0(k)Pbat(k)

2R0(k)Qbat(k)

gx(k + 1) =


1
4
gx(k) + shi f t(k)

gx(k) + shi f t(k) < 1
gx(k) + shi f t(k) > 4

otherwise

, (17)

where the control variable shi f t(k) is described as:

shi f t(k) =


+1 upshi f t
−1 downshi f t
0 maintaining

. (18)

The purpose of the optimization problem is to determine the optimal control variables
to minimize the energy consumption of the vehicle. Thus, the cost function is expressed
as [7]:

J = min
N−1

∑
k=0

L(x(k), u(k)) = min
N−1

∑
k=0

(Pbatt(k) + β · |shi f t(k)|), (19)

where Pbatt(k) denotes the energy consumption of the vehicle at the kth time step. In
addition, a penalty function β|shi f t(k)| is also added to avoid the undesired frequent
gearshift, whilst β is treated as a weighting factor.

In addition, some physical constrains are appended to guarantee the practical applica-
tion, and the inequality constraints are expressed as follows.

s.t.


Pm_ min(k) ≤ Pm(k) ≤ Pm_ max(k)
nm_ min(k) ≤ nm(k) ≤ nm_ max(k)
Pbatt_ min(k) ≤ Pbatt(k) ≤ Pbatt_ max(k)
SOCmin(k) ≤ SOC(k) ≤ SOCmax(k)

, (20)

where Pm(k) and nm(k) represent the instantaneous power and rotation speed of the
motor at the kth step. They are respectively limited by their lower boundaries Pm_ min(k),
nm_ min(k), and the higher boundaries Pm_ max(k), nm_ max(k). Pbatt(k) and SOC(k) represent
the instantaneous power and SOC of the battery. The former is constrained by the lower
boundary Pbatt_ min(k) and the higher boundary Pbatt_ max(k). The latter is limited to the
allowed range, with a scope from 0.3 to 0.9.

As shown in Figure 9, a combined driving cycle composed of WVUSUB, WVUINTER,
WVUCITY, UK bus, UDDS, NYCC, New York bus, MANHATTAN, Art urban, and China
city bus cycle (CCBC) is employed to acquire the optimal working points of the AMT EV to
formulate a DP-based shift schedule according to the global optimal solution.
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WVUSUB WVUINTER WVUCITY UK_bus UDDS NYCC

NewYorkBus

NEDC

MANHATTAN

Arturban CCBC

Figure 9. Combined driving cycle.

Figure 10a depicts the DP solution’s gear position and battery SOC. It can be seen that
the gear changes from 1st to 4th, which is consistent with our predesigned state variable.
Moreover, the battery SOC gradually declines from 0.9 to 0.319, for which the constraints
of the battery SOC are also satisfactory. As shown in Figure 10b, a fragment including the
desired power of the vehicle and the battery power is extracted from the DP solution to
examine the variation in battery power. This demonstrates that the output power of the
battery can follow the vehicle demand power. The battery power is slightly larger than the
vehicle demand power in the driving mode, while the recovered energy is less than the
vehicle demand braking power.

(b)(a)

Figure 10. (a) Gear position and battery SOC; (b) desired power and battery power.

In addition, Figure 11 depicts the optimal working points of AMT for various gear
positions based on the DP solution. There are apparent boundaries between the working
points of adjacent gears. Hence, an upshift curve can easily be picked up between them.
In other words, a shift schedule based on DP results can be extracted and deployed as
an online strategy for AMT control. Moreover, a downshift delay must also be designed
within 5∼8 km/h to eliminate frequent gear-shifting.

1
st
 gear 2

nd
 gear 3

rd
 gear 4

th
 gear

Upshift curve

Figure 11. Optimal working points of different gear.
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4.2. Fuzzy Logic Controller Design

Fuzzy logic control is a robust control method that does not depend on mathematical
models. It has been popularly applied to the control strategy of EVs as it can effectively
solve the control problem of vehicles under complex working conditions [22,43]. This
paper employs the fuzzy logical control method to adjust the velocity of the upshift points
and the downshift points based on the DP-based schedule. The vehicle’s load variation
and acceleration are input to the fuzzy logical controller. The velocity adjustment of the
shifting points will be output from the fuzzy logical controller in real-time. Considering the
actual operation of the vehicle, the acceleration a is designed for a scope of from −3 m/s2

to 3 m/s2, load variation ∆m is within 0∼5000 kg, and the velocity adjustment ∆u is
designed as ranging from −6 km/h to 6 km/h. Then, the load variation, acceleration,
and velocity adjustment are converted into the discourse of the universe, which can be
described as follows.

∆m = {0, 1000, 2000, 3000, 4000, 5000}
a = {−3,−2,−1, 0, 1, 2, 3}
∆u = {−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6}

, (21)

where ∆m, a, and ∆u represent the universe of the load variation, acceleration, and velocity
adjustment, respectively.

The fuzzy subset of the load variation is divided into VS, NS, MS, Z, MB, B, and VB,
whilst acceleration is partitioned into NB, NM, NS, ZO, PS, PM, and PB. Meanwhile,
the velocity adjustment is also divided into seven parts, including NB, NM, NS, ZO, PS,
PM, and PB. Then, the Gaussian membership function is employed to describe the input
variables of the fuzzy cotroller while the Trapezoidal membership function is employed
to express the output variable. Therefore, the membership function of the load variation,
acceleration, and velocity adjustment can be obtained, as shown in Figure 12.

(b)(a)

(c)

Figure 12. (a) Load variation membership; (b) acceleration membership; (c) velocity adjustment
membership.



Machines 2023, 11, 915 14 of 22

In this study, the Mamdani model is utilized to formulate the control rules [43], where
there are two fuzzy input variables, (i.e., load variation and acceleration), and each of them
has seven subsets. Therefore, a total of 7× 7 = 49 control rules can be acquired. Generally
speaking, when the vehicle’s acceleration increases, it needs to be shifted into a higher gear.
Thus, the fuzzy logical controller tends to output a negative velocity adjustment to promote
the gear-upshift of the AMT. On the other hand, the demand for the vehicle’s dynamic
performance will be preferred owing to the increasing vehicle load and a delayed upshift
should be necessary. Therefore, a positive velocity adjustment will be output by the fuzzy
logical controller to postpone the gear-upshift. Accordingly, the output of shift velocity
adjustment means that the heavier the vehicle load, the larger the velocity adjustment,
while the greater the acceleration, the smaller the velocity adjustment.

The centroid method is utilized to defuzzify the fuzzy inference result to obtain the
exact output value [43]. Hence, the relationship between shift velocity adjustment and
vehicle load and acceleration can be acquired, as shown in Figure 13. Finally, a fuzzy logical
controller based on vehicle load and acceleration will be introduced to the DP-based shift
schedule to constitute a Fuzzy-DP schedule, which can adjust the gearshift velocity online
to improve the adaptation of the shift schedule to various driving conditions.

V
el

o
c
it

y
 (

k
m

/h
)

Figure 13. Fuzzy logical rules of shift velocity adjustment.

5. Validation and Discussion
5.1. Dynamic Performance

As acceleration time is usually applied to evaluate the vehicle’s dynamic performance,
the studied EV’s acceleration time from 0 to 80 km/h is calculated when the accelerator
pedal opening is 100%, based on the four shift schedules, i.e., dynamic, economic, MOPSO,
and Fuzzy-DP schedules.

As shown in Figure 14a, there are apparent differences in the gear-shift time of the
four shift schedules. Among them, the shift time of the economic schedule is the earliest,
while the dynamic schedule is the latest. For the economic schedule, the AMT upshifts
time from 1st to 2nd gear, from 2nd to 3rd gear, and from 3rd to 4th gear, respectively,
at 2.9 s, 4.9 s, and 8.2 s, compared to the 4.7 s, 10.9 s, and 27.0 s for the dynamic schedule.
As the MOPSO and Fuzzy-DP consider the vehicle’s dynamics and economy, the upshift
time is between the dynamic and economic schedules. In addition, the Fuzzy-DP considers
the vehicle load variation and acceleration, so the gear-shift time is slightly later in contrast
to the MOPSO. The time needed for the MOPSO and Fuzzy-DP to enter the 2nd gear only
has a 0.1 s difference between them. The time for upshift into 3rd gear is 10.0 s and 10.7 s,
respectively, while the time to move into 4th gear is 18.5 s and 21.4 s. The results reveal a
slight difference in the switching time of the 3rd gear, while there is a significant difference
in the switching time of the 4th gear.
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(a) (b)

Figure 14. (a) Shift time of different schedules; (b) acceleration time of different schedules.

The earlier upshift from low gear to high gear will inevitably lead to the unexpected
loss of the vehicle’s dynamic performance. The results from Figure 14b reveal that the
acceleration performance of the economic schedule is the worst, while the dynamic schedule
is superior. The acceleration times of the MOPSO and Fuzzy-DP are within the results of
the dynamic and economic schedules. Furthermore, the Fuzzy-DP is closer to the dynamic
schedule because it thoroughly considers the changes in vehicle load and acceleration.
Table 3 exhibits the vehicle’s acceleration and upshift times from low to high gear for
different shift schedules. Fuzzy-DP shows an 8.86% decrease in acceleration time compared
with the MOPSO, while having a 1.89% increase compared to the dynamic schedule.
The results demonstrate the Fuzzy-DP schedule leads to a remarkable improvement in
dynamic performance in contrast to the MOPSO.

Table 3. Acceleration performance.

Shift Shift Time (s) Acceleration Time Comparison Improvement

Schedules 1st to 2nd 2nd to 3rd 3rd to 4th 0∼80 km/h (s) Fuzzy-DP vs. Dynamic Fuzzy-DP vs. MOPSO

Dynamic 4.7 10.9 27.0 21.2

−1.89% 8.86%
Economic 2.9 4.9 8.2 25.0
MOPSO 4.6 10.0 18.5 23.7

Fuzzy-DP 4.7 10.7 21.4 21.6

5.2. Economic Performance

To validate the adaptability of the Fuzzy-DP, the economy of four shift schedules
is compared based on the stochastic driving cycles. Figure 15 exhibits six groups of the
stochastic driving cycles (i.e., NO.1∼NO.6), including velocity and vehicle load, which
are implemented to evaluate the vehicle’s economic performance. Noting that the studied
EV mainly operates in urban areas, the road slope is neglected, considering the actual
characteristics of the roads. The velocity and vehicle load variation are acquired from
actual measurements.

As the battery SOC considerably impacts the energy consumption of electric vehicles,
Figure 16 exhibits the SOC trajectories of the four shift schedules under the aforementioned
stochastic driving cycles. Since the battery is the only power source for the electric vehicle,
the SOC trajectories are similar under various shift schedules. However, it can be seen
that the SOC trajectory of the dynamic schedule decreases the fastest, while the economic
schedule is slowest. The SOC trajectory of the MOPSO is between the dynamic and
economic schedules, which will have a definite energy saving compared to the dynamic
schedule. However, there is still an undesirable gap compared to the economic schedule.
Fortunately, the SOC trajectory of the Fuzzy-DP is closer to the economic schedule when
compared to MOPSO. For the NO.1 driving cycle, the SOC trajectory almost coincides with
the economic schedule, significantly improving the vehicle’s economy. In addition, it is
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worth noting that the initial SOC has a negligible influence on the results, and can therefore
be set at 0.9. As the vehicle’s driving range is 200 km, and the driving cycles implemented
for verification are approximately 40 km, the terminal SOCs of the four schedules are almost
located from 0.6 to 0.7.

NO.1 NO.2 NO.3

NO.4 NO.5 NO.6

Figure 15. Stochastic driving cycles for validation.

NO.1 NO.2 NO.3

NO.4 NO.5 NO.6

Figure 16. Comparisons of the battery SOC.

The working points of the Fuzzy-DP and MOPSO are plotted in Figure 17 to analyze
the energy-saving potential. Two shift schedules are executed under different driving
cycles, and the results are compared. It can be seen that their working points are both
concentrated in a specific zone. However, there is a significant difference between them.
The operating points of the Fuzzy-DP are mainly distributed in the lower-speed area, while
MOPSO has more working points distributed in the higher-speed zone, which may lead to
lower motor efficiency.

For further explanation, the frequency of the working points in a highly efficient
zone is calculated and compared, as illustrated in Table 4. The statistic is focused on the
ratio of the working points within the efficient area of 92% to all operating points during
the trip. Thus, this can more intuitively reflect the energy-saving potential of the shift
schedule. The results indicate that more working points are located in the highly efficient
area for the Fuzzy-DP compared to the MOPSO. Although there are specific differences in
different driving cycles, Fuzzy-DP has preferable adaptability to various driving cycles. It
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has more energy-saving potential than MOPSO, and the improvement of highly efficient
zone working points can reach up to 4.02% in the NO.1 driving cycle.

NO.1 NO.2 NO.3

NO.4 NO.5 NO.6

Figure 17. Comparisons of the motor working points.

Table 4. Percentages of motor working points in highly efficient zone.

Items
Percentages of Motor Working Points @ ≥92% (%)

NO.1 NO.2 NO.3 NO.4 NO.5 NO.6

MOPSO 36.38 36.38 39.54 43.78 39.95 41.58
Fuzzy-DP 40.40 39.88 41.32 45.03 42.34 43.10

Improvement 4.02 3.50 1.78 1.25 2.39 1.52

The comparisons of the energy consumption for different driving cycles are repre-
sented in Figure 18.

NO.1 NO.2 NO.3

NO.4 NO.5 NO.6

Figure 18. Energy consumption of different schedules.

The results based on the dynamic, economic, and MOPSO schedules are deployed as
the benchmark to evaluate the effectiveness of the Fuzzy-DP. Not surprisingly, the dynamic
schedule has the highest energy consumption, and the economic schedule is the most
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energy-efficient. Because the dynamic schedule can evidently improve a vehicle’s dynam-
ics, it will sacrifice some economy, while the economic schedule is exactly the opposite.
Although the MOPSO has a superior economic performance compared to the dynamic
schedule, it still has significant potential for improvement. It is worth noting that the
Fuzzy-DP can successfully guarantee the vehicle’s economy for various driving cycles,
until it is almost close to the economic schedule for some driving cycles. This means that
the proposed method can promote the shift schedule’s adaptability to stochastic driving
cycles in a real-time application. The energy consumption of different shift schedules is
listed in Table 5.

Table 5. Results and comparisons of energy consumption.

Driving Cycles
Shift Terminal Energy Comparisons Improvements

Schedules SOCs Consumptions (kW·h) Fuzzy-DP vs. Economic Fuzzy-DP vs. MOPSO

NO.1

Dynamic 0.6487 20.90

−0.33% 8.24%
Economic 0.6848 17.98
MOPSO 0.6648 19.66

Fuzzy-DP 0.6836 18.04

NO.2

Dynamic 0.6351 21.43

−1.57% 6.55%Economic 0.6714 18.53
MOPSO 0.6515 20.14

Fuzzy-DP 0.6672 18.82

NO.3

Dynamic 0.6215 24.08

−0.70% 7.06%Economic 0.6543 21.31
MOPSO 0.6339 23.09

Fuzzy-DP 0.6522 21.46

NO.4

Dynamic 0.6623 23.65

−2.04% 10.12%Economic 0.6234 20.54
MOPSO 0.6562 23.32

Fuzzy-DP 0.6406 20.96

NO.5

Dynamic 0.6358 22.54

−1.07% 7.39%Economic 0.6737 19.58
MOPSO 0.6700 21.37

Fuzzy-DP 0.6519 19.79

NO.6

Dynamic 0.6316 22.54

−1.33% 6.87%
Economic 0.6696 19.52
MOPSO 0.6499 21.24

Fuzzy-DP 0.6654 19.78

Specifically, the maximum energy-saving potential can be improved to 10.12% in
contrast to the MOPSO, whilst the minimum is also promoted by 6.55%. Unfortunately, it
still has a slight deficiency compared with the economic schedule. The energy consumption
is 2.04% higher than the economic schedule in the NO.3 driving cycle. However, it is only
0.33% higher than the economic schedule in the NO.1 driving cycle. Overall, the proposed
Fuzzy-DP schedule can significantly promote the adaptation to various driving cycles,
leading to a desirable improvement in energy savings.

5.3. Shift Frequency

In addition, the shift frequency is also calculated and analyzed as it has a non-negligible
influence on AMT service life. As shown in Figure 19, the economic schedule’s shift
frequency is much higher than others, while the dynamic schedule is the lowest. The
economic shift schedule has desirable economics, but the gear shift will be too frequent.
The dynamic shift schedule is precisely the contrary. Fortunately, the MOPSO and the
Fuzzy-DP are distinctly lower than the economic schedule and slightly higher than the
dynamic schedule.
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Figure 19. Comparisons of shift frequency.

The shift frequency based on the four shift schedules under different driving cycles is
listed in Table 6. It can be seen that the improvement in the shift frequency for Fuzzy-DP is
remarkable compared with the economic schedule, where the maximum can reach up to
45.03%, i.e., the shift frequency is decreased from 866 to 476. As the shift frequency of the
economic schedule for the NO.3 driving cycle is much lower than others, the promotion is
only 18.67%, which is much more distinct and lower than other driving cycles. However,
the effectiveness of the Fuzzy-DP is also noteworthy. There has been a considerable promo-
tion of Fuzzy-DP compared to the MOPSO, where the shift frequency can be reduced from
549 to 502, with an improvement of 8.56% (in the NO.4). Furthermore, the improvement is
also significant under other driving cycles.

Table 6. Results and comparisons of shift frequency.

Driving Shift Shift Frequency Improvements

Cycles Schedules (Times) Fuzzy-DP vs. Economic Fuzzy-DP vs. MOPSO

NO.1

Dynamic 316

43.06% 3.15%
Economic 864
MOPSO 508

Fuzzy-DP 492

NO.2

Dynamic 334

45.03% 8.11%Economic 866
MOPSO 518

Fuzzy-DP 476

NO.3

Dynamic 360

18.67% 7.05%Economic 616
MOPSO 539

Fuzzy-DP 501

NO.4

Dynamic 352

40.66% 8.56%Economic 846
MOPSO 549

Fuzzy-DP 502

NO.5

Dynamic 368

39.88% 3.42%Economic 845
MOPSO 526

Fuzzy-DP 508

NO.6

Dynamic 361

42.69% 6.04%
Economic 869
MOPSO 530

Fuzzy-DP 498

6. Conclusions

This paper presents an adaptive shift schedule design methodology based on DP and
fuzzy logical control to promote the shift schedule’s adaptability, thereby improving the
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comprehensive performance of multi-gear AMT electric vehicles in real-time implementa-
tion. A DP algorithm is employed to extract a globally optimal shift schedule based on a
combined driving condition containing 11 groups of typical driving cycles. To improve
the adaptability of the DP-based shift schedule, the vehicle load variation and acceleration
are introduced to the fuzzy logical controller, whilst the velocity adjustment is output to
regulate the gear-shift velocity in real-time.

The dynamic, economic, and MOPSO shift schedules are also constructed as the
benchmark to evaluate the performance of the proposed shift schedule. The results demon-
strate that the Fuzzy-DP has considerable advantaes in promoting the vehicle’s dynamic
performance compared with MOPSO. The acceleration time from 0 to 80 km/h can be
improved by 10.83%. Additionally, the proposed shift schedule also leads to expected
impromvements in energy-saving, where the highest improvements can reach up to 10.12%
in contrast to MOPSO. In some driving cycles, the energy-saving potential is quite close
to the economic schedule, where the energy consumption is only 0.33% higher than the
economic schedule. Moreover, the proposed shift schedule can effectively inhibit frequent
shifting to increase the service life of the AMT.

In the future, a test bench should be established to further evaluate our proposed
method for real-time implementation. Moreover, an electro-thermal-aging coupled battery
model and the information based on V2I and V2V can be introduced to our research to
further improve the practicability of the Fuzzy-DP shift schedule.
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