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Abstract: In this study, a novel planning and tracking approach is proposed for a mobile robotic arm
to grab objects in an obstacle environment. First, we developed an improved APF-RRT* algorithm
for the motion planning of a mobile robotic arm. This algorithm optimizes the selection of random
tree nodes and smoothing the path. The invalid branch and the planning time are decreased by the
artificial potential field, which is determined by the specific characteristics of obstacles. Second, a
Fuzzy-DDPG-PID controller is established for the mobile robotic arm to track the planned path. The
parameters of the PID controller are set using the new DDPG algorithm, which integrated FNN. The
response speed and control accuracy of the controller are enhanced. The error and time of tracking of
the mobile robotic arm are decreased. The experiment results verify that the proposed approach has
good planning and tracking results, high speed and accuracy, and strong robustness. To avoid the
occasionality of the experiments and fully illustrate the effectiveness and generality of the proposed
approach, the experiments are repeated multiple times. The experiment results demonstrate the
effectiveness of the proposed approach. It outperforms existing planning and tracking approaches.

Keywords: mobile robotic arm; planning; tracking; APF-RRT*; PID; DDPG; FNN

1. Introduction

With the development of science and technology, mobile robotic arms have become a
hot topic in the robotic research community. According to the information on the target
object and environment acquired by sensors, the mobile robotic arm can autonomously
grab the object, so they are widely used in many domains [1,2]. The grabbing task of a
mobile robotic arm depends on two functions. First, the robotic arm plans the motion
path for grabbing the object [3]; second, the robotic arm utilizes the controller to track the
planned path [4]. However, there are many obstacles and environmental disturbances
around the mobile robotic arm in the real-world environment. These factors have a certain
impact on the performance of planning and tracking [5]. Therefore, it is very important to
propose a novel planning and tracking approach for mobile robotic arms to grab objects in
obstacle environments.

Many algorithms have been presented for the motion planning of robotic arms. These
algorithms mainly include Dijkstra [6], A* [7], Artificial Potential Field (APF) [8], PRM [9],
and RRT [10]. The RRT has simple and flexible structures, and it has been popularly used
for path planning in robotic fields. It also has many variants [11,12]. Based on the RRT, the
RRT* introduces the notion of cost. As the sampled waypoints approach infinity, their path
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converges to the optimal solution with the least cost [13]. However, slow planning speed
and many invalid branches are also realized. To solve these problems, Gammell et al. [14]
developed the informed-RRT*. It limits the search area in an ellipsoidal subset of the
state space, and it can accelerate the search for the optimal path. Chi et al. [15] provide
the Risk-RRT*. The quality of paths is improved by utilizing the RRT* in a time-based
framework. The velocity of the two algorithms above is accelerated, and the length of paths
is decreased. However, there are many turning points in paths when working in areas
of obstacles. Yuan et al. [16] propose an APF-RRT algorithm for the motion planning of
robotic arms. It introduces a heuristic method based on the number of adjacent obstacles
to escape from local minima. It adopts an adaptive step, generates a virtual new node
strategy to explore the path, and removes redundant path nodes. Jiang et al. [17] combine
the RRT with the APF for path cutting and optimization. The planned path is short and
smooth, and the success rate of planning is improved. The two APF-RRT algorithms above
decrease path distance and planning time. Nevertheless, the shape and position of different
obstacles are not considered; thus, many invalid branches are generated in paths.

Mobile robotic arms generally utilize proportional integral derivative (PID) con-
trollers [18] for tracking the planned path. However, especially in obstacle environments,
the presence of environmental disturbance can cause a low response speed and large errors
in tracking [19–23]. To enhance the adaptability of tracking, the fuzzy neural network
(FNN) [24] is also widely used for tracking robotic arms. In [25], a sliding mode control
(SMC) method is associated with the FNN to constitute a robust control scheme to cope with
the tracking error caused by environmental disturbance. Du et al. [26] use the self-feedback
incremental FNN to predict and update the compensation in real-time. The deviation
distance caused by environmental disturbance is reduced. Mai et al. [27] developed an
intelligence PID controller. In this controller, an adaptive FNN approximator and an adap-
tive robust compensator are utilized to reduce the uncertainties of the system. The three
FNN controllers above reduce tracking errors, but the response speed is not accelerated
effectively. With the deep reinforcement learning (DRL) [28] technology developing, the
DRL algorithm, such as deep Q-network (DQN) [29] and deep deterministic policy gradient
(DDPG) [30], is utilized for real-time tracking of the robotic arm. Wang et al. [31] designed a
DQN-based PID (DQN-PID) controller. This controller is employed for image-based visual
servo (IBVS) control. It also solves the problem of feature loss and large steady-state error
and improves the servo accuracy of mobile robotic arms. To further enhance the perfor-
mance of grabbing robotic arms, Geng et al. [32] propose an improved DDPG algorithm
based on fractional-order control. It enhances the accuracy and adaptability of tracking
robotic arms using environmental dynamics modeling and grab posture optimization.
Afzali et al. [33] present a new modified convergence DDPG (MCDDPG) controller to
control robotic arms with high DOF. It shows a significant enhancement in training time
and stability of the control. The three controllers above improve accuracy and speed of
tracking, whereas poor robustness is also achieved.

To solve the problems mentioned above, we propose a novel planning and tracking
approach for mobile robotic arms to grab objects in obstacle environments. First, we
develop an improved APF-RRT* algorithm for motion planning of the mobile robotic arm.
It optimizes the process of expanding random trees, and the path is simplified via APF.
Second, a Fuzzy-DDPG-PID controller is established for tracking control of the mobile
robotic arm. We develop a new DDPG algorithm in which the update function and loss
function are improved, and the FNN with the optimized fuzzy rules is integrated. The
Fuzzy-DDPG is utilized for tuning the parameters of the PID controller.

The detailed contributions of this approach are as follows:

(1) An improved APF-RRT* algorithm is developed. First, for RRT*, the node selection
process is optimized, and the Dubins curve is used to smooth the path. The total
turning angle is reduced while decreasing the path length. Second, an APF is used to
generate artificial potential fields according to the shape and position of obstacles and
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keep the random tree away from the obstacles. Therefore, the invalid path branches
are reduced, and the speed of planning is accelerated;

(2) A Fuzzy-DDPG-PID controller is established. To promote the adaptiveness of path
tracking of the robotic arm in an environment with disturbance, a Fuzzy-DDPG
algorithm is integrated with the PID controller. First, to solve the problem of slow
disturbance capture in DDPG, the update function and loss function are improved,
and the policy-making speed is accelerated. Second, a FNN is proposed to solve the
problem of the strong subjectivity of the DDPG online network. The membership
function and fuzzy rules of FNN are optimized, and the online network of DDPG can
be updated in real-time. Therefore, the response speed and policy-making accuracy
are enhanced. By combining the Fuzzy-DDPG with the PID controller, the tracking
time, time delay, and error of tracking are reduced. The robustness is enhanced.

The rest of the contributions of this study are organized as follows: we introduce the
experimental platform in Section 2. Section 3 focuses on the technical details of the proposed
approach. We compare and analyze the proposed approach with different approaches in
Section 4. Finally, the works of this study are summarized in Section 5.

2. The Experimental Platform

The experimental platform called Turtlebot3-ARM is a 5-degree-of-freedom (DOF)
mobile robotic arm. It is generally composed of a mobile platform, a robotic arm, a LiDAR,
RGB-D cameras, and stepping motors. The robotic arm has five joints, and each joint is
equipped with a motor. For the robotic arm, there is a motor between the mobile platform
and the robotic arm, which is employed to control the horizontal rotation of the robotic arm.
There is a motor at the bottom, middle, and top joint of the robotic arm, respectively. The
three motors are utilized for stretching and retrieving the robotic arm. There is a motor at
the gripper, and it is leveraged for gripping and loosening the target object. The processor
frequency of Turtlebot3-ARM is 1.43 GHz, the RAM is 4 GB, and the ROM is 64 GB. Its
operating system is called the robot operating system (ROS), and it is built on Ubuntu
16.04. The parameters of Turtlebot3-ARM are shown in Table 1. The robotic arm part of
Turtlebot3-ARM is shown in Figure 1a, where yellow fonts denote the positions of the joints.
The coordinate system of the robotic arm joint is presented in Figure 1b.

Table 1. The parameters of Turtlebot3-ARM.

Parameters Definition Numerical Value

w (rad/s) Maximum angular velocity of motor 0.5
a1 (rad) Maximum angle of Joint 1 2π
a2 (rad) Maximum angle of Joint 2 π

a3 (rad) Maximum angle of Joint 3 π

a4 (rad) Maximum angle of Joint 4 π

a5 (rad) Maximum angle of Joint 5 0.5π
x (m) Minimum x-axis length of obstacle 0.05
y (m) Minimum y-axis length of obstacle 0.05
z (m) Minimum z-axis length of obstacle 0.05

Rs (m) Safety range of mobile robotic arm 0.05

According to the kinematics analysis description of the robotic arm in [34], the kine-
matic equation of the 5-DOF robotic arm we applied is as follows:

M(q)q′′ + C
(
q, q′

)
q′ + g(q) = F, (1)

where q = [q1, q2, q3, q4, q5] is the 5 × 1 vector of joint displacement, qi = (xi, yi, zi) ∈ R3,
i ∈ [1, 5]. R3 is the coordinate set of feasible area in the environment. q′ is the 5 × 1 vector
of joint velocity, q′′ is the 5 × 1 vector of joint acceleration, F is the 5 × 1 vector of the
motor torque, M(q) is the 5 × 5 symmetric positive definite inertia matrix of robotic arm,
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C(q, q′) is the 5 × 5 matrix of centripetal and Coriolis torques, and g(q) is the 5 × 1 vector
of gravitational torques. The kinematics of the robotic arm mainly has three properties:
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Figure 1. The robotic arm and its joint coordinate system (a) The robotic arm part of Turtlebot3-ARM
and (b) The coordinate system of the robotic arm joint.

Property 1, the C(q, q′) and the M(q) satisfy the following relationship:

(q′)T
[

1
2

M′(q)− C(q, q′)
]

q′ = 0, (2)

M′(q) = C(q, q′) + C(q, q′)T . (3)

Property 2, there exists a positive constant kg, such that:

‖∂g(q)
∂q
‖ ≤ kg. (4)

Property 3, there exists a positive constant kc, such that:

‖C(xi, yi)zi‖ ≤ kc‖yi‖‖zi‖, i ∈ [1, 5]. (5)

After obtaining the dynamic matrix through the DDPG, kg and kc can be obtained
using the following formula:

kg = 5
(

max
i

∣∣∣∣∂g(qi)

∂qi

∣∣∣∣), (6)

kc = 25
(

max
i,k
|Ck(qi)|

)
, (7)

where Ck(qi) is the matrix of joint displacement torque.

3. The Proposed Approach
3.1. Planning Based on the Improved APF-RRT*

We develop an improved APF-RRT* algorithm as shown in Algorithm. First, in
RRT*, the node-selecting process is optimized, and the Dubins curve [35] is applied to
smooth the path. The path length and the total turning angle are reduced. Second, APF is
combined with RRT*. It can generate artificial potential fields according to the shape and
position of obstacles and keep the random tree away from the obstacles. The invalid and
redundant path branches are cut, and the speed of planning is accelerated as well. The
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entire grabbing task of the robotic arm includes a stretching and retrieving process; we
consider the two processes as one model to analyze the planning.

3.1.1. The Improved RRT*

For RRT*, our works are as follows:
As shown in Figure 2a, The random tree does not expand until the new nodes qnew are

firmed. The current state of the random tree is T, and qc = (X, Y, Z) represents the center
coordinate of the current state of the robotic arm joints.
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When qnew has been firmed, the selection circle of qparent is formulated based on the
boundary point coordinates of the obstacle. The parent node qparent and its nearest nodes
are searched in this circle, and the radius of this circle is R. The process is shown in
Figure 2b; the node set D for the candidate qparent are as follows:

D = {qi||qi − qm| = R < l − 0.03}, i = 1, 2, . . . , N, (8)

where qi(i = 1, 2, . . . , N) is the candidate parent node in D, qm is the center node of D.
To ensure the effect of obstacle avoidance, l is the distance between the two edge points
of obstacles.

According to the difference in cost and steering angles of nodes in D, the Dubins
curves are used to separate high-cost nodes in the forms of circles with different radii.
The low-cost nodes are connected and smoothed simultaneously. This step is shown in
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Figure 2c. After this step, the coordinate of the new random tree state for five robotic arm
joints is confirmed. The center point Ck and radius rk of separating circle is as follows:

Ck =


1
5

5
∑

j=1
qj, 0◦ ≤ ∠

→
qj1 qj2 < 30◦

1
5

5
∑

j=1
qj +

qnew|qj1
−qj2 |min

sin
(

θmin
2

) ,∠
→

qj1 qj2 ≥ 30◦
, (9)

rk =
∣∣qj1 − qj2

∣∣
max + 0.02, (10)

where qj(j ∈ [1, 5]) is the candidate node for joints of robotic arm, θ(qj1 , qj2) is inclination

angle between two nodes of qj. If 0◦ ≤ ∠
→

qj1 qj2 < 30◦, the nodes unseparated on circle
Ck can be connected without smoothing, else they need to be smoothed.

∣∣qj1 − qj2

∣∣
min is

the minimum distance between two nodes of qj, θmin is the minimum inclination angle
between two nodes of qj, and

∣∣qj1 − qj2

∣∣
max is the maximum distance between two nodes

of qj.
After separation, according to the principle of path cost calculation of the D*Lite algo-

rithm [35], a path cost function is utilized to calculate the minimum cost of the remaining
nodes. Thereby, the nodes that meet the minimum cost are connected as a new random tree
state T′. This step is shown in Figure 2d, and the path cost function is as follows:

c =
√

2×min(
∣∣X′ − X

∣∣, ∣∣Y′ −Y
∣∣, ∣∣Z′ − Z

∣∣) + 1
5
|X− X|, (11)

where q′c = (X′, Y′, Z′) represent the center coordinate of a new state of the robotic
arm joints.

3.1.2. Addition of APF

Based on the improved RRT*, we merged the APF to make the path as if entering an
expanded obstacle area. The specific works of APF are as follows:

As shown in Figure 3a, there is no artificial potential field in the environment until the
robotic arm starts stretching or retrieving. When the state of the random tree has changed,
a repulsive potential field Uri(i = 1, 2, . . .) is generated by the zone of obstacle i behind
qnew, as shown in Figure 3b. The gravitational potential field Ua is generated by the target
object or robotic arm base. The potential field equations are as follows:

Ua = dtark1ρ(qnew, qtar)−
1
2

k0d2
tar, (12)

Uri =
1
2

µi

(
1

ρ(qnew, qci)
− 1

ρ(qci)

)
, (13)

where dtar is the threshold of the gravitational potential field, qtar is the coordinate of the
target object or robotic arm base. k0 is the invariable gravitational gain constant, k1 is the
variable gravitational gain constant, µi is the repulsive gain constant, qci is the center point
of the passed zone in the obstacle i, ρ(qnew, qci) represents the distance vector from qnew to
qci, and ρ(qci) represents the influence range of the obstacle i. As the random tree expands,
Ua and Uri will also change, and they are decided by k1 and µi respectively. k1 and µi are
represented as follows:

k1 =

k0
n
∑

i=1
Si

n
∑

i=1

∣∣∣qci − q f i

∣∣∣ , (14)

µi =
Si

‖qci − qni‖
, (15)
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where Si, i ∈ [1, 2] is the area of the zone that the random tree has passed through in
obstacle i, and Si is observed by the RGB-D camera on the robotic arm. q f i is the farthest
point from qci in Si, and qni is the closest point from qci in Si.

Algorithm: Improved APF-RRT*

Input: Process (stretch, retrieve), obstacle area Si, current state T
Output: Path(T, qnew, qmin)
Step 1: V← qi;
Step 2: i← 0;
Step 3: Motion← Process(stretch, retrieve)
Step 4: For i = 1:N do
Step 5: qrand ← Sample(qinit, T);
Step 6: i← i +1;
Step 7: qnearest ← Nearest(qrand);
Step 8: qnew ← Steer(qnearest, qtar);
Step 9: if CollisionFree(qnearest, qnew, Si) then
Step 10: qnearest ← Nearest(qnew, D);
Step 11: qparent ← Parent(qnearest, Rk);
Step 12: For j = 1:M do
Step 13: if ExcludeDubinsCircle(qnew) then
Step 14: qnew ← PlanNode(qparent, Ua, Ur);
Step 15: Cost(qmin) = Cost(qnearest) + Cost(qnew, d);
Step 16: T’← Path(T, qnew, qmin);
Step 17: Return T’;
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3.2. Tracking Based on the Fuzzy-DDPG-PID

A Fuzzy-DDPG-PID controller is established in this study. It can tune the parameters
of PID and reduce tracking errors. As shown in Figure 4, where ω is the angular
velocity vector of the motor, ψ(ω) is the input variable, ψ′(ω) is the output variable,
c(ω) is the control instruction output by the PID controller, d(ω) is the disturbance
function, Kp is the proportional parameter, Ki is the integral parameter, and Kd is the
differential parameter.

For the Fuzzy-DDPG algorithm, our work mainly includes two parts. First, for the
DDPG, the update function and loss function are improved to accelerate the policy-making
speed of tracking control. Second, the membership function and fuzzy rules of FNN
are optimized. The FNN is utilized to update the DDPG’s online network in real-time.
Therefore, the response speed and control accuracy of the controller are enhanced.
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3.2.1. DDPG Algorithm

The DDPG can analyze the states of the system via the Actor–Critic construction and
then make policies to determine the parameters of PID. For the DDPG, our specific works
are as follows:

In DDPG, the robotic arm states that T and T′ are important factors. They are utilized
for determining the action of the mobile robotic arm, and they are functions of the robotic
arm joint coordinates qi, i ∈ [1, 5]. The DDPG we proposed is shown in Figure 5.
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In the online Actor network, we have considered the rewards r from T to T′. The r
is executed and acquired by action a. The a is the function of M(q), C(q, q′) and g(q) in
Equation (1), and the r is the function of q in Equation (1). The update function µ(T; θµ) of
the environmental state, which is based on the gradient-rise method, is used as follows:

∇θ J = Es[∇aQ(T, r, a; θQ)×∇θµ(T; θµ)], (16)

where Es is the parameter selection function to minimize network error. θµ and θQ are the
parameters of the online Actor network and the Critic network, respectively, and Q is the
value function acquired in the online Critic network.
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In the online Critic network, the evaluation of the T′ is fully considered, and the
gradient of the online Critic network is as follows:

∇θQ = E[(r +∇θγQ′(T, T′, µ′(T; θµ′))−Q(T, a; θQ′))×∇θQ(T, T′, a; θQ)], (17)

where µ′ is the new environmental state from the target Actor network. Q′ is the value
function acquired in the target Critic network, and it is utilized to determine the parameters
of the PID controller. θµ′ and θQ′ are the parameters of the target Actor network and Critic
network, respectively, and γ ∈ (0, 1) is the parameter of the target Critic network.

We improve the loss function of DDPG based on the updated results of FNN; the loss
function L(θ f ) is as follows:

L(θ f ) =
1
N ∑

i
[αF(T, T′; θc)− (1− α)µ(T, r; θµ)]

2, (18)

where θ f is the Critic network parameter selected by fuzzy rules, F is the value function of
the Critic network calculated using DDPG and FNN, and α ∈ (0, 1) is the loss parameter.

3.2.2. The Addition of FNN

DDPG needs to determine the next state of the mobile robotic arm according to
expert experience. However, due to the state transformation of the environment not being
considered, the response speed is slow, and environmental parameters are difficult to obtain
in DDPG. Therefore, we added FNN to provide updated parameters for the online network
of DDPG in real time.

As shown in Figure 6, FNN consists of four layers. The first layer is the input layer,
whose nodes correspond to input variables xi, i ∈ [1, N]. After this layer, xi, i ∈ [1, N]
are converted to fuzzy variables. The second layer is the membership layer, and its
corresponding function Aij is employed to quantify the dimension of membership for input
variables. The third layer is the fuzzy rule layer. ϕj, j = 1, 2, . . . , L represents the truth
value of rules. wjk is the weight of the consequent part. The last layer is the output layer.
Its nodes correspond to output variables yi, i ∈ [1, M]. In this study, the input variable x
is µ(T; θµ), and the output variable y is the update function µ′(T; θµ′) integrated into the
kinematical equation of Equation (1).
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For FNN in this study, we consider the state transformation of the environment, the
membership function, and the fuzzy rule, which are optimized to make the update parame-
ters of the DDPG online network provided by FNN more accurate. Thereby, the response
speed and control accuracy are improved. The equations of the improved membership
function Aij(xi) and fuzzy rule ϕj(xi) are as follows:

Aij(xi) = exp

[
−
(xi − cij − c)2

σ2
ij

]
, (19)

ϕj(xi) = Aij(xi)×
j
2
× k, (20)

where cij and c are the center and average values of Aij(xi) respectively.

4. Experiments and Analysis

To demonstrate the effectiveness of the proposed approach, we conduct real-world
object-grabbing experiments of the mobile robotic arm in an obstacle environment. We
place some bottles as obstacles in a real-world environment, and one of these bottles is
used as the target object to be grabbed. As shown in Figure 7, the information on the
obstacle environment and target object are acquired via the RGB-D camera of the mobile
robotic arm, and then the grabbing task of the mobile robotic arm is performed. The entire
grabbing task can be divided into the stretching and retrieving process. The algorithm
and control module of this robotic arm are realized based on the MoveIt development
platform, in which the real-time states of the robotic arm are also acquired, as shown in
Figure 8. We present the experimental results of motion planning and tracking control for
the entire grabbing task, and the performance of the proposed approach is compared with
other approaches, as shown in Sections 4.1 and 4.2.
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4.1. Experiments and Analysis of Planning

To verify the availability of the improved APF-RRT* in motion planning, we make
planning comparisons of four different algorithms. Algorithm 1 represents the traditional
RRT*, Algorithm 2 denotes the improved RRT* in Section 3.1.1, Algorithm 3 combines the
traditional APF with Algorithm 2, and Algorithm 4 is the improved APF-RRT* proposed
in this study. The coordinates of the robotic arm base are set as (−0.135, −0.147), and
the coordinates of the target object are set as (0.152, 0.139). We leverage some bottles to
construct the obstacle environment, and the structure of the environment can be referred
to in Figure 7. The mobile robotic arm plans the path according to the environmental
information and simultaneously tracks the planned path to execute the grabbing task. The
results of planning are shown in Table 2.

Table 2. The planning results for target object grabbing.

Algorithm Name Path Length (m) Total Steering Angle (◦) Branch Account Planning Time (s)

Algorithm 1 0.4312 95.32 34 12.64
Algorithm 2 0.3264 75.21 30 11.75
Algorithm 3 0.2771 61.54 23 10.44
Algorithm 4 0.2355 54.85 15 9.31

First, through the planning results of Algorithms 1 and 2, the effect of the improved
RRT* is analyzed. Compared to Algorithm 1, since the parent node selection process
is optimized and the path is smoothed, the short path and small total steering angle
are realized. The results illustrate that the improved RRT* is superior to the traditional
RRT*. Second, through the planning results of Algorithms 3 and 4, we analyze the motion
planning effect of the APF developed in this study. Compared to Algorithm 3, the APF
integrated into Algorithm 4 has been optimized by incorporating obstacle information. It
significantly reduces invalid branches and planning time. The results demonstrate that
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the APF developed in this study is superior to traditional APF. By synthetically analyzing
Algorithms 1 to 4, the improved APF-RRT* can reduce path length and total steering angle,
and the invalid branches and planning time can also be decreased. It has good motion
planning performance.

To avoid the occasionality of the experiment result above, we repeat the planning
experiment three times. In the repetitive experiments, the coordinates of the robotic arm
base, the target object, and the environmental layouts are changed. The three time planning
results for target object grabbing are shown in Table 3.

Table 3. The three time planning results for target object grabbing.

Coordinates Algorithm Name Path Length (m) Total Steering
Angle (◦) Branch Account Planning Time (s)

(0.142, 0.137)
(−0.145, −0.134)

Algorithm 1 0.4134 90.43 31 13.08
Algorithm 2 0.3329 74.55 26 12.59
Algorithm 3 0.2726 62.13 21 11.97
Algorithm 4 0.2173 50.77 13 11.05

(−0.138, 0.143)
(0.155, −0.149)

Algorithm 1 0.4527 97.66 40 14.62
Algorithm 2 0.3591 78.73 35 13.29
Algorithm 3 0.2864 64.35 27 12.47
Algorithm 4 0.2485 56.31 16 10.84

(0.133, −0.156)
(−0.148, 0.143)

Algorithm 1 0.4297 94.65 32 12.47
Algorithm 2 0.3362 76.31 24 11.77
Algorithm 3 0.2538 60.87 17 10.95
Algorithm 4 0.2253 51.94 10 9.48

4.2. Experiments and Analysis of Tracking

The mobile robotic arm also tracks the planned path in real-time when performing
motion planning. To verify the tracking performance of the proposed Fuzzy-DDPG-PID
controller, we make comparisons on four different controllers. Controller 1 is the traditional
PID controller. Controller 2 combines the PID controller with the DDPG in [33]. Controller
3 integrates the conventional FNN with Controller 2. Controller 4 is the proposed Fuzzy-
DDPG-PID controller. We let these controllers uniformly track the paths planned via the
improved APF-RRT*. To fully prove the different effects of these controllers, we provide a
comparison of the step response performance of each joint motor, and the entire tracking
process performance of the four controllers is presented.

As described in Section 2, the robotic arm used in this study is a 5 DOF robotic arm, and
each joint is equipped with a motor. Because the impact caused by the controller’s different
types is negligible for joint 5, we provide a comparison of the step response performance of
joints 1 to 4. As shown in Figures 9 and 10, we cut out the step response curves from the
stretching and retrieving process of the robotic arm, respectively. From Figures 9 and 10,
the step response trends of the four motors corresponding to the four controllers are not
the same in the environment with disturbance. For example, some exhibit that Controller
1 achieves no overshoots, while others acquire. However, without the participation of
DDPG, the parameters of PID are difficult to be tuned in Controller 1. Thereby, the delayed
response time and large overshoots are acquired. The considerable deviation of steady-state
values from the optimal steady-state values is also realized. Since the parameters of PID
are tuned via DDPG, the response time of Controller 2 is advanced, and the steady-state
values are closer to the optimal steady-state values. However, the online network cannot
obtain the relation between environmental transformation and robotic arm motions, and it
leads to low policy-making accuracy of DDPG. Therefore, the overshoots of Controller 2
cannot be significantly reduced. Because the improved DDPG utilizes FNN to update the
environmental state of the online network, Controller 3 reaches early response time, and
overshoots are reduced, but the effect is not remarkable. With the new DDPG in Controller
4 integrated with optimized FNN, the relation of the environmental transformation and
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robotic arm motions can be fully acquired, so the response time is earlier than that of others,
and the overshoots are significantly reduced. Its steady-state values are close to the optimal
steady-state values. The experimental results illustrate that the proposed Fuzzy-DDPG-
PID controller can accelerate response speed and significantly reduce overshoots. It can
make steady-state values close to the optimal steady-state values. It has better tracking
control effects.
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To verify the entire tracking process performance of the proposed Fuzzy-DDPG-PID
controller, we also compare the tracking time, planning-tracking time difference (time-
delay), maximum tracking error, and minimum tracking error of four controllers in Table 4.
The planning algorithm and controllers utilized are the same as above. From Table 4,
since the parameters of PID are difficult to tune without the participation of DDPG, the
large values of four indexes are achieved by Controller 1, and the difference between
the maximum and minimum tracking errors is large. Because the parameters of PID are
tuned via DDPG, the values of four indexes are reduced by Controller 2 to 4. Due to
the improvements of the update function and loss function in DDPG, the values of four
indexes accomplished by Controller 4 are smaller, and the difference between maximum
and minimum tracking error is also smaller. Therefore, the proposed Fuzzy-DDPG-PID
controller can reach high tracking speed, small tracking error, and strong robustness.

Table 4. The performance comparison of the entire tracking process.

Controller Tracking Time (s) Time-Delay (s) Maximum Tracking Error (m) Minimum Tracking Error (m)

Controller 1 12.09 1.25 0.0485 0.0309
Controller 2 11.46 0.97 0.0433 0.0277
Controller 3 9.73 0.64 0.0359 0.0251
Controller 4 7.33 0.49 0.0283 0.0195
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To avoid the occasionality of the entire tracking process result, we repeat the experi-
ment of the entire tracking process five times. In the repetitive experiments, the layouts
and disturbances of the environment are changed. The five times experimental results of
the entire tracking process are shown in Figure 11.
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5. Conclusions

A novel planning and tracking approach for a mobile robotic arm to grab objects
in an obstacle environment is proposed in this study. To verify the effectiveness of the
proposed approach, the real-world object-grabbing experiments of a mobile robotic arm are
conducted in obstacle environments, and the proposed approach is compared and analyzed.
We compared the planning results of two different RRT* and proved that the improved
RRT* planned shorter paths with smaller total turning angles. Based on the improved RRT*,
we compared the planning results of two different APF-RRT*. The results illustrate that
the improved APF-RRT* acquires fewer invalid branches and planning time. It has better
planning performance compared to other algorithms. To avoid the occasionality of the
one experiment result, we repeated the experiment three times. The results demonstrate
that the improved APF-RRT* is superior to existing algorithms. Based on the improved
APF-RRT*, we compare and analyze the tracking performance of the proposed Fuzzy-
DDPG-PID controller. The step response performances of the joint motors illustrate that
the proposed Fuzzy-DDPG-PID controller reaches an earlier response time and smaller
overshoot. The steady-state values are close to the optimal steady-state values. Therefore,
it has high response speed and control accuracy. The results of all the tracking processes
of the four controllers demonstrate that the proposed Fuzzy-DDPG-PID controller can
realize short tracking time and time delay. Its maximum and minimum tracking errors
are small, and the difference values between the maximum and minimum tracking errors
are also small. Therefore, the proposed Fuzzy-DDPG-PID controller can achieve high
tracking speed, small tracking errors, and strong robustness. To avoid the occasionality
of the one experiment result, we repeat the experiment of the entire tracking process five
times. The results demonstrate that the proposed Fuzzy-DDPG-PID controller outperforms
the existing controllers.

In future research, we will build more complex experimental environments, and
more disturbances will be considered. We will also extend the research of mobile robotic
arms from single-target object grabbing to multi-target object grabbing, with a single
mobile robotic arm to multi-mobile robotic arms collaboration. Moreover, the planning
and tracking research of the robotic arm will be extended to the target object grabbing
performed via the unmanned surface vessel (USV) [35] and other unmanned platforms.
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