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Abstract: This paper focus on direct current (DC) filter grounding faults to propose a novel dilated
normalized residual convolutional neural network (DRNCNN) fault diagnosis model for high-voltage
direct current (HVDC) transmission systems. To address the insufficiency of the traditional model’s
receptive field in dealing with high-dimensional and nonlinear data, this paper incorporates dilated
convolution and batch normalization (BN), significantly enhancing the CNN’s capability to capture
complex spatial features. Furthermore, this paper integrates residual connections and parameter
rectified linear units (PReLU) to optimize gradient propagation and mitigate the issue of gradient
vanishing during training. These innovative improvements, embodied in the DRNCNN model,
substantially increase the accuracy of fault detection, achieving a diagnostic accuracy rate of 99.28%.

Keywords: CNN; HVDC; DC filter; ground fault localization; high-accuracy diagnostics

1. Introduction

High-voltage direct current (HVDC) technology plays a critical role in modern power
systems, primarily due to its significant advantages in enhancing long-distance energy
transmission efficiency and interconnecting different power grids [1]. Compared to al-
ternating current transmission, HVDC is more suited for long-distance and cross-border
transmission, effectively reducing energy loss and enhancing the interconnection and stabil-
ity of regional power grids [2]. These characteristics establish HVDC as a key technology in
driving global energy transition and improving grid reliability. The global HVDC transmis-
sion system market was valued at USD 9.68 billion in 2022 and is projected to grow to USD
18.05 billion by 2030, with a compound annual growth rate of 8.4% [3]. However, faults in
HVDC systems can lead to significant consequences, including equipment damage, power
supply interruptions, and even the potential for grid instability and large-scale blackouts.
For instance, a fault in a direct current (DC) line can rapidly cause voltage drops and power
flow losses, significantly affecting grid operation.

Research on fault detection and localization in power electronics applications, specifi-
cally within HVDC systems, can be divided into three principal methodologies, as sum-
marized in Table 1. Model-based methods involve creating functional models of HVDC
transmission systems and attempting to detect faults when actual measurements deviate
from the model beyond a certain threshold. For instance, reference [4] introduces the
traveling-wave-based line fault location method. However, these methods often require
setting numerous manual thresholds, which can compromise their robustness. Sensor-
based methods employ additional sensors for fault detection and identification with high
accuracy [5,6]. Reference [5] introduces a novel contactless current measurement method
for HVDC overhead lines, employing a vertical magnetic field sensor array with a magnetic
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shielding mechanism. While offering high accuracy, they incur extra costs and make the
system more complex and less reliable, as these sensors may fail over time. Data-based
methods, an emerging trend in recent years, do not require complex mathematical mod-
els, reducing engineering development time and the need for manual threshold setting.
Reference [7] presents a protection algorithm based on support vector machine (SVM) for
quick identification, classification, and localization of DC faults in multi-terminal HVDC
systems. However, these methods require manually designed features and have limited
generalizability.

Table 1. Overview of fault detection methods in HVDC systems.

Approach Type Description Advantages Disadvantages

Model-based

Involves creating functional models of
HVDC transmission systems and

detecting faults when actual
measurements deviate from the model.

Directly based on system
models.

Requires setting numerous
manual thresholds, affecting

robustness.

Sensor-based
Employs additional sensors for fault

detection and identification with high
accuracy.

High accuracy in
identification.

Increases costs and
complexity; sensors may fail

over time.

Data-based Relies on data-driven methods, not
dependent on mathematical models.

Does not require
mathematical models, reduces
engineering and development

time, avoids manual
thresholds.

Requires manually designed
features, limited
generalizability.

Current research predominantly concentrates on transmission lines [8], with direct
current filters receiving relatively less focus. In HVDC systems, the challenge of fault
localization in direct current filters is notably distinct and more intricate than in other
components. This intricacy is not only due to the high-frequency currents and harmonic
disturbances involved but also because of the sheer number of direct current filters in use
and the complexity associated with their inspection [4,9]. The specialized spectral and
harmonic analysis methods needed to diagnose issues in these filters add another layer
of difficulty. Moreover, the physical inspection and maintenance tasks for direct current
filters are more demanding, making it a challenging endeavor. While such faults might not
immediately disrupt the system’s operations, neglecting them can, over time, degrade the
power grid’s overall quality and stability. Addressing these challenges, therefore, demands
a higher level of technical expertise and the use of specialized diagnostic tools.

Although traditional fault detection methods are easy to implement and apply, they
have numerous issues, such as insufficient sensitivity, low accuracy, and a tendency to
be sensitive to interference, which affects protection criteria and leads to widespread
protection blind spots [10]. Recently, neural networks and big data technologies have made
significant advancements in fault diagnosis [11,12]. Compared to traditional methods,
neural network-based approaches demonstrate higher sensitivity and accuracy, becoming
powerful tools for addressing these issues [13].

This paper presents an innovative method for DC filter ground fault localization,
employing an enhanced convolutional neural network (CNN) optimized with a novel
dilated normalized residual (DRN) module. By implementing variance and correlation
analysis, this method efficiently filters out non-essential data. Our approach demonstrates
exceptional performance in detecting faults across various power levels (0.1 pu to 1.0 pu)
and wiring configurations, achieving a remarkable fault identification accuracy of 99.28%,
markedly outperforming conventional techniques. The contribution of this study lies in:

(i) A comprehensive and efficient approach: We provide a systematic and detailed
method for fault localization in HVDC system direct current filters. Our approach
advances beyond basic diagnostics, combining sophisticated neural network modeling
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with advanced data analysis. This integration ensures the use of only the most
pertinent data, enhancing the accuracy and reliability of fault detection.

(ii) Network structure optimization: The study focuses on refining the CNN architecture
to address challenges like overfitting. This optimization involves a balanced combina-
tion of convolutional and fully connected layers, specifically designed for DC filter
fault identification. The DRN module, integrating techniques such as dilated convolu-
tions, residual connections, batch normalization (BN), and the parametric rectified
linear unit (PReLU), further boosts the network’s accuracy and processing speed.

The structure of the article is organized as follows: Section 2 elaborates on the fun-
damentals of DC filters ground fault. Section 3 explores the foundational theories and
optimization techniques for neural networks’ receptive fields. Section 4 introduces ad-
vanced strategies for gradient optimization and activation in CNNs. Section 5 provides
the DC filter ground fault localization method, the experimental results and analysis. The
conclusion section summarizes this research.

2. DC Filter Ground Faults and Their Data Sources

2.1. Overview of HVDC Systems

The core of HVDC systems lies in their ability to convert alternating current (AC)
power into DC power through converter stations, and then convert DC power back into AC
power. This process involves a series of precision power electronic equipment, including
converter valves, transformers, smoothing reactors, and control systems [14].

In HVDC systems, unipolar and bipolar operating modes provide different levels
of transmission capability and reliability. The unipolar mode uses one wire to transmit
electricity to the ground or seawater circuit, while the bipolar mode uses two wires, one
positive and one negative, to form a closed circuit.

To simplify, this study selects unipolar data as an example for research and explores
research methods applicable to unipolar systems, and the typical unipolar HVDC trans-
mission structure is shown in Figure 1. However, such research methods have broad
applicability, providing valuable references and approaches for the study of both unipolar
and bipolar systems.
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2.2. Details of DC Filter Ground Faults

DC filters, key components in HVDC systems, are primarily composed of passive
elements like resistors, capacitors, and inductors. They play a crucial role in reducing ripple
currents caused by AC signals in DC circuits, ensuring a stable DC output.

In operational scenarios, DC filters, as previously noted, are susceptible to a variety
of faults, with ground faults being a common concern due to their impact on the stability
of the DC output [15,16]. These are principally distinguished based on the location of
grounding: the high-voltage side of the DC filter, including the filter entry section and
the high-voltage capacitor section, and the low-voltage side, i.e., the tuning section, as
illustrated in Figure 2. The DC filter incorporates three sets of high-voltage capacitors,
with each composed of four capacitor units connected in parallel within a bridge arm.
These capacitors play a vital role in managing voltage drops and are the most vulnerable
components within DC filters, exhibiting the highest failure rate [17–20]. The equivalent
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capacitances for these sets are designated as C1, C2, and C3, with Z2 and Z1 denoting the
equivalent impedances below C3 and the combination of C1 and C2, respectively.
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Ground faults in DC filters can be systematically categorized into three distinct types,
whose naming is consistent with the names of the sections where they occur. Therefore, they
are normally identified as the filter entry ground fault, the high-voltage capacitor ground
fault, and the tuning section ground fault, each of which will be further discussed below.

2.2.1. Filter Entry Section and Ground Fault

As depicted by F101 in Figure 2, the filter entry ground fault denotes a grounding
anomaly at the juncture where the direct current is introduced into the filter system. This
fault can critically undermine the filter’s functionality, permitting undesirable currents
to be diverted straight to the ground. Such a circumstance may precipitate operational
inefficiencies or, in more severe cases, inflict damage.

2.2.2. High-Voltage Capacitor Section and Ground Fault

Highlighted in the high-voltage capacitor section in Figure 2, the capacitors C1 and C2
are configured in parallel to each other, allowing for a balanced distribution of electrical
load and enhanced redundancy. Within each high-voltage capacitor unit, a multitude of
individual capacitors are connected in series to form a layered structure, which is critical
for achieving the required voltage rating and ensuring the capacitors’ durability. There is a
parallel arrangement of C1 and C2 in the system.

The high-voltage capacitor ground fault arises from a grounding abnormality within
the filter’s capacitor units, which are intricately designed to extract particular harmonic
frequencies from the direct current. This fault has the potential to significantly disrupt the
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filter’s operation, as it allows higher frequency harmonics to infiltrate, diminishing system
efficiency and threatening downstream components.

The Figure 3 illustrates a high-voltage capacitor bank with a series of fault indicators
labeled F108 to F117 within the capacitor C1. These indicators are strategically placed
across the capacitor sequence, segmented at 10% intervals of the total capacitor count. Each
fault indicator corresponds to a specific decile in the capacitor bank. For instance, F108 is
assigned to the first 10% of capacitors, F109 to the second 10%, and so forth, culminating
with F117, which monitors the last 10%. This arrangement ensures precise fault localization
within the system, facilitating efficient diagnostics.

Machines 2024, 12, x FOR PEER REVIEW 5 of 22 
 

 

load and enhanced redundancy. Within each high-voltage capacitor unit, a multitude of 
individual capacitors are connected in series to form a layered structure, which is critical 
for achieving the required voltage rating and ensuring the capacitors’ durability. There is 
a parallel arrangement of C1 and C2 in the system. 

The high-voltage capacitor ground fault arises from a grounding abnormality within 
the filter’s capacitor units, which are intricately designed to extract particular harmonic 
frequencies from the direct current. This fault has the potential to significantly disrupt the 
filter’s operation, as it allows higher frequency harmonics to infiltrate, diminishing system 
efficiency and threatening downstream components. 

The Figure 3 illustrates a high-voltage capacitor bank with a series of fault indicators 
labeled F108 to F117 within the capacitor C1. These indicators are strategically placed 
across the capacitor sequence, segmented at 10% intervals of the total capacitor count. 
Each fault indicator corresponds to a specific decile in the capacitor bank. For instance, 
F108 is assigned to the first 10% of capacitors, F109 to the second 10%, and so forth, cul-
minating with F117, which monitors the last 10%. This arrangement ensures precise fault 
localization within the system, facilitating efficient diagnostics. 

Furthermore, capacitors C1 and C2 are designed to be symmetrical counterparts 
within the system, mirroring each other’s configurations and functions. Given this sym-
metry, while the schematic details faults F108 to F117 for capacitor C1, an identical series 
of fault points, F108 to F117, would logically correspond to the symmetrical capacitor C2. 
Therefore, accounting for three capacitors, the complete set of fault indicators extends 
from F108 to F127, enabling comprehensive monitoring and facilitating prompt mainte-
nance actions to address any grounding faults that may occur within these critical com-
ponents of the HVDC system. 

 
Figure 3. Schematic diagram of high-voltage capacitor C1 with series fault indication points. 

2.2.3. Tuning Section and Ground Fault 
The tuning section ground fault is a critical issue that impacts the section of the 

HVDC system designed to fine-tune the electrical characteristics and suppress specific 

Figure 3. Schematic diagram of high-voltage capacitor C1 with series fault indication points.

Furthermore, capacitors C1 and C2 are designed to be symmetrical counterparts within
the system, mirroring each other’s configurations and functions. Given this symmetry,
while the schematic details faults F108 to F117 for capacitor C1, an identical series of fault
points, F108 to F117, would logically correspond to the symmetrical capacitor C2. Therefore,
accounting for three capacitors, the complete set of fault indicators extends from F108 to
F127, enabling comprehensive monitoring and facilitating prompt maintenance actions
to address any grounding faults that may occur within these critical components of the
HVDC system.

2.2.3. Tuning Section and Ground Fault

The tuning section ground fault is a critical issue that impacts the section of the
HVDC system designed to fine-tune the electrical characteristics and suppress specific
harmonic frequencies. This type of fault occurs when there is an unintended connection to
ground within the tuning circuitry, which consists of inductors and tuning capacitors. As
highlighted in Figure 2, faults F102 to F107 are associated with the inductor components
within the tuning section. A fault at any of these points can lead to a degradation in the
system’s ability to control harmonics, potentially resulting in inefficiencies and instability
in the power transmission. Addressing ground faults in this tuning section is essential to
maintaining the high-quality performance and reliability of the HVDC system.



Machines 2024, 12, 185 6 of 22

2.3. Data Source

We utilize the DC filter configurations from the Taizhou Station within the Xitai Project
as a case study. Our approach involves simulating ground faults in high-voltage capacitors
and reactors across 27 distinct locations using the PSCAD/EMTDC simulation platform.
This process allows us to gather data under a variety of grounding scenarios, serving
to validate the efficacy of our proposed fault localization method. The simulation data,
provided by Xuji Group Corporation and NARI Group Corporation, include high-fidelity
simulations of field filters. This combination ensures a thorough evaluation of the DC
filter’s operational performance in fault conditions. Notably, these simulations leverage a
hardware-in-the-loop system, significantly enhancing the accuracy and reliability of our
simulations and enabling a comprehensive assessment of the DC filter’s functionality under
diverse conditions.

The raw features recorded consist of the following parts: the first part is the direct
measurement data inside the DC filter, as shown in the AC transformer in Figure 2; the
second part is the current value of components without installed instruments, such as
L11 current value; the third part is the characteristics related to pole protection within the
station; and the fourth part is the voltage and current data representing the operating status
of the rectifier and inverter stations. For specific details, please refer to Table A1.

This study focuses on scenarios where a single point experiences a ground fault. For
each operating state of the DC filter, separate simulation experiments are conducted. The
simulation time is set to 5 s, with faults occurring at the 1 s mark. Original data are collected
at a frequency of 2 kHz.

There are two wiring methods: monopole with ground return double valve group (C26)
and monopole with metallic return double valve group (C36). Table 2 details the simulation
scheme, highlighting power and grounding variables. Voltage levels are categorized into
full voltage and reduced voltage, with full voltage levels set at 0.1 pu to 1.0 pu across
10 levels, and reduced voltage levels set at 0.1 pu to 0.8 pu across 8 levels. The grounding
resistance is set at 0.01 ohms. This study utilizes two principal wiring configurations
for conducting simulations: (1) a monopole with a ground return double valve group,
designated as C26, and (2) a monopole with a metallic return double valve group, referred
to as C36. The details of the simulation scheme are presented in Table 2, which outlines the
key variables related to power and grounding for each configuration. The voltage levels
investigated are divided into two categories: full voltage, which ranges from 0.1 pu to
1.0 pu across 10 distinct levels, and reduced voltage, set from 0.1 pu to 0.8 pu over 8 distinct
levels. A constant grounding resistance of 0.01 ohms is applied in all simulations.

Table 2. Simulation scheme: power and grounding variables.

Power Level (pu) Grounding Resistance (Ω) Wiring Method Voltage Level Sample Quantity

0.1~1
0.01

C36 full voltage 270
0.1~0.8 C36 reduced voltage 216
0.1~0.8 C26 reduced voltage 216

As is shown in Figures 2 and 3, fault locations are divided into 27 levels, including
7 internal ground fault points in the DC filter, and 10 ground fault points each for two types
of internal ground faults in high-voltage capacitors. For high-voltage capacitor faults, a fault
point is set for every 10% increase (across 12 layers of capacitors), totaling 10 fault points.

To construct a comprehensive fault data database, the simulation process was designed
to cover a variety of fault conditions. Specifically, for each of the two wiring configurations,
27 distinct fault scenarios were simulated. These scenarios were applied across the full
voltage and reduced voltage levels, the latter of which includes two subsets of eight levels
each, to mirror a range of operational conditions. Consequently, the total number of fault
data entries generated by this methodological approach amounted to 702, calculated as
follows: 27 × (10 + 8 + 8), ensuring a robust dataset for analysis.
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3. Neural Networks and Receptive Field Optimization Techniques
3.1. Basic Concepts of Neural Networks

Neural networks, modeled after biological neural systems, are advanced computa-
tional models that mimic the human brain’s complex information processing [21]. These
networks learn and evolve by adjusting synaptic weights, a process that mirrors biologi-
cal synaptic plasticity. This adjustment is key to learning, as it helps minimize the error
between the network’s output and the desired outcome, enhancing the network’s effec-
tiveness. Capable of autonomously learning and identifying patterns in vast data, neural
networks reduce the need for expert intervention and manual analysis, which can be
error-prone and time-consuming. Their ability to accurately identify and differentiate
fault patterns, even in noisy or variable environments, makes them particularly useful in
complex electrical systems like DC filters, improving fault diagnosis efficiency, accuracy,
and system reliability.

3.2. Convolutional Neural Networks

CNNs are a type of neural network model widely used in image processing and visual
recognition [21]. Their core feature is the use of convolutional layers to automatically and
efficiently extract features from input images, as demonstrated in Figure 4. In this figure,
we observe the progressive stages of feature extraction: convolutional layers apply a small
window (i.e., convolution kernel) over the image, and through multiple layers of stacking,
they gradually extract more abstract and higher-level features. This layered approach,
depicted in the figure, significantly reduces the dependence on manual feature engineering
and enhances the network’s adaptability and robustness to variations in input images.

Machines 2024, 12, x FOR PEER REVIEW 7 of 22 
 

 

number of fault data entries generated by this methodological approach amounted to 702, 
calculated as follows: 27 × (10 + 8 + 8), ensuring a robust dataset for analysis. 

Table 2. Simulation scheme: power and grounding variables. 

Power Level (pu) Grounding Resistance (Ω) Wiring Method Voltage Level Sample Quantity 
0.1~1 

0.01 
C36 full voltage 270 

0.1~0.8 C36 reduced voltage 216 
0.1~0.8 C26 reduced voltage 216 

3. Neural Networks and Receptive Field Optimization Techniques 
3.1. Basic Concepts of Neural Networks 

Neural networks, modeled after biological neural systems, are advanced computa-
tional models that mimic the human brain’s complex information processing [21]. These 
networks learn and evolve by adjusting synaptic weights, a process that mirrors biological 
synaptic plasticity. This adjustment is key to learning, as it helps minimize the error be-
tween the network’s output and the desired outcome, enhancing the network’s effective-
ness. Capable of autonomously learning and identifying patterns in vast data, neural net-
works reduce the need for expert intervention and manual analysis, which can be error-
prone and time-consuming. Their ability to accurately identify and differentiate fault pat-
terns, even in noisy or variable environments, makes them particularly useful in complex 
electrical systems like DC filters, improving fault diagnosis efficiency, accuracy, and sys-
tem reliability. 

3.2. Convolutional Neural Networks 
CNNs are a type of neural network model widely used in image processing and vis-

ual recognition [21]. Their core feature is the use of convolutional layers to automatically 
and efficiently extract features from input images, as demonstrated in Figure 4. In this 
figure, we observe the progressive stages of feature extraction: convolutional layers apply 
a small window (i.e., convolution kernel) over the image, and through multiple layers of 
stacking, they gradually extract more abstract and higher-level features. This layered ap-
proach, depicted in the figure, significantly reduces the dependence on manual feature 
engineering and enhances the network’s adaptability and robustness to variations in input 
images. 

 
Figure 4. Diagram of a certain CNN architecture. 

3.3. Concepts of Receptive Fields 
Receptive field refers to the segment of input data visible to a CNN feature, as high-

lighted by the colored blocks in Layer 1 of Figure 5. To clarify, the yellow blocks represent 
Layer 3′s receptive field within Layer 2, while the green blocks represent Layer 2′s recep-
tive field within Layer 1. The size of the receptive field is critical for capturing detailed 
features and context within the data. For instance, a larger receptive field, which could 

Figure 4. Diagram of a certain CNN architecture.

3.3. Concepts of Receptive Fields

Receptive field refers to the segment of input data visible to a CNN feature, as high-
lighted by the colored blocks in Layer 1 of Figure 5. To clarify, the yellow blocks represent
Layer 3’s receptive field within Layer 2, while the green blocks represent Layer 2’s receptive
field within Layer 1. The size of the receptive field is critical for capturing detailed features
and context within the data. For instance, a larger receptive field, which could encompass
multiple block, is beneficial for analyzing time series data, like fault signals in DC filters. It
allows the CNN to discern longer temporal patterns, giving a broader context that helps
in understanding the sequence of input data more effectively. The illustration provides
a visual representation of how different neurons in a CNN’s layer may view different
segments of the input data, with some overlap, which is essential for feature extraction and
pattern recognition.
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3.4. Optimizing the Receptive Field

Traditional neural network architectures often grapple with limitations in their recep-
tive fields when processing high-dimensional and nonlinear data. The fixed-size convolu-
tional kernels, while effective for basic feature extraction, struggle to capture the intricate
spatial relationships and broader contextual information present in complex datasets. This
insufficiency severely hampers the network’s ability to discern and analyze nuanced spatial
features, thereby diminishing its performance in tasks requiring a deep understanding of
the data’s spatial hierarchy.

To address this challenge, this paper proposes the integration of dilated convolution
and batch normalization (BN) into the CNN framework. Dilated convolution, by expand-
ing the kernel’s reach without increasing its size, significantly broadens the network’s
receptive field, enabling it to capture a richer array of spatial features. Concurrently, batch
normalization standardizes the inputs within each layer, facilitating a more stable and
efficient learning process. Together, these enhancements considerably augment the CNN’s
capacity to process and interpret complex spatial data.

3.4.1. Dilated Convolution

Dilated convolution, a unique form of convolution in Figure 6, plays a crucial role in
enlarging the receptive field of the convolutional layer without increasing computational
cost. By introducing spaces, i.e., ‘dilations’, between elements in the convolution kernel, as
shown by the expanded patterns across Layer 1 to Layer 3, this method differs markedly
from the contiguous arrangement of kernel elements found in standard convolution [22].
By inserting these dilations, the network gains the ability to perceive a larger input area, an
attribute especially beneficial when processing large-sized input images. This expanded
field of view allows the network to cover a broader area, capturing more extensive spatial
information, without the need to increase the computational burden.

3.4.2. Batch Normalization

BN is a pivotal technique in neural network training, primarily used to accelerate
training and enhance stability [23]. This method involves standardizing the inputs of
each mini-batch within the network layers by adjusting their mean and variance. Such
standardization ensures that network layers receive a consistent input distribution across
different training stages. This consistency is crucial in mitigating internal covariate shift,
a common issue during training that can hinder the learning process. By addressing this
issue, BN allows the network to utilize higher learning rates, effectively speeding up the
training process.
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Additionally, BN extends the effective receptive field of the network by ensuring a
uniform treatment of data across layers. This uniformity is particularly beneficial in appli-
cations dealing with large-scale power system data, where maintaining input consistency
is key to improving both training efficiency and the predictive performance of the model.
As is shown in Equation (1), the input x is processed using the mini-batch mean µ and
variance σ2, along with learnable parameters γ and β, while ε, a small constant, is added
for numerical stability. The combination of these elements contributes to a more stable and
efficient network, capable of robust feature extraction without being adversely affected by
shifts in input distribution.

BN(x) = γ

(
x − µ√
σ2 + ε

)
+ β (1)

4. Gradient Optimization Techniques and the DRNCNN Model

A pervasive issue in the training of deep neural networks is gradient vanishing.
As the network depth increases, gradients often diminish to negligible levels during
backpropagation, leading to minimal updates in the network weights. This phenomenon
stalls the training progress, particularly impeding the learning of deeper, more abstract
features essential for sophisticated analytical tasks.

4.1. Gradient Challenges in Deep Learning Networks

Gradients in the context of neural networks are the derivatives of the loss function
with respect to the network parameters, which are crucial for the optimization process.
They indicate the direction in which the parameters (ω) should be adjusted to minimize
the loss function. The updating rule for the parameters is shown in Equation (2).

ωnew = ωold − α
∂loss
∂ωold

(2)

where α is the learning rate, relying on these gradients to iteratively reduce loss.
During the training of deep networks, practitioners often encounter challenges such

as gradient vanishing, where the gradients become excessively small, causing negligible
updates to the weights and resulting in stagnation of the training process due to minimal
changes in model parameters. On the other hand, gradient explosion occurs when gradients
are excessively large, leading to unstable training characterized by wild oscillations or
unbounded growth of the model weights, which prevents the network from converging to
a robust solution. These issues not only impede the learning process but also complicate the
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training of deeper networks as diminishing gradients can make learning deeper features
more challenging.

These limitations indicate the need for improvements to the traditional CNN structure
to enhance performance in classifying and localizing fault signals in DC filters.

4.2. Enhancing Gradient Propagation
4.2.1. Residual Connections

Residual connections, commonly known as shortcut or skip connections, as illustrated
in Figure 7, play a pivotal role in addressing the challenges of vanishing or exploding
gradients in deep neural networks [24]. These connections create shortcuts in the net-
work architecture, allowing each layer to directly access the outputs of previous layers.
This architecture facilitates the direct propagation of gradients during training, maintain-
ing their strength across layers, and thus significantly improving the efficiency of the
training process.
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By enabling this direct flow of gradients, residual connections empower deep neural
networks to more effectively process complex data patterns. This capability is particularly
crucial for achieving deeper and broader learning within the network. The incorporation of
these connections in deep networks ensures that even as the network depth increases, the
learning process remains robust and effective, overcoming the common pitfalls associated
with deep learning architectures.

4.2.2. Parametric Rectified Linear Unit

The integration of the PReLU as the activation function marks a critical enhancement
in our CNN architecture [25]. PReLU represents an evolution of the traditional ReLU
activation function, retaining its benefits such as non-linearity and computational efficiency
while overcoming a significant limitation known as the ‘dying ReLU problem’, where
neurons become inactive and output only zero. PReLU addresses this by introducing a
small, learnable coefficient (w) for negative input values, shown in Equation (3).

f (x) =
{

x x > 0
wx x ≤ 0

(3)
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where x represents the input to a neuron, and f (x) is the output after activation. The
parameter w is a small, learnable coefficient that provides a non-zero gradient for negative
input values, thereby allowing for a small, controlled flow of the gradient during the
backpropagation process. This coefficient w allows for a controlled flow of the gradient
during backpropagation, mitigating the gradient vanishing problem and enhancing the
network’s ability to learn complex patterns.

4.3. Innovations in Neural Network Architecture: The DRN Module

The DRN module in our neural network architecture, present in Figure 8, marks a
significant advancement by synergistically integrating dilated convolutions, batch nor-
malization, residual connections, and the PReLU. This innovative module combines the
broadened receptive field offered by dilated convolutions with the gradient-enhancing
capabilities of residual connections, along with the stabilizing influence of BN and the
dynamic adaptability of PReLU.
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Dilated convolutions in the DRN module expand the network’s field of perception
without increasing computational costs, crucial for intricate spatial pattern recognition.
This expansion allows the network to process extensive contextual information from input
data more effectively. Residual connections within the module facilitate an unimpeded
flow of gradients, addressing the common issue of gradient dissipation in deep neural
networks. This feature not only promotes efficient training but also ensures that deeper
network layers can learn identity functions, thus matching or surpassing the performance
of shallower layers.

The integration of BN standardizes inputs across layers, achieving a uniform dis-
tribution that expedites training and enhances model generalization. Complementing
this, the adoption of the PReLU activation function introduces a learnable parameter for
negative input values. This parameter allows for a controlled flow of the gradient during
backpropagation, enriching the network’s capacity to assimilate complex patterns and
mitigating the limitations of standard non-linearity.

As depicted in Figure 9, the basic CNN model serves as the foundational framework
upon which the DRN enhancements are superimposed. Building on this base, Figure 10
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showcases the DRNCNN model, incorporating the DRN module into the traditional CNN
architecture. This integration introduces advanced functionalities that address some of the
inherent limitations of standard CNNs. The DRNCNN model, through the inclusion of
the DRN Module, demonstrates how combining multiple technological advancements can
improve the network’s ability to process and analyze complex datasets. It offers improved
accuracy and efficiency for various computational tasks, illustrating the practical benefits
of these enhancements in neural network design.
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5. Case Study
5.1. Data Processing

This research initiates with an extensive variance and correlation examination of
the dataset, discarding features deemed irrelevant or superfluous to distill a core set of
significant attributes, as depicted in Figure 11. The study then methodically processes fault
data from DC filters to prepare for subsequent analysis. Initially focusing on a CNN as
the foundational model, enhancements are applied through the incorporation of dilated
convolution techniques, batch normalization, and PReLU, leading to the development
of the advanced DRNCNN model. This model is evaluated against a simulation dataset,
undergoing a comprehensive training and testing regimen to affirm its performance. Inputs
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to the DRNCNN model consist of selected feature values, which result in outputs that
accurately delineate fault diagnostics and localization within the DC filters. This refined
CNN model sets the benchmark against which other models, such as fully connected (FC)
networks and Long Short-Term Memory (LSTM) networks, are subsequently compared to
underscore its relative proficiency.
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5.1.1. Variance Analysis

The first step of data processing is to perform variance analysis to assess the vari-
ability of each feature. During this process, features such as ‘IZ1T12rms’, ‘SER2DCP1’,
‘SER1DCP2’, ‘SER2DCP2’, ‘SER3DCP2’, ‘SER2DCP3’, and ‘SER1DCP4’ are identified to
have zero variance, indicating that they are constant throughout the dataset and do not
provide valuable information for the model. Therefore, to enhance model efficiency and
reduce computational load, these features are removed from the dataset.

5.1.2. Correlation Analysis

The remaining features undergo correlation analysis to identify and remove highly
correlated feature pairs. This analysis is conducted using Pearson correlation coefficient,
whose formula is displayed in Equation (4).

ruv =
∑n

i=1 (ui − E(u))(vi − E(v))√
∑n

i=1 (ui − E(u))2(v − E(v))2
(4)

where ruv represents the correlation coefficient, which quantifies the linear relationship
between the variables u and v. The term n refers to the total number of data. Each data pair
consists of corresponding sample points, denoted by ui and vi, where i is the index of the
sample points. The symbol E(u) signifies the expected value, of the sample set for u, and
similarly, E(v) represents the mean of the sample set for v.

As depicted in Figure 12, the correlation analysis outcomes are effectively visualized
using a correlation matrix plot. This plot succinctly illustrates the correlation levels among
various features. In accordance with the analysis, if the correlation coefficient between
any pair of features surpasses 0.9, such pairs are considered to exhibit high redundancy.
Consequently, to mitigate multicollinearity within the feature set, one feature from each
pair exhibiting high redundancy is omitted from the dataset. These pairs are systematically
enumerated in Table 3.
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Table 3. Feature pairs with high similarity.

Feature Pair Feature 1 Feature 2 Correlation Coefficient

1 Rectifier Station Pole 2 DC Line
Current (28)

Inverter Station Pole 2 DC Line
Current (32) 0.999916

2 Rectifier Station Pole 2 DC Line
Voltage (26)

Inverter Station Pole 2 DC Line
Voltage (29) 0.996388

3 SER2DCP1 (16) SER1DCP2 (18) 0.989927
4 DC Filter Differential Current (14) SER1DCP1 (15) 0.976978

5.1.3. Normalization

To eliminate the impact of different scales among features, it is necessary to normalize
the data to ensure comparability. The min–max normalization method is used to scale the
data, bringing feature values into the [0,1] range, as shown in Equation (5).

Dnorm =
D − Dmin

Dmax − Dmin
(5)

where D is the original value, Dmin is the minimum value of the feature, and Dmax is the
maximum value of the feature. This process ensures that all features contribute equally to
the model, improving its ability to learn from the data effectively.

5.1.4. Dataset Division

To eliminate the influence of transient characteristics at the initial stage of the fault
and to enhance data utilization, the dataset is first divided into a training set and a test
set in an 8:2 ratio. Following this division, within each subset, a 0.5 s segment of data
is randomly selected five times from the simulation time between 2.1 and 4.1 s for each
operating state. This process, applied separately to both the training and test sets, ensures
that each sample contains 1000 data points. By adopting this methodology, the study
provides a comprehensive and diversified dataset by capturing multiple snapshots of the
same operational state through varied sampling instances, allowing for effective evaluation
of the proposed model’s performance on independent data.
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5.1.5. Performance Metrics in Fault Diagnosis

In the realm of fault diagnosis, four primary performance metrics are crucial [26]:
accuracy, precision, recall, and F1 score. These metrics are instrumental in evaluating the
efficacy of fault diagnosis models. Considering the presence of 27 distinct classes in the
scenario, it becomes essential to compute these metrics individually for each class and
subsequently derive their average values across all classes. For each class, data identified
as belonging to that class are deemed positive. This positive classification is further
delineated into true positives (TP) and false positives (FP). TP refers to the number of data
points correctly identified as belonging to the class, whereas FP denotes those data points
incorrectly classified as belonging to it. In contrast, data not associated with this class
are labeled as negative. This category is further split into true negatives (TN) and false
negatives (FN). TN represents data points accurately identified as not belonging to the class,
while FN includes those incorrectly marked as not belonging to the class. The counts of TP,
FP, TN, and FN for each class are pivotal for computing the aforementioned metrics. The
formulas for calculating accuracy (acc), precision (pre), recall (rec), and F1 score are shown
as Equations (6) to (9).

pre =
TP

TP + FP
(6)

rec =
TP

TP + FP
(7)

F1 =
2 × pre × rec

pre + rec
(8)

acc =
TP + TN

TP + FP + TN + FN
(9)

These formulas provide a comprehensive assessment of the model’s performance
in accurately classifying each class, taking into account both the correct and incorrect
classifications.

5.2. Case 1: Evaluation for the Improved CNN Model

In this case study, we present an improved CNN architecture that incorporates a DRN
module to enhance model performance. This DRN module is a fusion of four advanced
elements: residual connections (A), BN (B), dilated convolutions (C), and PReLU (D).
We undertake an ablation study for our experimental design, methodically evaluating the
contribution of each technique to the model’s effectiveness by sequentially integrating them.
The initial architecture is shown in Figure 9, which forms the basis for our incremental
enhancements, culminating in the ultimate architecture with all four modules combined, as
depicted in Figure 10.

As is shown in Table 4, the experimental results begin with evaluating the perfor-
mance of the baseline CNN model, followed by the step-by-step addition of the improved
components. We observed that each new component added led to an enhancement in the
model’s accuracy (Acc), precision (Pre), recall (Rec), and F1 score. With the integration
of all improvement components A, B, C, and D into the CNN, the model demonstrated
the best performance, achieving an accuracy of 99.287% and an F1 score of 0.9929. These
significant results underscore the efficacy of the DRN module in enhancing CNN models.

Upon reviewing the experimental data, it is evident that each technological enhance-
ment significantly improved the model’s performance. Dilated convolutions (B), by expand-
ing the receptive field, notably increased accuracy, as seen in models like CNN + B (92.877%
accuracy) and CNN + A + B (98.148%). Residual connections (A) effectively addressed the
vanishing gradient problem in deep networks, evident from the improved results in models
like CNN + A (91.310%) and CNN + A + B. Batch normalization (BN) accelerated training
and improved stability, demonstrated by models like CNN + B (92.877%) and CNN + A + B.
This improvement is clearly illustrated in Figure A1. The use of PReLU (D) also enhanced
performance, as observed in models like CNN + D (92.450%) and CNN + A + D (96.011%).
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Table 4. Performance metrics of the improved CNN.

Model Acc (%) Pre Rec F1

CNN 89.316 0.9096 0.8931 0.8870
CNN + A 91.310 0.9402 0.9131 0.9111
CNN + B 92.877 0.9473 0.9287 0.9311
CNN + C 90.743 0.9190 0.9074 0.9087
CNN + D 92.450 0.9440 0.9245 0.9232

CNN + A + B 98.148 0.9834 0.9814 0.9815
CNN + A + C 96.438 0.9721 0.9643 0.9652
CNN + A + D 96.011 0.9642 0.9601 0.9604
CNN + B + C 97.863 0.9822 0.9786 0.9790
CNN + B + D 96.581 0.9704 0.9658 0.9664
CNN + C + D 96.296 0.9683 0.9629 0.9630

CNN + A + B + C 99.002 0.9916 0.9900 0.9900
CNN + A + B + D 98.860 0.9905 0.9886 0.9886
CNN + A + C + D 96.011 0.9698 0.9601 0.9606
CNN + B + C + D 98.005 0.9834 0.9800 0.9803

CNN + A + B + C + D 99.287 0.9943 0.9928 0.9929
Note: In the first column, “A”, “B”, “C” and ”D” represent residual connections, BN, dilated convolutions and
PReLU, respectively.

The combined use of these technologies resulted in even more significant improve-
ments. Models incorporating multiple enhancements, such as CNN + A + B + C + D,
achieved the highest accuracy of 99.287%. This synergy highlights the effectiveness of
integrating various advanced techniques in model development.

In addition to the aforementioned improvements, the incorporation of t-distributed
stochastic neighbor embedding (t-SNE) visualization substantiates the effectiveness of
our final model’s feature extraction capabilities. As is shown in Figure 13, by presenting
a clear delineation of class clusters in a reduced dimensional space, t-SNE affirms the
model’s enhanced discriminative capacity, enabling a more intuitive understanding of its
classification boundaries and the high-quality feature representations it has learned. We
apply t-SNE to the feature representations learned by our final model to project them into
a two-dimensional space. This projection allows us to observe the clustering of different
classes and to understand how well the model separates distinct categories in the feature
space. The visualization provides an intuitive illustration of the model’s ability to discern
and categorize various data points, highlighting the distinct clusters formed by different
classes. Such a representation is instrumental in assessing the quality of the learned features
and the model’s overall discriminative power.
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Following t-SNE visualization, the construction of a confusion matrix provided a
quantitative validation of the model’s discriminative prowess, complementing the t-SNE
analysis and confirming the robustness and precision of the class predictions [27,28]. Within
this matrix, the rows represent the actual class instances, and the columns signify the pre-
dicted class instances by the model. Correct classifications are depicted along the diagonal,
where the predicted labels match the true labels, evidencing the model’s strong predictive
performance. This matrix elucidates the model’s overall classification effectiveness, clearly
indicating a high rate of accuracy in predictions and underscoring the model’s compe-
tency in fault diagnosis. The successful application of the model on test samples and the
corresponding high-quality classification outcomes are encapsulated in Figure 14.
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5.3. Case 2: Comparative Experiment

In the case study section of the paper, a series of comparative experiments were con-
ducted to evaluate the performance of the enhanced model. The DRNCNN, embodying
the latest advancements in neural network architecture, was juxtaposed against tradi-
tional architectures, including fully connected (FC) networks, Recurrent Neural Networks
(RNNs), and Long Short-Term Memory (LSTM) networks [10]. These comparative trials
aimed to underscore the efficacy of the DRNCNN model in handling complex datasets,
specifically those associated with fault detection in DC filters. Metrics for comparison
encompassed a range of performance indicators such as accuracy, precision, recall, and F1
score, ensuring a comprehensive assessment of each model’s capabilities in the context of
fault diagnosis and localization. As is shown in Table 5 and Figure 15, the results of these
experiments are integral in demonstrating the superiority of the DRNCNN model over
conventional approaches, highlighting its potential to revolutionize predictive maintenance
in power systems.

Table 5. Performance metrics of base neural network models.

Model Acc (%) Pre Rec F1

FC 85.312 0.8674 0.8631 0.8606
RNN 90.028 0.90.08 0.9002 0.8869

Basic CNN 89.316 0.9096 0.8931 0.8870
LSTM 95.293 0.9582 0.9529 0.9530

DRNCNN 99.287 0.9943 0.9928 0.9929
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The experimental data leads to several key insights about the performance of different
neural network architectures. Contrary to the initial analysis, it is evident that while CNNs
(basic CNN with 89.316% accuracy) are effective for local feature extraction from sequential
data, they are not the top-performing model in this comparison. The CNN’s strength lies in
its ability to identify crucial characteristics within time series, especially in contexts like
direct current filter fault data where localized temporal correlations are significant.

Contrary to emerging as a strong contender, FC networks actually displayed the weak-
est performance among the models tested, with an accuracy of 85.312%. Their simplicity
and ease of training do not compensate for their limitations in handling high-dimensional
data analysis. With an extensive parameter set yet restricted feature extraction capabilities
compared to more advanced architectures like CNNs, FC networks struggle to effectively
identify complex patterns in time series data. This inherent drawback positions them as
the least effective model in this experimental comparison.

RNN (90.028% accuracy) and LSTM (95.293% accuracy) showed mixed results. While
known for handling long-term dependencies, these architectures did not perform as well
in this specific dataset, possibly due to the dataset’s characteristics or the computational
complexity of RNN and LSTM, which could lead to longer training and prediction times.

The DRNCNN model, boasting an exceptional accuracy of 99.287%, clearly outper-
forms other models in this comparison. This enhanced variant of a standard CNN incorpo-
rates dilated convolutions to widen the receptive field and includes residual connections
to effectively address the vanishing gradient problem. Moreover, the integration of batch
normalization (BN) and parametric rectified linear unit (PReLU) activations significantly
contributes to stabilizing and optimizing the learning process.

It is worth noting that, as shown in Figures 15b and A1p, DRNCNN exhibits a faster
iteration speed and enhanced stability compared to traditional CNN. These advantages,
in addition to its remarkable accuracy, unequivocally establish the superiority of the
DRNCNN model in this experimental evaluation.
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6. Conclusions

This paper has established a novel CNN methodology for the fault diagnosis in DC
filters. By conducting a thorough variance and correlation analysis to remove invalid
and redundant data, the study has formulated a deep neural network with a strategically
optimized structure. This network, encompassing four convolutional layers and two fully
connected layers, leverages a streamlined set of features to enhance precision and reduce
the risk of overfitting, achieving an impressive fault identification accuracy of 99.28% across
various power levels and wiring methods.

The crux of the innovation presented in this paper is the development of the DRNCNN
model. The DRNCNN model, which integrates dilated convolutions, residual connections,
BN, and the PReLU, not only builds upon the inherent strengths of traditional CNNs but
also ameliorates their limitations by enhancing gradient flow and broadening the receptive
field without incurring extra computational costs. The robustness of the DRNCNN against
vanishing gradients and its superior generalization capabilities have been demonstrated to
be exceptionally effective for quick and precise ground fault identification in DC filters.

This research provides a comprehensive and efficient technical roadmap for fault
localization in HVDC system direct current filters, addressing the challenge of overfitting
typical of CNN models and enhancing computational efficiency and practical applicability.
The conclusive findings of this study not only affirm the efficacy of the DRNCNN model
in fault diagnosis but also highlight its potential to serve as a pivotal innovation in the
predictive maintenance of power systems. This work lays the groundwork for future
research, promising significant contributions to the reliability and efficiency of neural
network-based diagnostic tools in power systems.
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Appendix A

Table A1. Detailed information of DC filter measurement.

Number Name Measurement

1 IZ1T11rms Imbalance current of the first group of DC filters
2 IZ1T12rms Imbalance current of the first group of DC filters

3 IZ1Mrms Measured current at the low voltage side of the first
group of DC filters

4 IZ1L2rms Current of reactor L12
5 IZ1Rrms Current of resistor R1
6 IZ1L1rms Current of reactor L11(calculated from IZ1M and IZ1R)
7 IZ2T21rms Imbalance current of the second group of DC filters

8 IZ2Mrms Measured current at the low voltage side of the second
group of DC filters

9 IZ2L2rms Current of reactor L22
10 IZ2Rrms Current of resistor R2
11 IZ2L1rms Current of reactor L21(calculated from IZ2M and IZ2R)
12 IZrms High voltage side current of the DC filters
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Table A1. Cont.

Number Name Measurement

13 IZPrms Sum of the protective level currents at the low voltage
side of both groups of DC filters (IZ1P + IZ2P)

14 DIFrms Differential current between high and low voltage sides
of the DC filters IZ-(IZ1P + IZ2P)

15 SER1DCP1 Pole protection related event
16 SER2DCP1
17 SER3DCP1
18 SER1DCP2
19 SER2DCP2
20 SER3DCP2
21 SER1DCP3
22 SER2DCP3
23 SER3DCP3
24 SER1DCP4
25 UdCH_A1 Rectifier station pole 1 DC line voltage
26 UdCH_A2 Rectifier station pole 2 DC line voltage
27 IdLH_A1 Rectifier station pole 1 DC line current
28 IdLH_A2 Rectifier station pole 2 DC line current
29 UdCH_B1 Inverter station pole 1 DC line voltage
30 UdCH_B2 Inverter station pole 2 DC line voltage
31 IdLH_B1 Inverter station pole 1 DC line current
32 IdLH_B2 Inverter station pole 2 DC line current
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