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Abstract: A satellite with two solar wings can be modeled using a pair of symmetric flexible cantilever
beams connected to a central rigid body. Due to certain reasons, the symmetric flexible cantilever
beams may be turned into asymmetric ones, which will inevitably influence the vibration properties
of the structural system. By changing the structural sizes and adding local mass on one side of the
two beams, a structural system with asymmetric mass distribution is obtained and its vibration
characteristics are investigated. Hamilton’s principle with the assumed mode method is employed
to establish the equation of motion of the asymmetric structural system. The natural frequencies,
mode shapes, frequency response curves and displacement time histories of the system are calculated,
and they are compared with those of the structural system with a symmetric mass distribution. The
correctness and feasibility of the present analytical method are verified by means of the finite element
method (FEM) and a vibration experiment. The analytical results show that the mass asymmetry
of the two beams leads to the mode localization phenomenon, and the coupling effect between the
two beams and the central rigid body is enhanced. The larger the mass asymmetry is and the closer
the position of the added local mass to the end of the cantilever beam is, the more obvious of the
mode localization phenomenon is and the more obvious of the coupling effect between the two beams
and the central rigid body is. The present investigation results are helpful for the dynamic analysis
and design of spacecraft structures composed of flexible solar wings and a central rigid body.

Keywords: asymmetric flexible cantilever beams; central rigid body; Hamilton’s principle; assumed
mode method; mass asymmetry; vibration characteristics

1. Introduction

Because of the small sizes of the flexible appendages of early spacecraft, their impacts
on the main body of the spacecraft were generally negligible, and they were often regarded
as simple flexible cantilever beams or cantilever plate structures [1,2]. In recent years,
studies have shown that with the appendages of spacecraft becoming more and more large
and flexible, the structural vibrations of the flexible appendages will have an effect on the
main body of spacecraft, and the motion of the main body of spacecraft will be able to
react on the flexible appendages, which will result in the occurrence of a rigid–flexible
coupling effect. The rigid–flexible coupling effect has also become the focus and difficulty
of investigations on the dynamics of spacecraft with flexible appendages [3,4].

Currently, the majority of research on rigid–flexible coupling focuses on the coupling
between a single flexible appendage and the main body of a spacecraft. Gao et al. [5]
simplified the satellite antenna system as a cantilever beam connected to a central rigid
body, and studied its nonlinear dynamic characteristics by using the assumed mode method
and the method of multiple scales. Azimi and Joubaneh [6] realized the dynamic modeling
of a high-order spacecraft system with a flexible panel, and suppressed its responses under
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loads with different frequencies through piezoelectric plates. In addition, the vibration
of spacecraft with a flexible appendage in the rotating state is also a long-term research
focus. Yoo and Shin [7] put forward the coupling analysis method for axial and bending
motions of rotating beams, and found that when the rotating speed exceeds a certain
value, the natural frequencies and mode shapes of the beam change obviously. Yang
et al. [8] used the finite element method (FEM) to model a rotating Euler–Bernoulli beam
considering the centrifugal stiffening effect, and designed a control algorithm to suppress
the transverse vibration of the rotating beam. Tian et al. [9] studied the influence of the
Coriolis effect on the vibration behavior of rotating beams by using a modified variational
method, and found that the Coriolis effect can be ignored when the rotating angular velocity
is low. The above researches show that centrifugal force and the Coriolis effect must be
considered for a flexible spacecraft rotating at high speed, but it is also feasible to consider
only the transverse vibration of flexible appendages for spacecraft with solar wings in
static operation.

In fact, the solar wings on both sides of most spacecraft are symmetrical, so it is difficult
to fully reflect the characteristics of the whole system only by analyzing the coupling
between a single solar wing and the main body of the spacecraft. Some investigations
on the rigid–flexible coupling effect of spacecraft with two symmetric solar wings have
been conducted. Cao et al. [10] used the global mode method to study the vibration
characteristics of a three-axis stabilized spacecraft with symmetric solar wings, and found
that the flexible solar wings on both sides will vibrate symmetrically or antisymmetrically
under certain conditions. Xing and Wang [11] analyzed the vibration characteristics of a
spacecraft with double-direction hinged solar arrays, and found that the moment of inertia
of the central rigid body and the aspect ratio of the solar arrays make the system appear
with frequency veering and mode shift phenomena. Obviously, the vibration behaviors
of a spacecraft with symmetrical flexible appendages are more complicated than those of
a spacecraft with only a single appendage, so it is necessary to conduct more research on
the former.

In theory, the two solar wings on either side of the spacecraft should perfectly be
symmetrical structures. However, in reality, this may not always be the case due to defects
in the materials, errors made during manufacturing and processing, wear and tear, etc.,
which cause the sizes, masses, stiffnesses, etc., of the two solar wings of the spacecraft to
be different from each other. This phenomenon is known as disorder, i.e., real conditions
deviating from the ideal ones [12–14]. Investigations have demonstrated that the dynamical
properties of disordered systems create considerable changes due to the asymmetry of the
structures, and many researchers have carried out studies on the vibration properties of
disordered periodic structures [15–18]. Laxalde and Pierre [19] established the reduced-
order dynamics model for multi-stage disordered cyclic symmetric bladed disk assemblies,
explored the modal localization properties of the disordered bladed disk, and analyzed
the influence of the disorder degree on the sensitivity of the bladed disk. Zhou et al. [20]
investigated the vibration characteristics of disordered two-span beams, and established the
structural dynamics model by using the modal superposition method. They explored the
effects of the disorder degree on the free and forced vibrations of the disordered two-span
beams. In addition, further investigation results have been published in this regard [21–24].

The above analysis reveals that, at present, an increase in research on mode localization
focuses on structural stiffness or dimension disorder, with a notable scarcity of studies on
the vibration localization characteristics of structural mass disorder or, in cases of lumped
mass, on the structure. However, some studies show that the local perturbation caused
by lumped mass obviously influence the vibration characteristics of structures, such as by
changing the natural frequencies of plates [25] or suppressing the energy of elastic waves
in beams [26]. Consequently, this study delves into the influence of mass asymmetry on
the vibration properties of satellites with two solar wings, which can be modeled as a
pair of symmetric flexible cantilever beams connected to a central rigid body. By utilizing
Hamilton’s principle and the assumed mode method, the equation of motion of the system
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with an added local mass on one side of the two beams is established. By altering the size
of the cantilever beam on one side of the two beams, the vibration properties of the system
with mass disorder due to the size deviation are studied. By adding a lumped mass on
the different positions of one beam, the impact of local mass disorder on the vibration
properties of the system is explored. The FEM software COMSOL Multiphysics 6.0 and
a vibration experiment are employed to confirm the correctness of the outcomes of the
theoretical analysis.

2. Establishment and Solution of Structural Equation of Motion
2.1. Establishment of Equation of Motion

The research object is a central rigid body connected with asymmetric flexible can-
tilever beams, as shown in Figure 1. The Cartesian coordinate system is also displayed in
Figure 1, where o-x1y1 and o-x2y2 are inertial coordinate systems describing the motion
of two beams, respectively, and o-x1

′ y1
′and o-x2

′y2
′ are floating coordinate systems after

angular displacement of θ. The bending vibrations of the cantilever beams on both sides of
the central rigid body are considered. Both cantilever beams are Euler–Bernoulli beams
with lengths L1 and L2, and line densities m1 and m2. A lumped mass with length l and line
density ma is attached to one side of the two beams to simulate the disordered local lumped
mass on the solar wing. The distance of the lumped mass from the coordinate origin is s.
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Figure 1. A schematic diagram of a central rigid body and asymmetric flexible cantilever beams with
an additional lumped mass.

The motion of the system shown in Figure 1 consists of two parts. The first part is the
rigid attitude rotation, θ, driven by the central rigid body together with the two cantilever
beams on both sides, and the second part is the bending vibration, w(x, t), of each of the
two cantilever beams. Therefore, the system is a rigid-flexible coupled dynamical system.
Hamilton’s principle and the assumed mode method can be used to establish the dynamic
equation of the system.

To use the assumed mode method, the attitude angle, θ, of the system and the bending
vibration displacements w1 and w2 of the beams on both sides are written in the forms of
products of mode shape functions and generalized coordinates, and they can be written as
follows [27,28]:

θ(t) = Θqθ(t), w1(x1, t) =
n

∑
i=1

ϕ1i(x1)q1i(t), w2(x2, t) =
n

∑
i=1

ϕ2i(x2)q2i(t), (1)

where qθ(t), q1i(t) and q2i(t) are the generalized coordinates corresponding to the attitude
rotation and bending vibrations of the beams, Θ is the angular mode constant, and ϕ1i(x1)
and ϕ2i(x2) are the mode shape functions of the cantilever beams, which can be expressed
as follows:

ϕi(x) = cos βix − chβix +
sin βiL − shβiL
cos βiL + chβiL

(sin βix − shβix)i = 1, 2, . . . . . . , (2)
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where βiL is the ith characteristic root corresponding to the characteristic equation of a
cantilever beam during bending vibration, which is denoted by β1L = 1.875, β2L = 4.694
and βiL ≈

(
i − 1

2

)
π for i ≥ 3.

Let the global modal generalized coordinate vector of the system be as follows:

q(t) = [qθ , q11, q12, . . . , q1n, q21, q22, . . . , q2n]
T (3)

Then, the three parts of the motion of the system in Equation (1) can be expressed
as follows:

θ(t) = ΘTq(t), w1(x1, t) = Φ1
T(x1)q(t), w2(x2, t) = Φ2

T(x2)q(t), (4)

in which

Θ = [Θ, 0n, 0n]
T , Φ1(x1) = [0, ϕ11, ϕ12, . . . , ϕ1n, 0n]

T , Φ2(x2) = [0, 0n, ϕ21, ϕ22, . . . , ϕ2n]
T . (5)

Taking the left beam as an example, when deformation occurs, the position vector of
any point, P, on the beam in the coordinate system, o-x1y1, can be written as follows:

r1 = RT(u + ρ0) (6)

in which

R =

[
cos θ sin θ
− sin θ cos θ

]
, u =

[
0

−w1(x1, t)

]
, ρ0 =

[
x1
0

]
(7)

where R is the direction cosine matrix of the floating coordinate system relative to that of
the inertial coordinate system.

The velocity of point P in the inertial coordinate system can be expressed as follows:

.
r1 =

.
R

T
(u + ρ0) + RT .

u (8)

Similarly, it can be concluded that the velocity,
.
r2, of the point on the right beam takes

the same form as the above formula.
The kinetic energy of the system consists of four components, i.e., the rotational kinetic

energy of the central rigid body, the kinetic energies of the two cantilever beams, and the
kinetic energy of the lumped mass. The expression for the total kinetic energy of the system
is given as follows:

T =
1
2

IB
.
θ

2
+

1
2

m1

∫ L1

0

.
r1

T .
r1dx1 +

1
2

m2

∫ L2

0

.
r2

T .
r2dx2 +

1
2

ma

∫ s+l

s

.
r1

T .
r1dx1 (9)

Because the mass of the central rigid body is much larger than that of the flexible
beams on both sides, the motions of the flexible attachments create little disturbance to the
central rigid body, so it can be considered that the value of θ is very small. Since only the
small linear bending vibrations of the flexible beams are considered, we can let sin θ ≈ θ
and cos θ ≈ 1, and ignore the high-order small variables; then, the expression of kinetic
energy can be expanded as follows:

T = 1
2 IB

.
θ

2
+ 1

2 m1
∫ L1

0 (x1
.
θ − .

w1)
2
dx1 +

1
2 m2

∫ L2
0 (x2

.
θ − .

w2)
2
dx2 +

1
2 ma

∫ s+l
s (x1

.
θ − .

w1)
2
dx1

2ex= 1
2

dqT(t)
dt (M0 + M1 + M2 + Ma)

dq(t)
dt = 1

2
dqT(t)

dt M dq(t)
dt

(10)

where IB is the rotational inertia of the center rigid body, and M is the total mass matrix
of the system, which consists of four parts: the mass matrix M0 corresponding to attitude



Machines 2024, 12, 193 5 of 14

rotation, the mass matrices M1 and M2 relating to the left and right beams, and the lumped
mass matrix Ma. The specific expressions of these mass matrices are written as follows:

M0 = I0ΘΘT , M1 = m1
∫ L1

0

[
Φ1(x1)Φ1

T(x1)− ΘΦ1
T(x1)− Φ1(x1)Θ

T]dx1,

M2 = m2
∫ L2

0

[
Φ2(x2)Φ2

T(x2)− ΘΦ2
T(x2)− Φ2(x2)Θ

T]dx1,

Ma = ma
∫ s+l

s
[
Φ1(x1)Φ1

T(x1)− ΘΦ1
T(x1)− Φ1(x1)Θ

T]dx1,

(11)

where I0 is the total rotational inertia of the system.
Since the length, l, of the lumped mass is very small compared to that of the cantilever

beam, the change in the stiffness of the cantilever beam caused by the lumped mass is
neglected. Consequently, the potential energy of the system consists of three parts: the
torsional potential energy of the central rigid body, and the bending deformation energies
of the two cantilever beams. The expression for the potential energy of the system is given
as follows:

U = 1
2 kθθ2 + 1

2 EJ1
∫ L1

0 (w′′
1)

2dx1 +
1
2 EJ2

∫ L2
0 (w′′ 2)

2dx2

= 1
2 qT(t)(K0 + K1 + K2)q(t) = 1

2 qT(t)Kq(t),
(12)

where kθ is the torsional stiffness of the central rigid body, EJ1 and EJ2 denote the bending
stiffnesses of the left and right beams, and K is the total stiffness matrix of the system,
which consists of three parts: the torsional stiffness matrix K0 of the central rigid body, and
the bending stiffness matrices K1 and K2 of the two beams. The specific expressions of
these matrices are written as follows:

K0 = kθΘΘT , K1 = EJ1

∫ L1

0
Φ

′′
1 (x1)Φ

′′T
1 (x1)dx1, K2 = EJ2

∫ L2

0
Φ

′′
1 (x2)Φ

′′T
1 (x2)dx2. (13)

Since the added lumped mass is relatively light, its energy dissipation is not consid-
ered. Whereas the central rigid body is often subjected to a control term with damping
characteristics when it rotates, it can be assumed that the energy dissipated by the whole
system mainly originates from the central rigid body, i.e.,

D =
1
2

cθ

.
θ

2
, (14)

where cθ is the damping coefficient, and D is the energy dissipation function that represents
the work carried out by the damping force during the vibration of the system.

Assuming that an external force, F, is applied on the left beam at x0, the virtual work
done by the external force F is

δW = Fδy0 = Fδ[θx0 − w1(x0)] = F[Θx0 − Φ1(x0)]δq(t) = Qδq(t) (15)

where Q is the generalized force vector.
Substituting the kinetic energy, T, the potential energy, U, and the virtual work of the

external force, δW, into Hamilton’s principle [27,29,30],∫ t2

t1

δ(T − U)dt +
∫ t2

t1

δWdt = 0 (16)

and introducing the damping term due to the rotation of the central rigid body, the equation
of motion of the system can be obtained as follows:

M
..
q + C

.
q + Kq = Q, (17)

where C = diag(cθ , 0n, 0n) is the damping matrix.
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2.2. Theoretical Solutions
2.2.1. Forced Vibration

For a simple harmonic excitation, F = F0eiωt, Equation (17) can be expressed as
follows:

M
..
q + C

.
q + Kq = Q0eiωt, (18)

in which i =
√
−1, and Q0 is the generalized force amplitude vector, which can be deter-

mined by replacing F in Equation (15) with F0.
The steady solution of Equation (18) can be expressed as follows:

q = Aeiωt, (19)

where A is the amplitude. Substituting Equation (19) into Equation (18) leads to the following:

(−ω2M + iωC + K)A = Q0, (20)

from which the amplitude, A, can be calculated. Then, substituting A into Equation (19),
the generalized coordinates can be obtained, and the frequency response curve of each
point on the structure can be finally calculated from Equation (4).

2.2.2. Free Vibration

For free vibration, Equation (18) is simplified as follows:

M
..
q + C

.
q + Kq = 0. (21)

The above equation is a homogeneous one, the general solution of which can be
written as follows:

q = q0eλt, (22)

where q0 is the eigenvector and λ is the eigenvalue.
Substituting Equation (22) into Equation (21) yields the following:

(Mλ2 + Cλ + K)q0 = 0. (23)

The condition for the existence of nonzero solutions is that the coefficient determinant
of the above equation is zero, i.e., ∣∣∣Mλ2 + Cλ + K

∣∣∣ = 0. (24)

Solving the above equation yields the eigenvalue of the structural system, and the
imaginary part of the eigenvalue is the natural frequency of the structure.

By applying a unit impulse, the generalized coordinates can be obtained by numeri-
cally solving Equation (21); then, the free vibration response of the structure can be finally
calculated from Equation (4).

3. Validations
3.1. Validation by the FEM

In this subsection, the natural frequencies and mode shapes of the structural system
composed of a central rigid body and two asymmetric cantilever beams are computed using
the present analytical method and compared with those obtained from the FEM software
COMSOL Multiphysics. The material and structural parameters used in the calculations
are set to be as follows [9]: the linear density of the two beams is m1 = m2 = 0.03 kg/m, the
rotational inertia of the central rigid body is I0 = 1000 kg·m2, the length of the two beams is
L1 = L2 =10 m, the torsional stiffness of the whole system is kθ = 500 N·m/rad, the bending
stiffness of the two beams is EJ1 = EJ2 = 15 N · m2, the length of the lumped mass is
s = 0.01 m, and the linear density of the lumped mass is ma = 0.6 kg/m.
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For the lumped mass attached at the left end of the left beam, the first seven orders of
the natural frequencies of the system are calculated using the present method and the FEM
software COMSOL Multiphysics, as shown in Table 1. In COMSOL Multiphysics, the axial
displacements of the beams are ignored, and the geometric nonlinear characteristics of the
beams are not included. It can be seen that the natural frequencies computed using the
present method match very well with those of the FEM. Figure 2 shows the first four mode
shapes of the system calculated by using the two methods, and it can be seen from the
figure that the results obtained via the two methods are in good agreement, thus proving
that the modeling method and calculation program in this paper are feasible.

Table 1. Natural frequencies of the asymmetric system with an additional lumped mass at the left
end of the left beam.

Modal Order 1st 2nd 3rd 4th 5th 6th 7th

Present method (Hz) 0.1078 0.1221 0.1288 0.7567 0.7843 2.1250 2.1957
COMSOL (Hz) 0.1078 0.1221 0.1288 0.7566 0.7843 2.1225 2.1957
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3.2. Validation via the Vibration Experiment

In this subsection, the vibration experiment is employed to verify the feasibility of
the present analytical method. The designed experimental prototype for the central rigid
body connected with two flexible cantilever beams is illustrated in Figure 3a, and the
experimental setup is shown in Figure 3b. The equipment mainly includes the YE6270 data
collector, a data processor, acceleration sensors and a force hammer, which are all made
by Sinocera Piezotronics Inc of Jiangsu, China. Among them, the mass of the sensor can
simulate the mass disorder of the flexible beam on one side.

The structural and material parameters of the experimental prototype are selected as
follows: the length, width and thickness of the beams on both sides of the central rigid body
are L = 0.3 m, b = 0.02 m and h = 0.001 m. The material used is steel, the mass density of
which is ρ = 7930 kg/m3, and Young’s modulus of which is E = 194 GPa. The central rigid
body is a cylinder with a radius of 0.02 m and a height of 0.05 m, and U-shaped grooves
with a thickness of 0.005 m and a width of 0.02 m are attached on both sides of the cylinder
to serve as the connectors between the central rigid body and the two beams.

Table 2 presents the first six natural frequencies of the structural system obtained
using the present analytical method and from the vibration experiment. It is observed that
the natural frequencies between the analytical and experimental methods are relatively
well matched. It is also found that the errors between the results of the two methods are
relatively large for some orders, which may be due to the material defects, processing
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errors, measuring accuracy and so on. At the same time, sensors and wires have some
mass, and their parameter deviation also have a great influence on the natural frequencies
of the system, which is analyzed in detail in Section 4.1.1. In addition, the errors may
also be caused by the parameter deviation of the central rigid body, which is discussed
in Section 4.1.2. It can be proven that the present analytical method is very effective in
exploring the vibration characteristics of asymmetric flexible cantilever beams connected to
a central rigid body.
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Table 2. The first six natural frequencies of the central rigid body connected with two flexible
cantilever beams.

Modal Order 1st 2nd 3rd 4th 5th 6th

Present method (Hz) 4.985 23.54 36.31 73.62 108.3 138.4
Experiment (Hz) 4.883 20.02 37.11 67.11 113.8 141.6

4. Numerical Results and Discussions
4.1. Natural Frequencies and Mode Shapes
4.1.1. Influence of Mass Disorder

For the case of the lumped mass being 0, the natural frequencies of the symmetrical
system composed of a central rigid body and two identical cantilever beams are calculated
using the present method. By shortening the length of the left beam by 0.5%, 1% and 1.5%,
the effect of different mass disorder degrees on the natural frequencies of the system is



Machines 2024, 12, 193 9 of 14

investigated, and the numerically calculated results are shown in Table 3. It can be seen
that with the decrease in the mass of the left beam, the natural frequencies of odd orders
gradually increase, and the natural frequencies of even orders have no significant changes
except for the second order.

Table 3. Natural frequencies (Hz) of the system under different mass disorder degrees.

Disorder Degree 1st 2nd 3rd 4th 5th 6th 7th

0% 0.1084 0.1251 0.1299 0.7842 0.7843 2.1957 2.1958
0.5% 0.1085 0.1257 0.1305 0.7843 0.7922 2.1957 2.2178
1% 0.1086 0.1261 0.1312 0.7843 0.8002 2.1957 2.2403

1.5% 0.1087 0.1265 0.1321 0.7843 0.8083 2.1957 2.2631

Without changing the dimensions of the left beam, the same lumped mass is attached
to the left beam at L/4, L/2, 3L/4 and L. The effect of the position of the lumped mass on
the natural frequencies of the system is studied, and the calculation results are shown in
Table 4. It can be seen that as the lumped mass is far away from the central rigid body,
the natural frequency of each order of the system usually decreases gradually, and the
position of the lumped mass has a larger effect on the even-order natural frequencies of the
system and a smaller effect on the odd-order natural frequencies. The farther the position
of the lumped mass from the central rigid body, the greater the effect of the position of the
lumped mass on the natural frequency.

Table 4. Natural frequencies (Hz) of the system for the additional lumped mass in different locations.

Different Locations 1st 2nd 3rd 4th 5th 6th 7th

Unattached 0.1084 0.1251 0.1299 0.7842 0.7843 2.1957 2.1958
L/4 0.1084 0.1251 0.1299 0.7788 0.7843 2.1517 2.1957
L/2 0.1083 0.1248 0.1297 0.7689 0.7843 2.1957 2.1957
3L/4 0.1081 0.1239 0.1292 0.7837 0.7843 2.1676 2.1957

L 0.1078 0.1221 0.1288 0.7567 0.7843 2.1250 2.1957

To further analyze the reasons for the change in each order of natural frequency, the
first seven mode shapes of the system are given in Figure 4 for both cases of varying the
size of the left beam as well as attaching a lumped mass to the left beam, and they are
compared with the mode shapes of the symmetrical system composed of a central rigid
body and two identical cantilever beams. It is obvious in Figure 4b that the symmetric and
antisymmetric mode shapes appear alternately for the symmetrical system. Due to the
mass disorder, the mode shapes of the system change significantly. From the fourth-order
mode shape, the phenomenon of mode localization occurs, i.e., the mode shapes of the left
and right beams being separated. Nevertheless, the mass change of the left beam will not
affect the mode shape of the right beam. This explains exactly why the natural frequency of
each even order from the fourth order in Table 3 does not change with the increase in mass
disorder, and the natural frequency of each odd order from the fourth order in Table 4 does
not change with the change in the position of the lumped mass.
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Figure 4. The first seven mode shapes of the system. (a) The left beam with 1% mass disorder and
(b) without mass disorder, and (c) the left beam attached with the lumped mass.

4.1.2. Influence of Other Parameters

The effects of the rotational inertia and torsional stiffness of the central rigid body on
the natural frequencies of the system are discussed here. As can be seen from Table 5, with
the increase in the rotational inertia, the natural frequencies of odd orders of the system
decrease, while the natural frequencies of all even orders do not change. It can also be
found from Table 6 that with the increase in torsional stiffness, only the natural frequencies
of odd orders become larger. It can be concluded that the parameters of the central rigid
body affect the antisymmetric bending vibrations of the flexible beams on both sides, but
have no effects on the symmetric bending vibrations. Therefore, in the experiment, the
errors of some natural frequencies are larger, which is probably caused by the parameter
deviation of the central rigid body.

Table 5. Natural frequencies (Hz) of the system for different rotational inertias of the central
rigid body.

Deviation of IB (%) 1st 2nd 3rd 4th 5th 6th 7th

−20 0.1162 0.1251 0.1358 0.7842 0.7844 2.1957 2.1958
−10 0.1125 0.1251 0.1320 0.7842 0.7844 2.1957 2.1958

0 0.1084 0.1251 0.1299 0.7842 0.7843 2.1957 2.1958
10 0.1042 0.1251 0.1287 0.7842 0.7843 2.1957 2.1958
20 0.1003 0.1251 0.1279 0.7842 0.7843 2.1957 2.1958

Table 6. Natural frequencies (Hz) of the system for different torsional stiffnesses of the central
rigid body.

Deviation of kθ (%) 1st 2nd 3rd 4th 5th 6th 7th

−20 0.0982 0.1251 0.1282 0.7842 0.7843 2.1957 2.1958
−10 0.1036 0.1251 0.1289 0.7842 0.7843 2.1957 2.1958

0 0.1084 0.1251 0.1299 0.7842 0.7843 2.1957 2.1958
10 0.1125 0.1251 0.1313 0.7842 0.7844 2.1957 2.1958
20 0.1157 0.1251 0.1333 0.7842 0.7844 2.1957 2.1958
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4.2. Forced Vibration

The frequency response curves of the attitude angle of the system under different
mass disorders are displayed in Figure 5. In the studied frequency range, the frequency
response curves of the attitude angle for the symmetric beams on both sides of the central
rigid body have only four peaks, corresponding to 0.1084 Hz, 0.1299 Hz, 0.7843 Hz and
2.1958 Hz. The other three peaks correspond to the antisymmetric bending vibrations of the
system, except for the first one, which corresponds to the attitude vibration mode. This is
because the attitude rotation of the central rigid body is only affected by the antisymmetric
bending vibration of the two beams, and the symmetric bending vibration does not have a
coupling effect with the attitude rotation. The mass asymmetry makes the peak numbers
of frequency response curves in the attitude angle change from the original four to seven,
which is due to the change in the original mode shape of symmetric bending vibration
caused by the mass disorder, so that each order of the bending vibration will be coupled
with the attitude rotation of the central rigid body, and the larger the degree of mass
disorder is, the more obvious the position shift of the new peaks is.
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Figure 6 gives the frequency response curves of the attitude angle when the lumped
mass is attached at different positions of the left beam, and the peak numbers of frequency
response curves of the attitude angle also change from the original four to seven compared
with those when no lumped mass is attached. Meanwhile, the disorder caused by the local
lumped mass also changes the coupling relationship between the two cantilever beams and
the central rigid body, and the further away from the central rigid body the location of the
lumped mass is, the more significant the coupling effect is.
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4.3. Free Vibration

The time response curves of the attitude angle, the left endpoint of the left beam
and the right endpoint of the right beam are calculated and illustrated in Figure 7 for the
symmetrical system, i.e., the system with no mass disorder existing. When the rotational
viscous damping coefficient, cθ = 100 N·m·s/rad, is applied to the central rigid body, the
attitude angle decays continuously within 400 s until it reaches 0. In the first 400 s, the
attitude angle of the central rigid body shows a decaying fluctuation phenomenon due to
the coupling effect of the central rigid body and the two beams, and the antisymmetric
vibration is gradually attenuated via the dissipation of the rotational viscous damping of
the central rigid body. The vibrations of the system tend to be stabilized after 400 s, and
only the steady symmetric bending vibrations of the two flexible beams exist.

Machines 2024, 12, x FOR PEER REVIEW 12 of 15 
 

 

 
Figure 6. Frequency response curves of attitude angle for the lumped mass attached at different 
locations of the left beam. 

4.3. Free Vibration 
The time response curves of the attitude angle, the left endpoint of the left beam and 

the right endpoint of the right beam are calculated and illustrated in Figure 7 for the 
symmetrical system, i.e., the system with no mass disorder existing. When the rotational 
viscous damping coefficient, cθ = 100 N·m·s/rad, is applied to the central rigid body, the 
attitude angle decays continuously within 400 s until it reaches 0. In the first 400 s, the 
attitude angle of the central rigid body shows a decaying fluctuation phenomenon due to 
the coupling effect of the central rigid body and the two beams, and the antisymmetric 
vibration is gradually attenuated via the dissipation of the rotational viscous damping of 
the central rigid body. The vibrations of the system tend to be stabilized after 400 s, and 
only the steady symmetric bending vibrations of the two flexible beams exist. 

 
Figure 7. Time response curves of the symmetrical system without mass disorder. 

The time response curves of the asymmetric system for the disorder degree of the 
left beam, these being 0.5% and 1%, are shown in Figure 8. It can be seen that the mass 
disorder enhances the coupling effect between the two beams and the central rigid body, 

 

 

Figure 7. Time response curves of the symmetrical system without mass disorder.

The time response curves of the asymmetric system for the disorder degree of the left
beam, these being 0.5% and 1%, are shown in Figure 8. It can be seen that the mass disorder
enhances the coupling effect between the two beams and the central rigid body, and
the attitude angle is no longer 0 after 400 s, but there exists a continuous small-amplitude
vibration. The vibrations of the two flexible beams also no longer tend to be stable after 400 s
but decay gradually, and the larger the mass disorder degree is, the faster the vibrations of
the two beams decay. Figure 9 shows the time response curves of the asymmetric system
with a lumped mass at L/2 and L of the left beam. It can be seen that the lumped mass
causes the same phenomena as mass disorder does, and the closer the location of the
lumped mass to the end of the left beam is, the stronger the rigid–flexible coupling effect is,
and the more obvious the vibration attenuation phenomenon is.
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5. Conclusions

This study explores the vibration properties of asymmetric flexible cantilever beams
connected to a central rigid body. A structural system with asymmetric mass distribution
is obtained by changing the structural sizes and adding a local mass on one side of the two
beams. The equation of motion of the asymmetric system is established using Hamilton’s
principle with the assumed mode method. The investigation indicated that the symmetric
and antisymmetric mode shapes appear alternately for a symmetrical system composed
of a central rigid body and two identical cantilever beams, and only the antisymmetric
vibrations of the two flexible beams are coupled with the central rigid body. Mass disorder
results in the occurrence of the mode localization phenomenon, which causes each order of
the bending vibration of the flexible beam being coupled with the attitude rotation of the
central rigid body. As the degree of mass disorder increases and the lumped mass becomes
closer to the beam end, the mode localization phenomenon and the rigid–flexible coupling
effect between the two flexible beams and the central rigid body become more obvious.
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