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Abstract: This paper addresses a mode-dependent state-feedback H∞ control for stochastic descriptor
hybrid systems, considering both the absence and presence of actuator saturation. Firstly, the
necessary and sufficient conditions for the stochastic admissibility criterion with H∞ performance
γ of the closed-loop system are proposed. Given the proposed non-convex condition, the author
reformulates it into linear matrix inequalities (LMIs). Then, to extend the result to the systems
with actuator saturation, the actuator-saturated control input is expressed as a linear combination
of a given state-feedback control input and a virtual control input that always remains under the
saturation level. To verify this expression, the set invariant condition is also suggested by using the
singular mode-dependent Lyapunov function candidate. Therefore, the conditions for the existence
of both the mode-dependent state-feedback H∞ control and the ellipsoidal shape invariant sets are
successfully derived in terms of LMIs. Two numerical examples demonstrate the effectiveness of the
proposed method by solving optimization problems subject to the proposed LMIs that minimize H∞

performance γ and maximize the invariant set, respectively.

Keywords: descriptor system; hybrid system; stochastic system; H∞ control; input saturation;
set invariant

1. Introduction

In the field of control theory, researchers have focused on the analysis of system stabil-
ity and the design of controllers using state-space equations [1–3]. Linear systems, being
the most fundamental form, have been extensively investigated due to the ease of obtain-
ing numerical solutions to problems [4–6]. Hence, researchers have sought to represent
real-world systems through variations of linear systems. One well-known example is the
descriptor system, also referred to as a generalized state-space system. The descriptor sys-
tem is characterized by having only some parts of the state vector described by differential
equations, while the remaining components are determined by algebraic equations based
on the interrelations of the state vector [7–9]. In practical applications, large-scale systems
or grid systems typically exhibit the characteristics of descriptor systems. Therefore, a
power system model can be considered as one of the well-known examples of descriptor
systems [10]. To represent the differential and algebraic equations of the system state in a
single form, a square matrix of order n is utilized, where n represents the length of the state
vector. This square matrix is used to identify the part of the states having the differential
equations. Therefore, its rank is equal to the number of differential equations in the state
vector, which is always smaller than n. While the advantage of expressing both dynamic
and static characteristics of the system in a single form exists, the presence of a singular
matrix introduces challenges in system analysis, necessitating additional considerations
compared to regular systems.

On the other hand, hybrid systems have also garnered significant attention over
the past few decades. Hybrid systems represent systems undergoing changes in both
continuous and discrete time properties. An example is the stochastic hybrid systems or
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stochastic jump system, representing cases where continuous-time systems experience
sudden discrete changes in system parameters due to stochastic processes [11–13]. Systems
possessing the characteristics of both stochastic hybrid systems and descriptor systems are
known as stochastic descriptor hybrid systems (SDHSs). Due to the advantage of SDHS that
can express both abrupt changes on the descriptor systems, it can be used to express various
phenomena such as DC motor systems undergoing random load changes and grid systems
with network structures [14–16]. For the analysis of SDHSs in the field of control theory,
studies on deriving stochastically admissible conditions and researches on controller and
filter design have progressed over the past several decades. The authors of the paper [17]
presented the stochastic admissibility conditions for SDHS in strict linear matrix inequalities
(LMIs). In the context of such research, results on controllers and filters for continuous-time
SDHS also exist [18–20]. Among them, Refs. [18,19] proposed necessary and sufficient
conditions for the existence of state feedback controllers and dynamic output feedback
controllers for SDHSs.

On the other hand, as the presence of disturbances in the real world is inevitable,
H∞ controllers and H∞ filters have been extensively researched both theoretically and
practically [21,22]. In its theoretical approach, finding the optimal H∞ control or H∞ filter
has been one of the attractive topics [23]. In the view of optimal controls, LMIs have been
widely employed due to their ease in finding optimal solutions. In the case of H∞ control
for SDHSs, research usually started from the stochastic admissibility criteria with H∞
performance γ [24–26]. This criteria is commonly referred to as the bounded real lemma
if it holds both necessary and sufficient conditions [27]. The bounded real lemma defines
an upper bound on the ratio of the norm between the desired output and the disturbance,
referred to as H∞ performance γ, and aims to minimize this value since it can minimize
the worst-case impact of disturbances. Generally, the desired output depends on both the
system state and external disturbance. For linear SDHSs, [25] first presented necessary
and sufficient conditions for the bounded real lemma of SDHS with disturbance-affected
desired output in LMI form. Previous studies have mainly dealt with optimal H∞ control
and H∞ filter for SDHSs with disturbance-unaffected desired output [26,28] or provided
only sufficient conditions for the existence of H∞ controls in cases with disturbance-affected
desired output [26,29]. This implies that there is still a room for improvement in the H∞
control for SDHS with a general desired output, serving as one of the motivations for
this study.

Another motivation for this study is the need to investigate H∞ control for SDHSs
with input saturation. In practical situations, the actuator in every control system has
its limits, which result in input saturation [30]. It is known that the input saturation can
lead to performance degradation or even instability in the system. To ensure the stable
operation of a control system under input saturation, it is necessary to design controllers
that guarantee stability in the presence of saturation phenomena. The input saturation in
hybrid systems [31,32] or in descriptor systems [33,34] has been addressed through various
studies. Recent research for SDHSs with input saturation is covered in the papers [35,36].
However, to the best of the author’s knowledge, no prior research has addressed the
combined aspects of H∞ control and actuator saturation for SDHSs. Therefore, this serves
as an additional motivation for this study.

This paper addresses the synthesis problem of H∞ control for SDHSs both absence
and presence of actuator saturation. First, the author assumes that only the states governed
by differential equations, i.e., those with dynamics, are considered controllable. Thus, a
structure for differentiable state-feedback H∞ control is proposed. Then, by utilizing the
closed-loop system with the proposed control, the stochastic admissibility criterion with
H∞ performance γ is derived. As the proposed criteria is a non-convex formula, it is a
challenge to directly find the solutions. Therefore, the equivalent condition is suggested
in terms of LMIs. Then, this paper extends its focus to SDHSs with actuator saturation.
By introducing a virtual control input, structured similarly to the proposed control and
remaining within the saturation level, the closed-loop system is successfully reformulated
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as a linear SDHS even in the presence of the actuator saturation. Since an assumption about
the range of states for this expression is required, a set invariant condition is also examined.
By accounting for the structure of the state-feedback control, the ellipsoidal shape of the set
invariant is obtained, with dimensions matching the number of components corresponding
to states with differential equations. Since both H∞ control and actuator saturation phe-
nomena are considered, the results can address two optimization problems: (1) Finding
the optimal H∞ performance γ, and (2) Identifying the largest invariant set, representing
the set of initial states ensuring stochastic convergence to zero. The effectiveness of the
proposed approach is demonstrated through two numerical examples, illustrating the
optimization results for both scenarios.

The notations used in this paper are standard. For a vector x or matrix X, the super-
script T denotes its transpose. For symmetric matrices X and Y, the notation X ≤ (<)Y
signifies that Y − X is semi-positive (positive) definite. For any square matrix X, the symbol

sym(X)
△
= X + XT . The matrix I denotes the identity matrix with appropriate dimensions,

and Ir represents the identity matrix with dimensions r × r. For matrix X, the notation [X]ij
specifies the (i, j)-th component. Similarly, for vector x, the notation [x]i denotes the i-th
component. The vector ei indicates a unit vector with a single nonzero element at the i-th
position, i.e., [ei]i = 1, [ei]k = 0 ∀k ̸= i. For symmetric matrices, the symbol (∗) serves as
an ellipsis for terms induced by symmetry.

2. Problem Statements

Consider the following stochastic descriptor hybrid systems (SDHSs):

Eẋ(t) = A(θt)x(t) + B(θt)u(t) + F(θt)w(t), (1)

z(t) = C(θt)x(t) + D(θt)u(t) + G(θt)w(t), (2)

where the notations x(t) ∈ Rnx , u(t) ∈ Rnu , z(t) ∈ Rnz , w(t) ∈ Rnw denote the system
state, control input, desired output, and external disturbance, respectively. The matrix

E ∈ Rnx×nx is a square matrix whose rank is smaller than its dimension, i.e., rank(E)
△
=

r < nx. The notation θt denotes a continuous-time Markov process defined on a probability
space with outcomes in a finite set N+ = {1, 2, · · · , N}. The mode transition rate of the
Markov process from mode i to mode j is defined as πij. Subsequently, the mode transition
probability from mode i at time t and mode j at time t + ∆t are defined as follows:

Pr{θt+∆t = j|θt = i} △
=

{
πij∆t + o(∆t) if i ̸= j
1 + πii∆ + o(∆t) if i = j

, (3)

where ∆t > 0 and o(∆t) denotes little-o of ∆t such that lim∆t→0

(
o(∆t)

∆t

)
= 0. The transition

rate matrix Π ∈ RN×N can be defined as [Π]i,j = πij, where ∑j∈N+
πij = 0, πij ≥ 0 for

i ̸= j and πii < 0. To simplify the notations, the mode-dependent matrices at θt = i will be
represented by using subscript i, i.e.,[

Ai Bi Fi
Ci Di Gi

]
△
=

[
A(θt = i) B(θt = i) F(θt = i)
C(θt = i) D(θt = i) G(θt = i)

]
. (4)

Also, to prevent issues arising from the singularity of matrix E, let us define of full-column
matrices EL, ER ∈ Rnx×r, R, ST ∈ R(nx−r)×nx which hold the following properties regard-
ing the singular matrix E:

ET
L ER = E , RE = 0, ES = 0. (5)

Then, by using the matrices in (5), we will use the following lemma.
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Lemma 1 ([37]). For a symmetric matrix P ∈ Rnx×nx which satisfies ET
L PEL > 0, and of full-rank

matrix Q ∈ R(nx−r)×(nx−r), the term (PE + RTQST) ∈ Rnx×nx is of full-rank, and its inversion
can be expressed as follows:

(PE + RTQST)−1 = P̄ET + SQ̄R, (6)

where P̄ and Q̄ defined as

ET
R P̄ER = (ET

L PEL)
−1, Q̄ = (STS)−1Q−1(RRT)−1. (7)

The objective of this study is to analyze the SDHS with disturbances and synthesize a
state-feedback H∞ control that is robust to disturbances and actuator saturation. Therefore,
the following definition and lemmas are employed in the next section to analyze the SDHS
with disturbances.

Definition 1 ([17]).

(i) The continuous-time SDHS (1) with u(t) = 0, w(t) = 0 is called to be regular if the term
det(sE − Ai) is not identically zero for all i ∈ N+.

(ii) The continuous-time SDHS (1) with u(t) = 0, w(t) = 0 is called to be impulse-free if
deg(det(sE − Ai)) = rank(E) for all i ∈ N+.

(iii) The continuous-time SDHS (1) with u(t) = 0, w(t) = 0 is called to be stochastically stable if
there exists a scalar M(x(0), r(t)) > 0 for all x(0) ∈ Rn, r(0) ∈ N+ such that

E
{∫ ∞

0
||x(t)||2dt

∣∣∣∣∣ x(0), r(0)

}
≤ M(x(0), r(0)), (8)

where E{·} denotes the expectation.
(iv) The continuous-time SDHS (1) with u(t) = 0, w(t) = 0 is called to be stochastically

admissible if it is regular, impulse-free, and stochastically stable.

Definition 2 ([38]). The SDHS (1) and (2) with u(t) = 0 can be called stochastically admissible
with H∞ performance γ if the system holds the following two conditions:

(i) At w(t) = 0, the SDHS (1) and (2) with u(t) = 0 is stochastically admissible.
(ii) At x(0) = 0, the SDHS (1) and (2) with u(t) = 0 holds the following inequality:

||T(s)||∞
△
= supθ(0)∈N+

sup0 ̸=w(t)∈L+
2

||z(t)||2
||w(t)||2

< γ, (9)

where the notation sup means supremum.

Lemma 2 ([25]). The SDHS (1) and (2) with u(t) = 0 is stochastically admissible with H∞
performance γ if and only if there exist the symmetric matrices Pi ∈ Rnx×nx , Wi ∈ R(nx−r)×nw

and of full-rank matrices Qi ∈ R(nx−r)×(nx−r) such that for all i ∈ N+

0 < ET
L PiEL, (10)

0 >

 sym{AT
i (PiE + RTQiST)}+ ∑j∈N+

πijET PjE (∗) (∗)
FT

i (PiE + RRQiST) + WT
i RAi −γ2 I + sym{FT

i RTWi} (∗)
Ci Gi −I

 (11)

To synthesize a mode-dependent state-feedback H∞ control for SDHSs, let us contem-
plate the following structure:

u(t) = KiEx(t), (12)
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where KiE is a mode-dependent control gain to be determined. Then the closed-loop system
(1) and (2) with the control input (12) is defined as

Eẋ(t) = (Ai + BiKiE)x(t) + Fiw(t), (13)

z(t) = (Ci + DiKiE)x(t) + Giw(t). (14)

This paper serves two main objectives. Firstly, it aims to determine the control gains KiE
that satisfy the stochastic admissibility criterion with H∞ performance γ for the closed-loop
system (13) and (14). Secondly, the focus is on finding control gains KiE that are still valid
under the actuator saturation phenomena in the system (1) and (2). When the SDHS (1)
and (2) has actuator saturation, it can be represented as follows:

Eẋ(t) = Aix(t) + Biρ(u(t)) + Fiw(t), (15)

z(t) = Cix(t) + Diρ(u(t)) + Giw(t). (16)

The symbol ρ(·) denotes the saturation operator such that

[ρ(u(t))]k
△
= sign([u(t)]k)min([|u(t)|]k, µ), (17)

where µ > 0 is a saturation level. Although saturation is a common phenomenon, it induces
nonlinearity even when the input signal u(t) maintains linearity. To address this issue, the
subsequent representation will prove to be beneficial.

Lemma 3 ([39]). For any state x(t) ∈ L(H), the saturated control input ρ(Kx(t)) belongs the
following convex-hull:

ρ(Kx(t)) ∈ Co{(MkK + M−
k H)x(t), k ∈ [0, 2nu − 1]}. (18)

The set L(H) is a set of states where every component of the vector Hx is less than the saturation

level, i.e., L(H)
△
= {x||eT

l Hx| ≤ µ, l ∈ [1, nu]}. The notation Co denotes the convex hull, and
the matrix Mk∈ Rnu×nu denotes the diagonal matrix whose diagonal elements have all possible

combinations of 1 and 0 and M−
k

△
= I − Mk. For example, when nu = 2, the following matrices

will be used:

M0 =

[
0 0
0 0

]
, M−

0 =

[
1 0
0 1

]
, M1 =

[
1 0
0 0

]
, M−

1 =

[
0 0
0 1

]
,

M2 =

[
0 0
0 1

]
, M−

2 =

[
1 0
0 0

]
, M3 =

[
1 0
0 1

]
, M−

3 =

[
0 0
0 0

]
.

With the help of Lemma 3, the term ρ(KiEx(t)) in (15) and (16) can be expressed as
following form for the states belonging to the set L(HiE):

ρ(KiEx) =
2n

u

∑
k=1

ζk{MkKiEx(t) + M−
k HiEx(t)}, (19)

where the convex parameter ζk holds the following property:

2nu

∑
k=1

ζk = 1, 0 ≤ ζk ≤ 1, ∀k ∈ [1, 2nu ]. (20)

Utilizing the aforementioned lemmas, the following section will present two theorems
aimed at determining the control gains KiE under conditions of both absence and presence
of actuator saturation.
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3. Main Result

In this section, the conditions for the existence of control gains for the closed-loop
system to be stochastically admissible with H∞ performance γ will be presented. Firstly,
by applying Lemma 2 to the closed-loop system (13) and (14), the stochastic admissibility
with H∞ performance γ of the closed-loop system (13) and (14) is ensured if and only if
there exist the solutions Pi, Qi, Wi and KiE such that for all i ∈ N+

0 < ET
L PiEL, (21)

0 >

 sym{(Ai + BiKiE)TΛi}+ ∑j∈N+
πijET PjE (∗) (∗)

FT
i Λi + WT

i RAi −γ2 I + sym{FT
i RTWi} (∗)

Ci + DiKiE Gi −I

, (22)

Λi
△
= PiE + RTQiST . (23)

However, finding the solution for (21) and (22) is challenging due to the variable coupled
term KT

i Λi in (22). To address this challenge, the following theorem presents an equivalent
condition for (21) and (22) in terms of strict linear matrix inequalities (LMIs).

Theorem 1. The assurance of the existence of solutions Pi, Qi, Wi and KiE for the conditions (21)
and (22), representing the stochastic admissibility criterion with H∞ performance γ for the closed-
loop system (13) and (14), is established if and only if there symmetric exist matrices P̄i ∈ Rnx×nx ,
of full-rank matrices Q̄i ∈ R(nx−r)×(nx−r), W̄i ∈ R(nx−r)×nw , K̄i ∈ Rnu×nx for all i ∈ N+,
satisfying the following LMIs:

0 < ET
R P̄iER, (24)

0 >


sym{AiΛ̄i + BiK̄iET}+ πiiET P̄iE (∗) (∗) (∗)

FT
i − W̄T

i ST AT
i −γ2 I (∗) (∗)

CiΛ̄i + DiK̄iET Gi − CiSW̄i −I (∗)
Xi 0 0 Yi

, (25)

Λ̄i
△
= P̄iET + SQ̄iR, (26)

Xi
△
= [

√
πijEP̄iER]

T
j∈N+/{i}, (27)

Yi
△
= −diag[ET

R P̄jER]j∈N+/{i}. (28)

Proof. To show the if and only if condition, two parts of proof are provided.
(Sufficient proof) To show the existence of the solutions for (21) and (22) from the solutions
of the proposed LMIs (24) and (25), let us define the inversion of Λi in (23) by using
Lemma 1:

(P̄iET + SQ̄iR) = (PiE + RTQiST)−1 △
= Λ̄i, (29)

where P̄i and Q̄i satisfy the following conditions:

(ET
L PiEL)

−1 = ET
R P̄iER, (30)

Q̄i = (STS)−1Q−1
i (RRT)−1. (31)

Then the condition (21) is equivalent to (24) through the relation (30). Next, to reformulate
the condition (22) as (25), we will employ the following full-rank matrix by referring the
existing work [25]:

Ti
△
=

 Λ̄i −Λ̄iRTWi 0
0 I 0
0 0 I

. (32)
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Then applying the congruence transform to (22) using the matrix Ti in (32) earns the
following inequality:

0 >

 sym{AiΛ̄i + BiKiEΛ̄i}+ ∑j∈N+
πijΛ̄T

i ET PjEΛ̄i (∗) (∗)
FT

i − WT
i R(AiΛ̄i + BiKiEΛ̄i)

T −γ2 I (∗)
CiΛ̄i + DiKiEΛ̄i Gi − (CiΛ̄i + DiKiEΛ̄i)RTWi −I

. (33)

Taking into account the properties RE = 0 and ES = 0, the condition (33) transforms into
the proposed condition (25) by putting

K̄i
△
= KiEP̄i, (34)

Q̄iRRTWi
△
= W̄i, (35)

and applying Schur complement. This means that the existence of the solutions of the
proposed LMIs (24) and (25) guarantees the solutions for the non-convex criteria, i.e., we
can find at least one set of solutions Pi, Qi, Wi, KiE for (21) and (22) using the solutions of
LMIs (24) and (25):

Pi = (ELET
L )

−1EL(ET
R P̄iER)

−1ET
L (ELET

L )
−1, (36)

Qi = (RRT)−1Q̄−1
i (STS)−1, (37)

Wi = Qi(STS)W̄i, (38)

KiE = K̄iET(PiE + RTQiST) (39)

This completes the sufficient proof.
(Necessary proof) In this part, we have to show the existence of the solutions for the
proposed LMIs (24) and (25) by using the solutions of the non-convex inequalities (21) and
(22). Let us set the following matrices:

P̃i = (ERET
R)

−1ER(ET
L PiEL)

−1ET
R(ERET

R)
−1, (40)

Q̃i = (STS)−1Q−1
i (RRT)−1. (41)

Then we can use the following relation

Λ̃i = (PiE + RTQiST)−1 = P̃iET + SQ̃iR, (42)

and also define the full-rank matrix

T̃i =

 Λ̃i −Λ̃iRTWi 0
0 I 0
0 0 I

. (43)

Then, by applying congruence transformation to (21) and (22) by Λ̃i and T̃i, respectively,
we can obtain the following equivalent conditions:

0 < ET
R P̃iER, (44)

0 >

 sym{AiΛ̃i + BiKiEΛ̃i}+ ∑j∈N+
πijΛ̃T

i ET PjEΛ̃i (∗) (∗)
FT

i − WT
i R(AiΛ̃i + BiKiEΛ̃i)

T −γ2 I (∗)
CiΛ̃i + DiKiEΛ̃i Gi − (CiΛ̃i + DiKiEΛ̃i)RTWi −I

. (45)
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Then the goal is to show the existence of the solutions of the proposed LMIs (24) and (25)
by using the solutions of the inequality (44) and (45). To find the solutions of (24) and (25),
let us reformulate (25) into the following form using Schur complement:

0 >

 sym{AiΛ̄i + BiK̄iET}+ ∑j∈N+
πijET P̄jE (∗) (∗)

FT
i − W̄T

i ST AT
i −γ2 I (∗)

CiΛ̄i + DiK̄iET Gi − CiSW̄i −I

. (46)

By using the properties RE = 0 and ES = 0, we can construct the following zero constraints
using the given matrices Pi, Qi, KiE and Wi:

0 =

 0 (2, 1)T (DiKiESQ̃iR)T

(2, 1) 0 (3, 2)T

DiKiESQ̃iR (3, 2) 0

, (47)

(2, 1) = −WT
i REP̃T

i (Ai + BiE)T − WT
i RRTQ̃T

i (ES)TKT
i BT

i , (48)

(3, 2) = −(Ci + DiKiE)P̃i(RE)TWi − DiKi(ES)Q̃iRRTWi, (49)

where P̃i and Q̃i are defined in (40)-(41). By inserting the zero constraint (47) into the
inequality (46), and putting the solutions as

P̄i = P̃i, Q̄i = Q̃i, W̄i = Q̄iRRTWi, K̄i = KiEP̃i, (50)

the condition (46) which is equivalent to (24), and the condition (25) conclude to (45) and
(44), respectively. Since the solutions of (44) and (45) always exist in this proof, it is clear
that the existence of the solutions of the proposed LMIs (24) and (25) is always guaranteed.
This completes the necessary proof.

Remark 1. The control gain KiE in the mode-dependent state-feedback H∞ control (12) can be
determined through the following relation:

KiE = K̄iET(P̄iET + SQ̄iR)−1, (51)

where P̄i, K̄i, Q̄i are the solutions of Theorem 1.

Remark 2. The synthesis problem of H∞ control for SDHSs has been considered for several decades.
However, before the introduction of the new bounded real lemma for SDHSs with disturbance-
affected output (2) in Lemma 2, the existing research focused on establishing the sufficient conditions
of controllers or exclusively examined scenarios with disturbance-unaffected desired output, i.e.,
w(t) = 0 in (2). Hence, it is noteworthy to emphasize that Theorem 1 provides the necessary and
sufficient condition of the controller (12), ensuring the stochastic admissibility of the closed-loop
system with the proposed controller (12) under disturbance-affected output.

The next topic involves deriving the condition to determine control gains considering
actuator saturation. Therefore, let us define the following closed-loop system with saturated
control input ρ(KiEx(t)):

Eẋ(t) = Aix(t) + Biρ(KiEx(t)) + Fiw(t), (52)

z(t) = Cix(t) + Diρ(KiEx(t)) + Giw(t). (53)

By utilizing the formula (19) which is an alternative representation of the saturated input,
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the closed-loop system (52) and (53) can be expressed as follows:

Eẋ(t) =
2nu

∑
k=1

ζk Āi,kx(t) + Fiw(t), (54)

z(t) =
2nu

∑
k=1

ζkC̄i,kx(t) + Giw(t), (55)

Āi,k
△
= Ai + Bi(MkKi + M−

k Hi)E, (56)

C̄i,k
△
= Ci + Di(MkKi + M−

k Hi)E (57)

since ∑2nu
k=1 ζk = 1. By applying Lemma 2 to the closed-loop system (54) and (55), the criteria

for stochastic admissibility with H∞ performance γ for the closed-system (54) and (55) is
obtained as follows: for all i ∈ N+, k ∈ [1, 2nu ]

0 < ET
L PiEL, (58)

0 >

 sym{ĀT
i,kΛi}+ ∑j∈N+

πijET PjE (∗) (∗)
FT

i Λi −γ2 I + sym{WT
i RFi} (∗)

C̄i,k Gi −I

, (59)

where Λi is defined in (23). This representation is valid only for the states within the set
L(HiE). To ensure that the range of states belongs to the set L(HiE), we need to consider
a set-invariant condition for the set L(HiE). Before deriving it, let us define an ellipsoid
using the condition (58):

E(ET PiE)
△
= {x(t) ∈ Rnx |xT(t)ET PiEx(t) ≤ 1} (60)

Utilizing the ellipsoid, the set invariant condition for the L(HiE) and the equivalent
condition of (58) and (59) are provided in the following theorem.

Theorem 2. For all states x(t) ∈ E(ET PiE) in (60), the conditions (58) and (59) are feasible if and
only if there exist symmetric matrices P̄i ∈ Rnx×nx , non-singular matrices Q̄i ∈ R(nx−r)×(nx−r),
matrices W̄i ∈ R(nx−r)×nw , K̄i, H̄i ∈ Rnu×nx such that for all i ∈ N+, l ∈ [1, nu] and k ∈ [1, 2nu ]

0 <

[
ET

R P̄iER (∗)
eT

l H̄iER µ2 I

]
, (61)

0 >


(1, 1) (∗) (∗) (∗)

FT
i − W̄T

i ST AT
i −γ2 I (∗) (∗)

CiΛ̄i + Di(MkK̄iE + M−
k H̄i)ET Gi − CiSW̄i −I (∗)

Xi 0 0 Yi

, (62)

(1, 1)
△
= sym{AiΛ̄i + Bi(MkK̄1iET + M−

k H̄iET)}+ πiiET P̄iE, (63)

where Xi and Yi are defined in (27) and (28).

Proof. Firstly, let us establish the set invariant condition for the set L(KiE). If the ellipsoid
(60) is within the linear region L(HiE), the expression for the saturated input (19) is valid for
states within the ellipsoid. Therefore, we can derive the following set invariant condition:
for all l ∈ [1, nu],

µ−2xT(t)ETKT
i eleT

l KiEx(t) ≤ xT(t)ET PiEx(t), (64)

which is equivalent to

µ−2ETKT
i eleT

l KiE ≤ ET PiE. (65)
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The condition (65) is equivalent to the following inequality:

µ−2Λ̄T
i ETKT

i eleT
l KiEΛ̄i ≤ Λ̄T

i ET PiEΛ̄i, (66)

where Λ̄i is defined in (26). By utilizing the property ES = 0, the condition (66) concludes
to the following inequality:

µ−2ELET
RH̄T

i eleT
l H̄iERET

L < ELET
R P̄iERET

L , (67)

by putting H̄
△
= HiELET

R P̄i. Applying Schur complement to (67) leads to the proposed
condition (61), considering the full-column rank EL.

Secondly, we can derive the equivalent condition for (59) by applying the congruence
transformation using Ti in (32):

0 >

 (1, 1) (∗) (∗)
FT

i − WT
i R(AiΛ̄i)

T −γ2 I (∗)
CiΛ̄i + Di(MkKi + M−

k Hi)EΛ̄i Gi − (CiΛ̄i)RTWi −I

, (68)

(1, 1)
△
= sym{AiΛ̄i + Bi(MkKi + M−

k Hi)EΛ̄i}+ ∑
j∈N+

πijEP̄iET Pj P̄iET . (69)

Similar to the proof of Theorem 1, the condition (68) leads to (62) by defining

K̄i
△
= KiEP̄i, H̄i

△
= HiEP̄i, Q̄iRRTWi

△
= W̄i. (70)

This completes the proof.

Remark 3. The control gain KiE that renders the closed-loop system with actuator saturation (54)
and (55) stochastically admissible with H∞ performance γ can be constructed using the solutions
from Theorem 2, and the formula remains the same as in (51).

Remark 4. One of the key contributions of this study is addressing both input saturation and
disturbance, whereas the previous work [25] has focused only on disturbance. Lemma 3 enables the
representation of a system with input saturation as a linear system with respect to the control input
and virtual input. Since the H∞ performance could be used as an optimization object, deriving the
closed-loop system in a linear form is essential, and Lemma 3 facilitates this process. Additionally,
deriving the set invariant condition to verify the linear expression is also crucial. For the invariant
condition, we define the ellipsoidal region using the Lyapunov function candidate in (60) for SDHSs.
This justifies our choice of employing the differentiable state-feedback control (12), whereas the
previous work [25] has used the full state-feedback control such as u(k) = Kix(t).

Remark 5. To achieve a less conservative result in terms of H∞ performance, the minimal γ can be
determined by solving an optimization problem that minimizes γ2 while satisfying LMIs suggested
in Theorem 1 or Theorem 2.

Remark 6. With the aid of Lemma 3, the saturated input ρ(KiEx(t)) can be expressed as a linear
combination of two state feedback controls: KiEx(t) and HiEx(t). This enables us to consider the
closed-loop system as a linear system even when subjected to actuator saturation. However, this
alternative representation is only valid for states belonging to the given set L(HiE). Therefore,
the set-invariant condition is proposed in (61). It implies that the SDHSs with only the initial
states within the invariant set E(ET PiE) in (60) can stochastically converge to zero. Therefore,
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maximizing the area of the invariant set is an essential issue. The largest invariant set can be found
by solving an optimization problem that maximizes α subject to:

(i) LMIs (61) and (62), (71)

(ii) αxw
0 ∈

N⋂
i=1

E(ET
L PiEL), ∀w ∈ [1, g], (72)

where xw
0 is the component to express the region of initial states, i.e., x(0) ∈ X0 ∈ Co{xw

0 , w ∈
[1, g]}, xw

0 ∈ Rn−r. The condition (72) is equivalent to

1 ≥ α2(xw
0 )

TET
L PiELxw

0 = α2(xw
0 )

T(ET
R P̄iER)

−1xw
0 , (73)

and it can be expressed as the following LMIs after applying the Schur complement:

0 ≥
[

ᾱ xw
0

xw
0 ET

R P̄iER

]
, ∀w ∈ [1, g], i ∈ N+, (74)

where ᾱ
△
= α−2.

4. Numerical Example

In this section, two numerical examples are considered to demonstrate the effectiveness
of the proposed mode-dependent state-feedback H∞ control with actuator saturation.

Example 1. In this example, control gains with their minimal H∞ performance will be found. To
obtain them, we need to solve LMIs in Theorem 2 by minimizing γ2. Consider the following SDHS
with input saturation (15) and (16) with following parameters:

E =

 1 0.5 0
0 1 0
0 0 0

, A1 =

 −0.7 −0.3 0
0.7 −0.7 −0.5
0.1 0 1.2

, A2 =

 −0.5 1.8 1.3
−0.2 −2.1 −0.1
1.2 2.5 −1

,

B1 =

 0 0.2
0.1 0
0 0.1

, B2 =

 2.1 0.2
0.6 0
−0.1 0

, C1 =

[
1 0 1
0 1 0

]
, C2 =

[
0 1 1
1 0 0

]
,

D1 =

[
0.7 1
0 0

]
, D2 =

[
1 0.9
0 0

]
, F1 =

 1 0
0 2
0 0

, F2 =

 −0.1 1
0 1

0.1 0

,

G1 =

[
0.3 0.1
0 0.1

]
, G2 =

[
0 0
0 0.2

]
, µ = 3.

The mode transition rate matrix is defined as

Π =

[
−1.4 1.4
1.1 −1.1

]
,

and the matrices EL, ER, R and S for the matrix E are defined as follows:

EL =

 1 0.5
0 1
0 0

, ER =

 1 0
0 1
0 0

R =

 0
0
1

T

, S =

 0
0
1

.

Figure 1 shows the state trajectories for the unforced case, i.e., u(t) = 0. It indicates that the SDHS
with the given system parameters is unstable. To render the closed-loop system stochastically admis-
sible, control input derived from Theorem 2 is applied. In this example, we solve an optimization
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problem that minimizes γ2 in Theorem 2, and the following control gains with minimal γ = 1.4525
are obtained:

K1E =

[
−0.1743 0.1546 0
−0.9417 −0.1837 0

]
, (75)

K2E =

[
−1.9441 −2.1215 0
0.2144 −1.9336 0

]
, (76)

Figure 1. The unforced response of systems in Example 1.

The state trajectories of the closed-loop system are depicted in Figure 2. The initial state
x(0) = [5,−5,−6.5]T is considered, and mode evolution and disturbance are also illustrated in
Figure 2. Since a saturation level of 3 is considered, control input cannot exceed this limit.

Figure 2. The state trajectories, mode evolution and control input of the closed-loop system in
Example 1.
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Example 2. In this example, control gains with their maximal invariant set will be found. To obtain
them, we need to solve LMIs in Theorem 2 with additional condition (74) by minimizing ᾱ. Let us
use the same system parameters as in Example 1. By solving the LMIs via the optimization problem,
the solutions of P̄i, i ∈ [1, 2] are obtained. Then, using the relation ET

L PiEL = (ET
R P̄iER)

−1, we
can determine the largest invariant set. Figure 3 shows the region of attraction obtained from
the ellipsoids E(ET

L PiEL), and the state trajectories starting from the boundary of the ellipsoids
successfully converge to zero. Figure 4 shows the state trajectories over time, the control input and
the mode evolution. In this simulation, the disturbance is considered to be 1/10th of the scale of
Example 1.

Figure 3. The ellipsoid E(ET
L PiEL) and the state trajectory starting from the boundary of the ellipsoid.

Figure 4. The state trajectories over time, the control input and the mode evolution of Example 2.
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5. Conclusions

This paper considered the mode-dependent state-feedback H∞ control for SDHSs,
considering both the absence and presence of actuator saturation. Firstly, we established
the necessary and sufficient condition for the stochastic admissibility criterion with H∞
performance γ of the closed-loop system using the proposed non-saturated control input.
Since the proposed condition was expressed as a non-convex formula, we reformulated
it into the LMIs. Next, we extended our result to the closed-loop system with actuator
saturation, expressing it as SDHSs with linear state-feedback control inputs through the
introduction of a virtual control input that always remains under the saturation level.
To verify this expression, the set invariant condition was also considered. By utilizing
the singular mode-dependent Lyapunov function candidate, we suggested the ellipsoidal
shape of the invariant set and provided a method to determine the largest invariant set.
The key motivation of this study compared to the existing work was to derive the synthesis
criterion for SDHS with both input saturation and disturbance in terms of LMIs. It implies
that the proposed method can address an optimization problem subject to the both largest
invariant sets and optimal H∞ performance. Example 1 and Example 2 showed the results
of optimization problems that minimize H∞ performance, and maximize the region of the
invariant set, respectively. Our future work involves extending the results to stochastic
hybrid descriptor systems with semi-Markov processes or applying them to practical
systems, such as power grid systems.
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