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Abstract: This paper explores implementation of self-weight and inertial loading in topology opti-
mization (TO) employing the Simulated Annealing (SA) algorithm as a non-gradient-based technique.
This method can be applied to find optimum design of structures with no need for gradient in-
formation. To enhance the convergence of the SA algorithm, a novel approach incorporating the
crystallization factor is introduced. The method is applied in a benchmark problem of a cantilever
beam. The study systematically examines multiple scenarios, including cases with and without
self-weight effects, as well as varying point loads. Compliance values are calculated and compared
to those reported in existing literature to validate the accuracy of the optimization results. The
findings highlight the versatility and effectiveness of the SA-based TO methodology in addressing
complex design challenges with considerable self-weight or inertial effect. This work can contribute to
structural design of systems where only the objective value is available with no gradient information
to use sensitivity-based algorithms.

Keywords: topology optimization (TO); simulated annealing (SA); self-weight; inertial load;
structural design

1. Introduction

Topology optimization (TO) stands as a pivotal mathematical method within struc-
tural design, strategically utilized to attain optimal performance relative to predefined
objectives and constraints. This method intricately endeavors to ascertain the most efficient
allocation of material resources within a specified design domain. The evolution of manu-
facturing technologies, including additive manufacturing and CNC machining, has notably
heightened the acclaim of this design methodology, attributed to its inherent capacity to
seamlessly align with the manufacturability requirements of the final design [1,2]. Diverse
optimization methodologies find application in TO, their selection contingent upon the
unique characteristics of the problem and its accompanying constraints. Broadly speaking,
TO can be classified into two overarching approaches: gradient-based and non-gradient-
based [3].

Gradient-based TO uses derivatives of the objective function and problem constraints,
utilizing an iterative process to generate successive designs until a notable enhancement
in the optimal solution is no longer attainable. Notable examples of gradient-based TO
methods encompass level set, moving morphable components, and evolutionary structural
optimization (ESO) [4].

Conversely, non-gradient-based TO performs optimization techniques independent of
gradient information, making them applicable to scenarios where the objective function
lacks differentiability. Predominantly employing stochastic optimization algorithms, such
as genetic algorithms, particle swarm, and simulated annealing, these methods converge
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towards an optimal design [5,6]. Although they may not guarantee an exact optimum
solution, non-gradient-based TO methods exhibit a high level of accuracy. For instance, in
optimization problems characterized by uncertainties in material properties, these meth-
ods efficiently converge to an optimal solution [7,8]. Furthermore, in discrete structural
optimization problems, such as truss assembly design, probabilistic methods have demon-
strated the capability to attain the optimum solution [9]. Non-gradient based methods have
demonstrated success in a wide range of optimization problems [10]. Nevertheless, they
are still evolving and require further development to address diverse design challenges.
In the most of design using TO for additive manufacturing, this limit can change the final
design considerably and imposes hard limits to the optimization process [4,11]. Deviation
of the manufactured parts from the initial design is another challenge in TO and metrology
problems that can be addressed with smart search and advanced evaluation techniques [12].
Researchers are actively working on enhancing these algorithms for various applications,
with improvements achieved through parameter tuning and the use of intelligent search
algorithms [13,14].

However, prior investigations in TO mostly focused on loads originating from external
sources. In such instances, the load remains consistent and is either applied at a fixed
point or varies along a boundary. Contrastingly, when contending with self-weight loads
or forces stemming from inertial sources, the design problem becomes inherently more
intricate. In these scenarios, the load and stiffness of the structure undergo dynamic
changes as material is either added or removed from the design. Essentially, augmenting
mass in a specific region not only increases stiffness but also introduces inertial load. This
dynamic interplay holds noteworthy significance, especially in the structural design of
elements such as bridges and buildings, where the weight of the structure itself constitutes a
substantial portion of the applied load [15,16]. Another pertinent application of this loading
scenario arises in the design of inertial sensors, where the challenge involves simultaneously
increasing inertial force while decreasing stiffness. This conflicting set of objectives gives
rise to a complex TO problem, for which the utilization of non-gradient-based algorithms
becomes imperative to converge towards viable solutions [17].

In gradient-based TO, the literature presents various approaches to tackle the impact
of self-weight and inertial loading. Initial efforts involved applying TO methods to design
tensegrity structures, taking into account the weight of struts. These early endeavors
employed mixed-integer linear programming to ascertain the configuration that minimized
strain energy in the equilibrium state. However, it is important to highlight that this
gradient-based approach had limitations in its applicability, primarily stemming from
constraints associated with the structure’s member count. Additionally, it did not address
the stability of the final design [18]. In another research, the TO of solid structures, encom-
passing arches and beams, has been specifically addressed with a focus on accommodating
inertial loads. This was accomplished through the application of a non-linear semi-definite
programming method, extending the solution beyond the conventional eigenvalue prob-
lem. To address challenges arising from multiple eigenvalues due to variable loading from
inertial forces, gradient vectors undergo a smoothing process via a linear local averaging
design variable filter. This filtering approach is instrumental in bolstering convergence
towards a local optimum while concurrently curtailing computational costs. However, it is
crucial to acknowledge that this method still grapples with limitations in identifying the
global optimum in non-convex problems and remains primarily applicable to scenarios
providing gradient information [19].

An alternative approach in the literature involves the utilization of the guide-weight
algorithm to consider the impact of self-weight when minimizing compliance in structural
design. Given the non-monotonous nature of the gradient in compliance optimization,
guided search proves efficient convergence to the optimum solution. This is accomplished
through the application of the Optimality Criteria (OC) method, coupled with the main-
tenance of a comprehensive record of the convergence history. It is noteworthy that this
algorithm is particularly well-suited for solving convex problems, such as compliance min-
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imization, owing to the specific characteristics of the optimization process it employs [20].
Similar methodologies have found application in the TO of diverse structures, incorpo-
rating considerations for the impact of self-weight. These approaches often involve the
imposition of specific constraints on geometry or stress [21,22].

Another gradient-based TO method, specifically tailored for problems incorporating
self-weight and inertial forces, involves the adaptation of the Bi-directional Evolutionary
Structural Optimization (BESO) method for continuum structures [23]. In this particular
approach, the compliance selected as the objective function to be minimized. Notably, the
sensitivity of compliance can display non-monotonous behavior, as it may be either positive
or negative. To tackle this issue, especially within the context of convex problems such
as compliance minimization, the literature employs a power law material interpolation
scheme along with an adaptive penalty factor [24]. The extension of the objective function to
similar criteria, such as von Mises stress, allows for having viable solution while accounting
for the self-weight effect [25]. While these techniques expedite the convergence to optimal
solutions, it is important to note that they are still constrained to convex problems and rely
on gradient information derived from the objective function.

Non-gradient based TO methods play a crucial role in addressing a broad range of
problems, particularly in situations where gradient information is either unavailable or the
problem lacks convexity. Consider, for instance, an experimental case where the objective
is directly measured, rendering gradient information inaccessible for parameter design or
TO. In such scenarios, it becomes feasible to model the system using neural networks and
subsequently optimize it using non-gradient techniques such as simulated annealing. This
approach facilitates effective optimization in situations where traditional gradient-based
methods are not applicable [26].

Certainly, there are cases where the objective function is both available and differen-
tiable, but the utility of gradient information is limited. Consider the design of an inertial
sensor with the goal of enhancing sensitivity to external accelerations. In such scenarios,
where the addition of mass to a specific region within the design domain increases the load
while simultaneously decreasing flexibility, the gradient of the objective function becomes
less informative for guiding the optimization process effectively. In these complex and
non-linear cases, non-gradient-based algorithms have demonstrated success in navigating
the design space to reach an optimal solution. They excel at accommodating intricate
trade-offs and non-linearities more effectively than gradient-based methods [27].

While non-gradient-based TO algorithms, such as genetic algorithms and simulated
annealing, are acknowledged for their efficiency and, in certain cases, their necessity in
solving TO design problems characterized by complex objective functions and constraints,
it is important to note that they are also linked with high computational costs [28–30]. The
elevated computational cost stems from the necessity to explore a larger number of potential
solutions within the design domain, presenting a notable drawback of these methods.

Recent advancements in computational cost reduction, including the utilization of
smart search algorithms and emerging technologies such as quantum computing, have
begun to address this drawback [31]. Non-gradient-based TO algorithms are gaining
popularity for addressing large-scale and commercial design problems involving TO. With
a growing demand for the application of non-gradient-based TO methods in real-world
design challenges, especially in structural design, it becomes imperative to incorporate
considerations related to self-weight problems within these algorithms [32].

Moreover, the groundbreaking implementation of simulated annealing on quantum
computers, known as quantum annealers, holds the potential to significantly accelerate the
optimization process. This advancement makes it feasible for a broader spectrum of design
problems [33]. This includes scenarios where self-weight or inertial forces play a significant
role in the applied loading, such as design of structural elements of buildings and bridges.

The simulated annealing algorithm is already used in the TO of structures with
different objective functions and constraints [34,35]. To the best knowledge of the authors,
the impact of self-weight and inertial forces as variable loads has not been considered in
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TO with simulated annealing. The primary contribution of this paper is to address TO with
simulated annealing while accounting for the effects of inertial or self-weight loads in the
design. This algorithm holds the potential to contribute to a wide range of problems where
the weight of the structure constitutes a significant source of loading.

The subsequent chapter of this paper will define the problem and present the for-
mulation used in the TO problem. Following that, simulations will be conducted using a
benchmark problem involving a cantilever beam, and the results will be compared with a
similar case from gradient-based TO in the existing literature. In the final chapter, the re-
search will conclude with an analysis of the obtained results and provide recommendations
for future research directions.

2. Materials and Methods
2.1. Topology Optimization Algorithm

A topology optimization (TO) problem typically entails optimizing the distribution of
material within a designated design domain to either maximize or minimize an objective
function while adhering to specific constraints. In the context of this paper, the defined TO
problem focuses on maximizing the stiffness of a cantilever beam while being subject to a
volume fraction constraint. The design domain for this benchmark problem is shown in
Figure 1, with a point load applied at the top end of the beam.
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Figure 1. Design domain for the cantilever beam with the point load.

In TO, there are different approaches to representing the design domain. One approach
involves treating the domain as a continuous area with changing borders. Another ap-
proach discretizes the domain into smaller elements that can be manipulated by a discrete
optimization algorithm. In the case of TO utilizing simulated annealing as a non-gradient
based method, the discretization method is often more compatible with the optimization
algorithm. For this problem, the design domain is discretized into smaller elements, with
Nx elements in the horizontal direction and Ny elements in the vertical direction, as illus-
trated in Figure 1. To simplify the problem and make it comparable with existing literature,
the thickness of the beam is assumed to be uniform across the entire domain, effectively
reducing it to a 2D problem. Each element in the discretized domain is a square with
unit length.

The primary objective of the optimization problem is to maximize the stiffness of this
structure. The stiffness maximization is directly proportional to minimize strain energy of
the system, as shown in Equation (1):

Min S =
1
2

U(x)TKU(x)

Subjected to F = KU(x)
(1)

The formulation of the TO problem involves the strain energy (S), displacement matrix
(U(x)), stiffness matrix (K), and applied forces (F) within the design domain. In the case
of a discretized system comprising Nx by Ny elements, the total strain energy can be
expressed as the sum of strain energies for each individual element. To ensure a smooth
and continuous objective function, the density of each element is considered as a continuous
value ranging from zero to one. Consequently, the material properties of each element are
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specified in proportion to its density, with the introduction of a penalization factor. This
approach, commonly referred to as Solid Isotropic Material with Penalization (SIMP), has
been successfully utilized in TO with simulated annealing [13]. Thus, the problem can be
simplified as shown in Equation (2), where p represents the penalization factor, and it is
selected as 3 in accordance with recommendations from the literature:

Min S =
N

∑
i=1

1
2

xp
i u(xi)

Tkiu(xi) (2)

where the index “i” represents the i-th element within the design domain, with i ranging
from one to the total number of elements (N = Nx × Ny). Each element corresponds to a
square region, and nodes are located at the corners of these square elements.

To account for self-weight or inertial loads, these loads can be applied at each node
based on the average density of the four surrounding elements. These nodal forces are
directly incorporated into the finite element code as the force matrix to compute the
displacement of each element. Subsequently, these displacements are used in Equation (2)
to determine the total strain energy of the entire structure.

2.2. Simulated Annealing in TO

Simulated Annealing (SA) is a stochastic optimization algorithm that converges to an
optimum solution by accepting or rejecting new solutions using the Metropolis–Hastings
algorithm. In the SA optimization algorithm applied to TO, a critical aspect is generating
new solutions within the design domain. A common way to generate these new solutions is
by selecting a random element and altering its density, a process that introduces stochastic-
ity into the search [36]. However, employing a purely random search can lead to relatively
high computational costs and may not efficiently converge to the optimal solution. To
enhance both computational efficiency and the convergence to the optimum solution, an
auxiliary variable known as the crystallization factor can be used for each element. This
crystallization factor can be interpreted as the significance or importance of each element
within the objective function and is utilized to guide the generation of new solutions. The
TO process begins with an initial solution, which consists of randomly distributed densities
for each element (denoted as xj) and crystallization factors (denoted as Ck) for each element.
A new solution is then generated using the previous solution and the crystallization factor,
as outlined in Equation (3):

xj,new = xj +
1

Ck

Ck

∑
1

rand
(
−1

2
,

1
2

)
∆r (3)

where generation of a new solution involves selecting a specific element denoted as
‘j’ within the design domain, k represents an index signifying the elements surround-
ing the target element with a distance less than the effective radius, and the variable
∆r denotes the difference between the effective radius and the distance to the target ele-
ment. It is important to note that the minimum range of the crystallization factor is set to 1,
and the maximum range should be high enough to prevent changes in elements that are not
particularly sensitive to optimization. Based on empirical experience and parameter tuning
in SA, a value of 20 is selected as the maximum value for the crystallization factor. After
generating a new solution using Equation (3), the SA algorithm evaluates the objective
function to determine whether to accept or reject it.

If the newly generated solution, obtained by altering the density of an element using
Equation (3), results in an improved objective function, the new solution is accepted, and
the density is replaced for that element. In such cases where changing the target element
leads to an enhancement in the objective function, the crystallization factor for the target
element and its neighbors is decreased by one unit. If the crystallization factor is already
one for an element, it cannot be decreased with improvement of the objective function.

The SA algorithm incorporates the possibility of accepting a new solution even when
it is worse than the current solution. This feature is essential for escaping from local optima.
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However, to ensure convergence in the optimization process, this possibility gradually
decreases over the optimization process. Equation (4) illustrates how this possibility is
calculated using the Boltzmann probability function. If it is less than a random number
ranging from zero to one, the new solution is accepted. Conversely, if the calculated
probability is higher, the new solution is rejected, and the crystallization factor for the target
element and its neighbors is increased by one unit until reaching the maximum value.

This mechanism of accepting less favorable solutions early in the optimization process,
with a gradual reduction in acceptance probability, helps the SA algorithm explore the
solution space comprehensively and ultimately converge to an optimal solution.

P(T) = e−
∆E
T (4)

where ∆E represents the change in the objective function from the previous to the new
solution and the parameter ‘T’ denotes the temperature, which is a decreasing parameter
in the SA algorithm. The TO process begins with a relatively high temperature, and at each
temperature level, several new solutions are evaluated. Subsequently, the temperature
decreases by a cooling factor, typically a value between 0.8 and 0.99 in most cases. As the
temperature decreases in each step, the probability of accepting less favorable solutions
decreases as well. This gradual reduction in temperature helps the SA algorithm converge
towards the optimal point.

The selection of the initial and final temperature and the cooling factor is typically
determined through an analysis of convergence behavior and prior experience. The in-
corporation of the crystallization factor further aids in enhancing convergence and can be
utilized as a tool for analyzing the optimization process.

Figure 2 provides a visual representation of TO process using the SA algorithm as
applied in this research, highlighting the progressive steps involving temperature reduction
and crystallization factor adjustments, all contributing to the convergence towards an
optimal solution.
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3. Results

Implementation of the proposed methos is shown in this section for the cantilever
beam to maximize its stiffness with a volume fraction constraint while a point load is
applied, as shown in Figure 1, and self-weighted load. Design parameter for the cantilever
beam are selected equal or scaled to values of the benchmark problem in the literature
for a comparison [23]. Table 1 shows design parameters for the cantilever beam and the
parameters of the SA algorithm. The volume fraction for this case study is 0.5 of the design
domains and the point load applied with a magnitude as a fraction of the weight.

Table 1. Design parameters for the cantilever beam problem and simulated annealing.

Parameter Symbol Value

Number of elements in horizontal direction Nx 160
Number of elements in vertical direction Ny 100

Thickness t 1
Density range ρ [0, 1]
Poisson’s ratio υ 0.3

Young’s modulus E 1
Penalization factor p 3
Initial temperature Tmax 10000

Minimum temperature Tmin 0.00001
Cooling factor α 0.9

Maximum iteration n 1000
Crystallization factor range Ci (1, 20)

The selection of parameters, as presented in Table 1, has been guided by values found in
the existing literature to ensure consistency and verification in the research. Parameters related
to the SA algorithm for TO, such as temperature and the number of iterations, have been chosen
based on a thorough analysis of the objective function range and convergence behavior.

The research explores several scenarios for the optimization of the cantilever beam,
each characterized by different loading conditions. These cases are as follows:

(a) Case with no self-weight effect and only a point load equal to the weight of the structure;
(b) Case with self-weight effect and a point load equal to 25% percent of the weight;
(c) Another scenario with self-weight effect and a point load equal to a 50% of the weight;
(d) Yet another scenario with self-weight effect and a point load equal to the weight;
(e) Lastly, a case with self-weight effect and a point load equal to 200% of the weight.

The results of the TO for the specified scenarios are shown in Figure 3. Due to
the stochastic nature of the SA method, there may be regions with gray areas in the
results. These areas may require further post-processing and refinement to be suitable
for manufacturing purposes [37]. Post-processing techniques can be employed to refine
the obtained designs, ensuring that they meet specific manufacturing constraints and
requirements. This step may involve smoothing the obtained topologies or adjusting
densities. Another approach to get more clear results with higher quality for manufacturing
is using binary elements. This method was verified for TO problems with binary elements
and its efficiency for structural design problems is shown. By examining these various
cases, the research aims to gain insights into the impact of self-weight on the optimized
topology of the cantilever beam. The results from the TO with SA are presented in Figure 3
for different scenarios of loading condition and self-weight. The results have gray areas
with intermediate density, which is common in TO with SA. Those elements can be post-
processed for the manufacturing process, which is not the main focus of this research.
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Figure 3. Results from topology optimization with simulated annealing for a 2D cantilever beam
before post-processing. (a) Only point load applied at the top with no self-weight effect. (b) The
self-weight load applied with a point load 25% of weight. (c) Self-weight applied with a point load
50% of weight. (d) Self-weight applied with a point load equal to weight. (e) Self-weight applied
with a point load 200% of the weight.

Compliance values have been calculated based on the input parameters specified in
Table 1 and Equation (2) for the different loading conditions. These compliance values are
then presented in Table 2 alongside results reported in the existing literature.

Table 2. Comparison of compliance from the proposed method and literature [23].

Loading Condition Compliance from
Reference [23]

Calculated Compliance
from the Proposed Method

Without self-weight and only point load
equal to weight 4.9062 × 105 5.5563 × 105

Self-weight with point load 25% of weight 5.0291 × 104 7.6035 × 104

Self-weight with point load 50% of weight 1.8725 × 105 2.2347 × 105

Self-weight with point load 100% of weight 6.7959 × 105 7.1928 × 105

Self-weight with point load 200% of weight 2.4241 × 106 2.5515 × 106

As shown in Table 2, the results from the literature and the proposed method present
similar compliance for different loading scenarios. Since the results from TO with simulated
annealing are based on the stochastic search, they present results with intermediate density
elements in the void area that increases the compliance. These points can be removed using
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a proper post-processing method. To verify the convergence of the objective function to the
optimum solution, Figure 4 shows the change of the scaled best objective function versus
the logarithm of temperature.
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As shown in Figure 4, the objective function is converging to the optimum point near
the minimum temperature. Similarly, the number of accepted and rejected solutions are
shown for each temperature in Figure 5.
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As shown in Figure 5, all the new solutions are accepted at the beginning of the opti-
mization and reduced during the optimization. Near the minimum temperature, major por-
tions of the solutions rejected. Number of rejected and accepted solutions analyzed to find
the convergence and tune parameters of topology optimization with simulated annealing.

4. Discussion

According to the graphical results shown in Figure 3 and numerical values of the
compliances in Table 2, the self-weight effect can considerably change the topology of a
structure. As shown in Figure 3, increasing the effectiveness of the self-weight in the design
moves the material more to the center where the weight load can be cancelled out easier.
In case (a), there is no self-weight effect, and the only point load is applied to the middle
of right surface of the beam. This results in a structure with mass distributed on the top
and bottom to reduce the deflection of beam for this beam. In case (b), the highest effect
of the weight is applied, with a point load with only 25% of the self-weight. In this case,
sloid elements are moved to the center and left side of the beam to reduce the weight
effect on deflection. From case (c) to (e), increasing the point load shows the distribution of
solid elements to be changed accordingly toward more symmetry and having more solid
elements at the top and bottom. It should be noted that there are some gray areas remaining
in the design domain that are inevitable while using stochastic methods such as SA. To
avoid grays areas, one strategy is to increase the number of iterations and decrease the
minimum temperature, but that will add substantially to the computational costs with no
considerable change in the optimum design. Another approach is to use post-processing
techniques to obtain a clearer design for manufacturing. According to the simulation
results of compliance in Table 2, the proposed method can give similar and improved
compliance in the minimization problems. The results clearly demonstrate the versatility
and effectiveness of the SA algorithm in tackling complex design problems with the self-
weight effect. In addition, where self-weight is a considerable part of loading, the proposed
method shows improved compliance in comparison to the results with the gradient-based
method in the literature. This is due to the capability of finding a global optimum in SA
regardless of the sensitivity and initial design.

5. Conclusions

In conclusion, this study has delved into the application of topology optimization (TO)
using the Simulated Annealing algorithm for designing structures affected by self-weight
loading. The research shows the effectiveness and versatility of the Simulated Annealing
algorithm, particularly when enhanced with the crystallization factor, in addressing intri-
cate TO problems. Systematically exploring different scenarios, including cases with and
without self-weight effects and varying point loads, has provided results for verification of
the proposed method.

The primary contribution of this work lies in applying the effect of self-weight and
inertial forces in TO with simulated annealing. As evidenced by the results, the compliance
values closely align with those found in the literature, validating the applicability of this
method. Consequently, the algorithm proves adaptable for diverse problems, regardless of
the objective function and constraints.

The results of this study, corroborated by comparisons to compliance values from
existing literature, affirm the accuracy and reliability of the proposed TO approach. More-
over, the ability to post-process the obtained design for manufacturability underscores
the practicality of the optimization results. While the stochastic nature of Simulated An-
nealing introduces variability, our findings demonstrate that it can be used efficiently to
generate innovative and efficient engineering solutions. This research makes a notable
contribution to the field of structural design optimization by highlighting the potential of
Simulated-Annealing-based topology optimization for addressing the self-weight effect
in non-gradient-based problems. It establishes a foundation for the application of this
methodology in real-world engineering scenarios, paving the way for more efficient and
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practical designs across various domains. Future research could further refine the optimiza-
tion process, address the influence of additional parameters, and explore applications in
diverse structural systems.
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