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Abstract: This paper studies the trajectory tracking anti-disturbance control of unmanned au-
tonomous helicopters (UAHs) under matched disturbances and mismatched ones. Firstly, the
six-degrees-of-freedom UAH nonlinear system is simplified via feedback linearization to handle
strong coupling, in which the multiple disturbances are composed of modeled disturbances and
time-varying bounded ones. Secondly, in order to estimate these disturbances, a new design method
of a composite disturbance observer is proposed. On the one hand, for the mismatched disturbances,
a normal disturbance observer (DO) combined with a backstepping control are utilized to handle
their negative effect. On the other hand, two refined disturbance observers (RDOs) are constructed
to estimate the matched disturbances, in which the coupling estimations are involved. Then, by
designing two anti-disturbance composite controllers, the boundedness of the tracking errors is
guaranteed by using the Lyapunov stability theory. Finally, some numerical simulations are provided
to demonstrate the effectiveness and advantage of the proposed control scheme.

Keywords: unmanned autonomous helicopter; tracking control; multiple disturbances; composite
disturbance observer; backstepping control

1. Introduction

Normally, as a common type of aircraft, unmanned autonomous helicopters (UAHs)
have been widely utilized in various industrial and military fields [1,2]. However, the
strong coupling and underactuation, cased by strong nonlinearity, have brought great
challenges to study the flight control of the UAH. In recent years, research on UAH control
systems has achieved a large number of elegant results [1–5]. For instance, in [3], the
uncertain terms in the UAH system were approximated via neural networks, and an
integral backstepping method combined with a sliding mode control were proposed by
considering input saturation. In [4], an adaptive sliding mode fault-tolerant control strategy
was proposed for the quadrotor UAV with variable loads, which can compensate for the
faults via a neural network approximator. In [5], a flight boundary protection algorithm
was presented for the UAH system under uncertainties, by considering the possibility of
boundary constraints. However, during the actual flight, the UAHs would be unavoidably
affected by the unpredicted disturbances due to unfavorable factors from the UAH system
itself to outside environments, which might reduce control performance or even lead to
crashing. Yet, some existent control strategies of UAH motions do not wholly consider
the influence of complicated outside disturbances. Therefore, how to fully tackle the
disturbances and inject their negative effects plays an important role in improving the
control performance of UAH systems.
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In recent years, anti-disturbance control has drawn much attention from many re-
searchers. In particular, among these proposed methods, because the disturbance observer-
based control (DOBC) estimates the disturbance and compensates it in a feedforward man-
ner, it has been widely utilized to tackle anti-disturbance control for UAH systems since it
can effectively eliminate the disturbance without sacrificing control performance [6–12].
It is worth noting that, according to the channel where the disturbance occurs, the distur-
bances in UAH system can be divided into matched disturbances and mismatched ones.
On the one hand, since the matched disturbance exists in the control channel, based on the
DOBC method, the disturbance estimation can be directly incorporated into the controller
design to eliminate the negative effect. In [6], a nonlinear model predictive controller and
disturbance observer (DO) were proposed to derive the optimal performance of UAH
trajectory tracking control. In [7], the UAH system was divided into two subsystems, in
which the matched disturbance was compensated by using the DOBC approach. In [8],
an anti-disturbance feedback controller was designed by treating model uncertainty and
disturbance as compounded disturbance and further deriving the estimation by using the
DO. On the other hand, since the mismatched disturbance does not exist in the control
channel, it cannot be completely suppressed by an anti-disturbance controller. In [9], as
for mismatched random disturbance, its influence was suppressed by combining a non-
linear DOBC and feedback control. In [10], a finite-time DO was designed to tackle the
mismatched disturbance. In [11,12], the DOBC and backstepping control were combined
and utilized to suppress the mismatched disturbance. Meanwhile, owing to complex-
ities of flying environments, the UAH systems may suffer various unfavorable factors.
Then, in [13], a composite fault-tolerant control scheme was proposed for a stochastic
system under the faults and disturbances, in which random disturbances were modeled
as an exogenous system. In [14], a periodic piecewise system suffered from both matched
disturbance and a mismatched one, in which a periodic piecewise DO was proposed to
estimate the matched disturbance and a performance index was designed to suppress the
mismatched one. In [15], a DO design called refined disturbance observer (RDO) was
proposed, consisting of the DO and extended state observer (ESO), in which the DO was
used to estimate the modeling error and the ESO was exploited to estimate the bounded
disturbance. However, except for the faults and modeling errors, these above results aimed
to tackle single types of disturbance, such as the norm-bounded disturbance or modeled
one. However, based on statistic data and measurable information, only part of the dis-
turbance imposed on the UAH system can be modeled or predicted, while the rest can be
regarded as the time-varying bounded one. To the best of our knowledge, few works have
considered the anti-disturbance control for the UAH systems under a modeled disturbance
and a norm-bounded one, which remains important and challenging.

Meanwhile, as for the UAH systems, many existent control methods have been es-
tablished based on approximate linearized systems and linear control techniques, such as
PID control [16,17], LQR control [18,19], and H∞ control [20,21]. Normally, the linearized
UAH systems cannot accurately describe all the motions of the UAH system, and the linear
control approaches cannot meet the high robust requirements in practice. Yet, the nonlin-
earity and underactuation of the UAH system lead to significant challenges in proposing
the control strategy. In order to solve this problem, a new feedback linearization method
was proposed to simplify the nonlinear UAH systems. In [22,23], the approximate feedback
linearization method was used to simplify the UAH system by choosing the outputs as the
position and yaw angles. In [24,25], the UAH system was simplified by applying the feed-
back linearization to tackle the heave dynamics and decouple the roll with pitch dynamics.
Meanwhile, since the backstepping method can be utilized to control uncertain control
systems, it was widely utilized to analyze the control issue of UAH systems. In [26], an
adaptive neural network backstepping control scheme was proposed for the UAH system.
In [27], the optimal control and backstepping control were combined to study the tracking
control for the UAH system. In [28], a feedforward–feedback composite control scheme
was proposed based on the generalized PI observer and backstepping control. However,
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as for the full degree-of-freedom UAH system, initially, since it processes underactuation,
strong coupling, high orders, and nonlinearity, a feedback linearization method needs to be
proposed to simplify the nonlinear UAH system by selecting suitable outputs and involving
multiple disturbances; secondly, as for the anti-disturbance control for the simplified UAH
system, some improvements on existent DOBC methods need to be imposed since multiple
disturbances are involved, which can further combine a backstepping control to the present
controller design.

Motivated by the above discussions, by exploiting an improved DOBC method, feed-
back linearization, and backstepping control, this work investigates the tracking control for
the 6-DOF UAH system under multiple disturbances. The main contributions of this work
are listed as follows:

• In practice, the UAH always suffers from different types of outside disturbances. Then,
as for the simplified UAH system under matched disturbances and mismatched ones,
based on the statistic data and experiences, the disturbances are divided into the
modeled parts and the bounded time-variable ones. In order to derive the estimations,
a composite observer design strategy is initially proposed, in which the normal DO
is utilized to estimate the mismatched disturbance, and the improved RDOs are
exploited to estimate the matched disturbance including the modeled part and the
bounded one. In comparison with some existent works, our proposed disturbance
observer can be more effective in tackling more complicated disturbances.

• Based on above estimations and tracking control target, the backstepping control
approach is employed to reject the mismatched disturbance, while as for the matched
disturbances, two anti-disturbance composite controllers are put forward to reject
these disturbances and ensure that the UAH tracks the reference signals. Then, a
co-design method of the observer gains and controller ones are established in terms of
a set of inequalities. Therefore, by choosing suitable parameters, our proposed control
scheme can not only compensate for outside disturbances, but also guarantee that
tracking errors are in a reasonable range, as small as possible.

The mathematical model of UAH system and some preliminaries are presented in
Section 2. Section 3 states related works about anti-disturbance control for the UAH system.
Section 4 introduces approximate feedback linearization model of UAH system. The anti-
disturbance backstepping controller is designed in Section 5. The simulation experiments
are conducted in Section 6 to demonstrate the feasibility of the proposed methods. Finally,
Section 7 states our conclusions.

Notation 1. I is an identity matrix with appropriate dimensions. Cθ , Sθ , and Tθ are the abbrevia-
tions of trigonometric functions cos θ, sin θ, and tan θ, respectively. f (r)(·) denotes the rth order
time derivative of the function f (·). ∥A∥ represents the Euclidean norm for a matrix A. eig(A)
represents the eigenvalues of the matrix (A).

2. Problem Formulation and Preliminaries

In this section, the 6-DOF UAH nonlinear system is described, based on which a sim-
plified UAH system under multiple disturbances is established via a feedback linearization
method. In what follows, the problem formulations and preliminaries are presented.

2.1. Problem Formulations

The UAH model in this work mainly involves the ground coordinate system and the
aircraft coordinate system, whose coordinate axis is shown in Figure 1. Based on this figure,
we consider the 6-DOF model for the UAH system [29], described as follows:
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Ṗ(t) = V(t),

V̇(t) = −ge3 +
1
m

R(t)e3[−g + Zωω(t) + Zcolδcol(t)],

Ω̇(t) = H(t)W(t),

Ẇ(t) = −J−1W(t)× JW(t) + AW(t) + Bu(t),

(1)

where P(t) = [x(t) y(t) z(t)]T and V(t) = [u(t) v(t) w(t)]T represent the position vector
and velocity vector in the inertial frame, respectively; e3 = [0 0 1]T is a unitary vector,
m is the mass of the UAH, g is the gravitational acceleration; Ω(t) = [ϕ(t) θ(t) ψ(t)]T

and W(t) = [p(t) q(t) r(t)]T represent the Euler angle vector and the angular rate one
in the body frame, respectively. col represents the collective pitch of the UAH, and
u(t) = [δcol(t) δlon(t) δlat(t) δped(t)]T denotes the control input vector. Zω and Zcol
satisfy the term Tm(t) = m[−g + Zωω(t) + Zcolδcol(t)], where Tm(t) is the main rotor
thrust, and A, B satisfy the term τ(t) = AW(t) + Bu(t), where τ(t) is the moment vector.
J = diag{Jxx, Jyy, Jzz} denotes the inertia matrix. The rotation matrix R(t) from the body
frame to the inertial frame is defined as

R(t) =

 CθCψ SϕSθCψ − CϕSψ CϕSθCψ + SϕSψ

CθSψ SϕSθSψ + CϕCψ CϕSθSψ − SϕCψ

−Sθ SϕCθ CϕCθ

, (2)

where ϕ(t), θ(t), and ψ(t) denote the roll angle, pitch angle and yaw angle, respectively;
p(t), q(t), and r(t) represent the roll angular rate, pitch angular rate and yaw angular rate,
respectively; Ω(t) = [ϕ(t) θ(t) ψ(t)]T and W(t) = [p(t) q(t) r(t)]T represent the Euler
angle vector and the angular velocity one. The attitude kinematic matrix H(t) is defined as

H(t) =

 1 SϕTθ CϕTθ

0 Cϕ −Sϕ

0 Sϕ/Cθ Cϕ/Cθ

, (3)

and the derivative of R(t) is presented as

Ṙ(t) = R(t)W×(t), (4)

where the W×(t) is given as follows:

W×(t) =

 0 −r(t) q(t)
r(t) 0 −p(t)
−q(t) p(t) 0

.

Figure 1. UAH system coordinate axis.
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2.2. Preliminaries

Assumption 1 ([5]). During the UAH flying procedure, the pitch angle θ(t) and roll angle ϕ(t)
need to satisfy −π

2 < θ(t) < π
2 and −π

2 < ϕ(t) < π
2 .

Lemma 1 ([9]). For any scalars ϵ > 0, p0 > 1, and given vectors x and y with appropriate
dimensions, the inequality holds

xTy ≤ ϵp0

p0
∥x∥p0 +

1
q0ϵq0

∥y∥q0 ,

where q0 = p0
p0−1 .

Remark 1. Throughout the flight process, the roll angle θ(t) and the pitch angle ϕ(t) cannot cross
the interval (−π

2 , π
2 ) for the UAH system; otherwise, it would be overturned. On the other hand,

from the UAH system model, the angles meet the above condition to make the matrices R(t) and
H(t) nonsingular. Thus, Assumption 1 is reasonable in practice.

3. Related Works

The main focus of this work aims to study the anti-disturbance control for the UAH
system under outside disturbances based on the combination of DOBC and backstepping
control. The problem can be divided into two aspects: the suppression of multiple types of
outside disturbances and the design of the tracking controller for the UAH system. In terms
of anti-disturbance control under multiple disturbances, Ref. [13] proposed a fault-tolerant
control scheme for stochastic systems under faults and disturbances, which did not involve
the disturbance estimation. Ref. [14] exploited the disturbance observer to estimate the
matched disturbance and used the performance index to suppress the mismatched one. Yet,
as for the anti-disturbance issues in UAH systems, most existent control schemes based on
the DOBC method paid much research attention to single type of the disturbance. That is
to say, some works aimed to investigate the time-variable bounded disturbances, while the
others assumed that the disturbance was strictly generated by an outside system based on
the assumption that the information about the disturbance is exactly known [9,22,23,26–28].
It is worth noting that, owing to the complexities of flying environments, only part of the
data of outside disturbance can be measured and counted, which can be modeled as an
exogenous system, while the rest cannot be modeled but satisfies the bounded time-varying
condition. Therefore, it is more practical and significant to investigate the anti-disturbance
control for the UAH system under multiple types of disturbances.

4. Approximate Feedback Linearization Model of UAH System

The control target of this work aims to guarantee that the UAH tracks the desired
position Pr(t) = [xr(t) yr(t) zr(t)]T and the yaw angle ψr(t). The exact input–output
linearization cannot linearize the whole system. Thus, the approximate feedback lineariza-
tion technique is utilized to simplify the UAH system (1). Based on [10], two variables
T1m(t) = Ṫm(t) and T2m(t) = Ṫ1m(t) are introduced to guarantee that the UAH system can
be linearized with the input–output feedback linearization method. Then, the UAH system
(1) is rewritten as [10]:

Ṗ(t) = V(t),

V̇(t) = ge3 −
1
m

R(t)e3Tm(t),

Ṫm(t) = T1m(t),

Ṫ1m(t) = T2m(t),

Ω̇(t) = H(t)W(t),

Ẇ(t) = −J−1W(t)× JW(t) + J−1τ(t),

(5)
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where the term −m[−g + Zωω(t) + Zcolδcol(t)] is replaced by the main rotor thrust Tm.
Let T2m and τ(t) be inputs, and choose P(t) and ψ(t) as outputs. The relative degree
of the system (5) is Rt = 14, and its dimension is Rn = 14, namely Rt = Rn, which
means that the system (5) can be transformed into a new system. One new control input
ũ(t) = [τ̃ϕ(t) τ̃θ(t) τ̃ψ(t) T̃m(t)]T is defined, where Ẇ(t) = τ̃(t) = [τ̃ϕ(t) τ̃θ(t) τ̃ψ(t)]T .

By exploiting the feedback linearization method in [10] and considering the existence
of multiple disturbances, the simplified UAH system can be further written as

ẋ1(t) = x2(t),

ẋ2(t) = x3(t) + d1(t),

ẋ3(t) = x4(t),

ẋ4(t) = fp(t)−
1
m

R(t)K(Tm)u1(t)− P(4)
r (t) + d2(t) + δ1(t),

ẋ5(t) = x6(t),

ẋ6(t) = fψ(t) +
Sϕ

Cθ
τ̃θ(t) +

Cϕ

Cθ
τ̃ψ(t)− ψ

(2)
r (t) + d3(t) + δ2(t),

(6)

where x1(t) = P(t)− Pr(t), x2(t) = Ṗ(t)− Ṗr(t), x3(t) = P̈(t)− P̈r(t), x4(t) = P(3)(t)− P(3)
r (t),

x5(t) = ψ(t)− ψr(t), x6(t) = ψ̇(t)− ψ̇r(t), and u1(t) = [τ̃ϕ(t) τ̃θ(t) T̃m(t)]T . Disturbances
d1(t), d2(t), and d3(t) are described by using an exogenous system, while δ1(t) and δ2(t)
are time-varying bounded ones. Then, partial variables are given as

fp(t) = − 1
m

R(t)W×(t)W×(t)e3Tm(t)−
2
m

R(t)W×(t)e3(t)Ṫm(t),

fψ(t) =
[

Cϕ(t)
Cθ(t)

ϕ̇(t) +
Sϕ(t)Tθ(t)

Cθ(t)
θ̇(t)

]
q(t)−

[
Sϕ(t)
Cθ(t)

ϕ̇(t)−
Cϕ(t)Tθ(t)

Cθ(t)
θ̇(t)

]
r(t),

K(Tm) =

 0 Tm 0
−Tm 0 0

0 0 1

.

Assumption 2 ([15]). The modeled disturbances di(t) (i = 1, 2, 3) are described by the following
exogenous model:

ξ̇i(t) = Niξi(t),

di(t) = Miξi(t),
(7)

where ξi(t) is the internal variable. Mi and Ni are the known matrices with appropriate dimensions.

Assumption 3 ([13]). The time-varying bounded disturbances δ1(t) and δ2(t) are differentiable, i.e.,

δ̇j(t) = hj(t), j = 1, 2, (8)

where hj(t) is unknown but bounded; that is to say, there exist positive constants h̄1 and h̄2 such
that |h1(t)| ≤ h̄1, |h2(t)| ≤ h̄2

Assumption 4 ([30]). The parameter matrices Mi and Ni for any i ∈ S make (Ni, Mi) observable,
where S = {1, 2, 3}.

Remark 2. In practical flight, the disturbances imposing on the UAH system are complicated and
unpredictable. Yet, based on available information and statistical data, part of the disturbances can
be described by using the outside model, while the rest of the disturbances, although they cannot be
modeled, typically satisfy the time-varying bounded condition. Yet, as for the anti-disturbance issue
on the UAH system, most existent works have treated the outside disturbance as a unified one and
proposed a normal DO or an ESO to derive the estimation and execute the compensation [6–12], which
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is available but not effective enough. Therefore, it is more reasonable and meaningful to estimate the
disturbances for UAV systems by designing the composite disturbance observers (CBOs), which can
greatly improve the efficiency of the compensation and tracking performance [15].

In order to facilitate forthcoming discussions, as for UAH systems (6), this work only
considers the situation that the matched disturbances include two types of disturbances,
while the mismatched disturbance only consists of the modeled one. Then, in what follows,
the DO and backstepping control are combined to handle the mismatched disturbance
d1(t), while the CBO based backstepping control is exploited to tackle the disturbances
d2(t), d3(t), δ1(t), and δ2(t). The designing process of the anti-disturbance flight controller
is shown as a diagram in Figure 2.

Figure 2. Diagram of designing process of anti-disturbance flight controller.

5. Composite Disturbance Observer and Flight Controller of the UAH System
5.1. Anti-Disturbance Backstepping Controller Based on Disturbance Observer

We define the tracking variables η1(t) and η2(t) as

η1(t) = x1(t)− x1d(t), (9)

η2(t) = x2(t)− x2d(t), (10)

where x1d(t) and x2d(t) are the virtual control laws in the form of

x1d(t) = 0, (11)

x2d(t) = −k1η1(t), (12)

where k1 > 0 denotes the controller parameter. Then, we choose one Lyapunov function
for η1(t) as

V1(t) =
1
2

ηT
1 (t)η1(t). (13)

According to (9)–(12), the derivative of (13) is presented as

V̇1(t) = ηT
1 (t)[x2d(t) + η2(t)] = −k1ηT

1 (t)η1(t) + ηT
1 (t)η2(t). (14)

We define the tracking variable η3(t) as

η3(t) = x3(t)− x3d(t), (15)

where x3d(t) is the virtual control law designed as

x3d(t) = −k2η2(t)− M1ξ̂1(t) + ẋ2d(t), (16)
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where k2 > 0 denotes the controller parameter, and ξ̂1(t) is the estimation of ξ1(t), which
will be compensated by using x3d(t). The disturbance observer of d1(t) is built as

v̇1(t) = (N1 − L1M1)ξ̂1(t)− L1x3(t),

ξ̂1(t) = v1(t) + L1x2(t),

d̂1(t) = M1ξ̂1(t)

(17)

where d̂1(t) is the estimation of d1(t), v1(t) is an auxiliary variable, and L1 denotes the
observer gain. Defining the error vector ξ̃1(t) = ξ1(t)− ξ̂1(t), the derivative of ξ̃1(t) can be
obtained as

˙̃ξ1(t) = (N1 − L1M1)ξ̃1(t). (18)

We choose the Lyapunov function concerning η2(t) as

V2(t) =
1
2

ηT
2 (t)η2(t) +

1
2

ξ̃T
1 (t)ξ̃1(t). (19)

The derivative of (19) is obtained from (15), (16), and (18):

V̇2(t) = ηT
2 (t)η̇2(t) + ξ̃T

1 (t)
˙̃ξ1(t)

= ηT
2 (t)[x3(t) + d1(t)− ẋ2d(t)] + ξ̃T

1 (t)(N1 − L1M1)ξ̃1(t)

= −k2ηT
2 (t)η2(t) + ηT

2 (t)M1ξ̃1(t) + ξ̃T
1 (t)(N1 − L1M1)ξ̃1(t).

(20)

5.2. Anti-Disturbance Backstepping Controller Based on Refined Disturbance Observer

We define the tracking variable η4(t) as

η4(t) = x4(t)− x4d(t), (21)

where x4d(t) is the virtual control law and expressed as

x4d(t) = −k3η3(t) + ẋ3d(t), (22)

where k3 > 0 denotes the virtual controller parameter. We choose the Lyapunov function
on η3(t) as

V3(t) =
1
2

ηT
3 (t)η3(t). (23)

In view of (22), the derivative of (23) is obtained as

V̇3(t) = ηT
3 (t)η̇3(t) = ηT

3 (t)[x4d(t) + η4(t)− ẋ3d(t)]

= −k3ηT
3 (t)η3(t) + ηT

3 (t)η4(t).
(24)

From the dynamics x4(t), the controller u1(t) can be designed as

u1(t) = mK−1(Tm)RT(t)[ fp(t)− P(4)
r (t) + ẋ4d(t) + k4η4(t) + d̂2(t) + δ̂1(t)], (25)

where the controller parameter k4 > 0, and d̂2(t) and δ̂1(t) are the estimations of d2(t)
and δ1(t), respectively. To estimate the disturbances d2(t) and δ1(t), a refined disturbance
observer (RDO) based on the CBO and state observer is designed as
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d̂2(t) = M2ξ̂2(t),

ξ̂2(t) = v2(t) + L2x4(t),

v̇2(t) = (N2 − L2M2)ξ̂2(t)− L2

[
fp(t)−

1
m

R(t)K(Tm)u1(t)− P(4)
r (t) + δ̂1(t)

]
,

˙̂x4(t) = fp(t)−
1
m

R(t)K(Tm)u1(t)− P(4)
r (t) + M2ξ̂2(t) + δ̂1(t) + L3[x4(t)− x̂4(t)],

˙̂δ1(t) = L4[x4(t)− x̂4(t)],

(26)

where ξ̂2(t) and x̂4(t) are the estimations of ξ2(t) and x4(t), respectively; v2(t) is the
auxiliary variable; L2, L3, and L4 are the gains of the RDO. Defining the error vectors
x̃4(t) = x4(t)− x̂4(t), ξ̃2(t) = ξ2(t)− ξ̂2(t), and δ̃1(t) = δ1(t)− δ̂1(t), the dynamics of their
derivatives are obtained as

˙̃x4(t) = −L3 x̃4(t) + M2ξ̃2(t) + δ̃1(t), (27)
˙̃ξ2(t) = (N2 − L2M2)ξ̃2(t)− L2δ̃2(t), (28)
˙̃δ1(t) = −L4 x̃4(t) + h1(t). (29)

We define Γ1(t) = [x̃4(t) ξ̃2(t) δ̃1(t)]T as the error vector of the RDO. According to (27)–(29),
the derivative of Γ1(t) is expressed as

Γ̇1(t) = A1Γ1(t) + B1h1(t), (30)

where the matrix parameters are denoted as

A1 =

 −L3 M2 I
0 N2 − L2M2 L2

−L4 0 0

, B1 =

 0
0
1

.

Then, we choose the Lyapunov function concerning η4(t) as

V4(t) =
1
2

ηT
4 (t)η4(t) + ΓT

1 (t)P1Γ1(t), (31)

where P1 is a definitely positive matrix of suitable dimensions. According to (25) and (30),
the derivative of (31) is given by

V̇4(t) = ηT
4 (t)η̇4(t) + ΓT

1 (t)(AT
1 P1 + P1 A1)Γ1(t) + 2Γ1(t)P1B1h1(t)

= ηT
4 (t)

[
fp(t)−

1
m

R(t)K(Tm)u1(t)− P(4)
r (t) + d2(t) + δ1(t)− ẋ4d(t)

]
+ ΓT

1 (t)(AT
1 P1 + P1 A1)Γ1(t) + 2Γ1(t)P1B1h1(t)

= −k4ηT
4 (t)η4(t) + ΓT

1 (t)(AT
1 P1 + P1 A1)Γ1(t) + ηT

4 (t)M2ξ̃2(t) + ηT
4 (t)δ̃1(t)

+ 2Γ1(t)P1B1h1(t).

(32)

We define the variables η5(t) and η6(t) as

η5(t) = x5(t)− x5d(t), (33)

η6(t) = x6(t)− x6d(t), (34)

where x5d(t) and x6d(t) are the virtual control laws represented by
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x5d(t) = 0, (35)

x6d(t) = −k5η5(t), (36)

with k5 > 0 representing the controller parameter. We choose the Lyapunov function
concerning η5(t) as

V5(t) =
1
2

ηT
5 (t)η5(t). (37)

Then, the derivative of (37) is given by

V̇5(t) = ηT
5 (t)η̇5(t) = ηT

5 (t)[x6d(t) + η6(t)]

= −k5ηT
5 (t)η5(t) + ηT

5 (t)η6(t). (38)

From the dynamics x6(t), the controller τ̃ψ(t) is designed as

τ̃ψ(t) = −Cθ

Cϕ

[
k6η6(t) + fψ(t) +

Sϕ

Cθ
τ̃θ(t)− ψ

(2)
r + d̂3(t) + δ̂2(t)

]
, (39)

where the controller parameter k6 > 0, and d̂3(t) and δ̂2(t) are the estimations of d3(t)
and δ2(t), respectively. To estimate the disturbances d3(t) and δ2(t), another RDO is built
as follows:

d̂3(t) = M3ξ̂3(t),

ξ̂3(t) = v3(t) + L5x6(t),

v̇3(t) = (N3 − L5M3)ξ̂3(t)− L5

[
fψ(t) +

Sϕ

Cθ
τ̃θ(t) +

Cϕ

Cθ
τ̃ψ(t)− ψ

(2)
r (t) + δ̂2(t)

]
,

˙̂x6(t) = fψ(t) +
Sϕ

Cθ
τ̃θ(t) +

Cϕ

Cθ
τ̃ψ(t)− ψ

(2)
r (t) + M3ξ̂3(t) + δ̂2(t) + L6[x6(t)− x̂6(t)],

˙̂δ2(t) = L7[x6(t)− x̂6(t)],

(40)

where ξ̂3(t) and x̂6(t) are the estimations of ξ3(t) and x̂6(t), respectively; v3(t) is the
auxiliary variable; L5, L6, and L7 are the gains of the RDO. We define the error vectors
x̃6(t) = x6(t)− x̂6(t), ξ̃3(t) = ξ3(t)− ξ̂3(t), and δ̃2(t) = δ2(t)− δ̂2(t). The derivatives of
these observer errors are obtained as

˙̃x6(t) = −L6 x̃6(t) + M3ξ̃3(t) + δ̃2(t), (41)
˙̃ξ3(t) = (N3 − L5M3)ξ̃3(t)− L5δ̃2(t), (42)
˙̃δ2(t) = −L7 x̃6(t) + h2(t). (43)

We define Γ2(t) = [x̃6(t) ξ̃3(t) δ̃2(t)]T as the error vector. According to (41)–(43), the
derivative of Γ2(t) is expressed as

Γ̇2(t) = A2Γ2(t) + B2h2(t), (44)

where the matrix parameters are organized as

A2 =

 −L6 M3 I
0 N3 − L5M3 −L5

−L7 0 0

, B2 =

 0
0
1

. (45)

We choose the Lyapunov function on η6(t) as
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V6(t) =
1
2

ηT
6 (t)η6(t) + ΓT

2 (t)P2Γ2(t), (46)

where P2 is a definitely positive matrix of appropriate dimensions. According to (39) and
(44), the derivative of (46) is given by

V̇6(t) = ηT
6 (t)η̇6(t) + ΓT

2 (AT
2 P2 + P2 A2)Γ2(t) + 2Γ2(t)P2B2h2(t)

= ηT
6 (t)

[
fψ(t) +

Sϕ

Cθ
τ̃θ(t) +

Cϕ

Cθ
τ̃ψ(t)− ψ

(2)
r (t) + M3ξ3(t) + δ2(t)− ẋ6d(t)

]
+ ΓT

2 (AT
2 P2 + P2 A2)Γ2(t) + 2Γ2(t)P2B2h2(t)

= −k6ηT
6 (t)η6(t) + ηT

6 (t)M3ξ̃3(t) + ηT
6 (t)δ̃2(t) + ΓT

2 (t)(AT
2 P2 + P2 A2)Γ2(t)

+ 2Γ2(t)P2B2h2(t).

(47)

5.3. Stability Analysis

In this subsection, a stability criterion is summarized in the following theorem. Based
on the combination of the approximate feedback linearization, backstepping control, and re-
fined disturbance observer including the DO and CDO, the tracking errors can be restricted
within the reasonable range, i.e., the UAH system (1) can track the predefined signals of
the position and yaw angles.

Theorem 1. Consider the UAH system (6) under multiple disturbances, including the modeled
disturbance (7) and the bounded one (8). Design the controllers in (25) and (39), the disturbance
observer (17), and the refined disturbance observers in (26) and (40). The tracking errors for the
UAH system are uniformly bounded in the reasonable small range, if there exist suitable matrices
Lj (j = 1, 2, 3, 4, 5, 6, 7), and constants k̄i > 0 (i = 1, 2, 3, 4, 5, 6), l1 > 0 such that the following
inequalities hold:

k̄1 ≤ k1 −
1
2

, k̄2 ≤ k2 −
1 + ∥M1∥2

2
, k̄3 ≤ k3 −

1
2

,

k̄4 ≤ k4 − 1 − ∥M2∥2

2
, k̄5 ≤ k5 −

1
2

, k̄6 ≤ k6 − 1 − ∥M3∥2

2
,

max{eig{N1 − L1M1}}+
1
2
≤ −l1,

AT
s Ps + Ps As +

1
2

diag{0, 0, I}+ ∥PsBs∥2 I < 0, s = 1, 2.

Proof. Based on (13), (19), (23), (31), (37), and (46), we define an augmented Lyapunov
function as

V(t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t). (48)

Combining (14), (20), (24), (32), (38), and (47), the derivative of (48) is expressed as

V̇(t) = −k1ηT
1 (t)η1(t) + ηT

1 (t)η2(t)− k2ηT
2 (t)η2(t) + ηT

2 (t)M1ξ̃1(t)

+ ξ̃T
1 (t)(N1 − L1M1)ξ̃1(t)− k3ηT

3 (t)η3(t) + ηT
3 (t)η4(t)− k4ηT

4 (t)η4(t)

+ ηT
4 (t)M2ξ̃2(t) + ηT

4 (t)δ̃1(t)− k5ηT
5 (t)η5(t) + ηT

5 (t)η6(t)− k6ηT
6 (t)η6(t)

+ ηT
6 (t)M3ξ̃3(t) + ηT

6 (t)δ̃2(t)

+
2

∑
i=1

[ΓT
i (t)(AT

i Pi + Pi Ai)Γi(t) + 2Γi(t)PiBihi(t)].

(49)

In view of Lemma 1, the following inequalities can be deduced:
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ηT
1 (t)η2(t) ≤

1
2

ηT
1 (t)η1(t) +

1
2

ηT
2 (t)η2(t),

ηT
2 (t)M1ξ̃1(t) ≤

∥M1∥2

2
ηT

2 (t)η2(t) +
1
2

ξ̃T
1 (t)ξ̃1(t),

ηT
3 (t)η4(t) ≤

1
2

ηT
3 (t)η3(t) +

1
2

ηT
4 (t)η4(t),

ηT
4 (t)M2ξ̃2(t) ≤

∥M2∥2

2
ηT

4 (t)η4(t) +
1
2

ξ̃T
2 (t)ξ̃2(t),

ηT
4 (t)δ̃1(t) ≤

1
2

ηT
4 (t)η4(t) +

1
2

δ̃T
1 (t)δ̃1(t),

ηT
5 (t)η6(t) ≤

1
2

ηT
5 (t)η5(t) +

1
2

ηT
6 (t)η6(t),

ηT
6 (t)M3ξ̃3(t) ≤

∥M3∥2

2
ηT

6 (t)η6(t) +
1
2

ξ̃T
3 (t)ξ̃3(t),

ηT
6 (t)δ̃2(t) ≤

1
2

ηT
6 (t)η6(t) +

1
2

δ̃T
2 (t)δ̃2(t),

2ΓT
1 (t)P1B1h1(t) ≤ ∥P1B1∥2ΓT

1 (t)Γ1(t) + ∥h̄1∥2,

2ΓT
2 (t)P2B2h2(t) ≤ ∥P2B2∥2ΓT

2 (t)Γ2(t) + ∥h̄2∥2.

We choose the suitable matrix L1 such that the term N1 − L1M1 is a Hurwitz formula, and
the following inequality is true:

max{eig{N1 − L1M1}}+
1
2
≤ −l1, (50)

where l1 > 0. On the other hand, there exist the suitable constants k̄1 > 0, k̄2 > 0, k̄3 > 0,
k̄4 > 0, k̄5 > 0, and k̄6 > 0, such that the following inequalities hold:

k̄1 ≤ k1 −
1
2

, k̄2 ≤ k2 −
1 + ∥M1∥2

2
, k̄3 ≤ k3 −

1
2

,

k̄4 ≤ k4 − 1 − ∥M2∥2

2
, k̄5 ≤ k5 −

1
2

, k̄6 ≤ k6 − 1 − ∥M3∥2

2
.

Hence, the derivative of V(t) can be rewritten as

V̇(t) ≤ −
6

∑
i=1

k̄iη
T
i (t)ηi(t)− l1ξ̃T

1 (t)ξ̃1(t)−
2

∑
i=1

ΓT
i (t)ΛiΓi(t) +

2

∑
i=1

∥h̄i∥2, (51)

where

Λ1 = −
(

AT
1 P1 + P1 A1 +

1
2

diag{0, 0, I}+ ∥P1B1∥2 I
)

,

Λ2 = −
(

AT
2 P2 + P2 A2 +

1
2

diag{0, 0, I}+ ∥P2B2∥2 I
)

.

Then, (51) can be obtained as

V̇(t) ≤ −ρV(t) + c, (52)

where

ρ = min

(
2k̄1, 2k̄2, 2k̄3, 2k̄4, 2k̄5, 2k̄6,

2l1, λmin(Λ1)
λmax(P1)

, λmin(Λ2)
λmax(P2)

)
, c = ∥h̄1∥2 + ∥h̄2∥2.

In summary, the tracking errors are uniformly bounded, and this completes the proof.
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Remark 3. Based on the Lyapunov stability theory, Theorem 1 can ensure that the trajectory
tracking error is uniformly bounded within a reasonable small range. However, in some typical
control targets, the bounded tracking error for the UAH flight cannot meet the practical requirements
when the tracking accuracy is highly demanded. Then, if the derivatives of the disturbances
δj(t) (j = 1, 2) are satisfied to be energy-bounded, the tracking error can asymptotically converge to
zero by combining the proof of Theorem 1 and H∞ control.

6. Simulated Example

In this section, some simulations are provided to demonstrate the effectiveness of
the proposed control strategy. During the simulation, the hardware environment for
this experiment was DESKTOP-BCQI0VS, which was made by ASUS from China, and
the processor was the 11th Gen Intel Core i7-11700 with 2.50 GHz. The simulation was
conducted on MATLAB R2021a and Simulink integrated with MATLAB R2021a.The related
parameters that the UAH system can refer to [29], are given as follows:

m = 8.2kg, g = 9.81m/s2, Zω = −0.76s−1, Zcol = −131.41m/rad · s2,

J = diag{0.18, 0.34, 0.28}kg · m2, A = diag{−48.1757,−25.5048,−0.9080}s−1,

B =

 0 0 1689.5 0
0 894.5 0 0

−0.3705 0 0 135.8

s−2.

Since the tracking target is studied in this work, the anti-disturbance controller needs to
ensure that the UAH system tracks the desired position and the yaw angles. Then, the
desired signals are given as

Pr(t) =

 0
0

1.5

+

 0.8 cos t
0.6 sin t

2 cos 0.8t

, ψr(t) = 2 sin(0.5t),

and the initial values of the UAH system are selected as P(0) = (1, 0.5, 1)T and ψ(0) = 1.5.
On the other hand, the parameters of the exogenous models describing the disturbances
d1(t), d2(t), and d3(t) are presented as follows:

M1 =

 1 1 0.5 −0.6
0.5 0.4 0 1
0.4 0 1 0.5

, M2 =

 1 0.4 0 1
−0.3 0.5 1 0

1 0 1 0.5

, M3 =
[

1 0.4 0 0.5
]
,

N1 =


0 1 0 0
−1 0 0 0
0 0 0 −1.5
0 0 1.5 0

, N2 =


0 −2 0 0
2 0 0 0
0 0 0 −1.5
0 0 1.5 0

, N3 =


0 −1.7 0 0

1.7 0 0 0
0 0 0 −2
0 0 2 0

.

The time-varying bounded disturbances δ1(t) and δ2(t) are presented as follows: δ11(t)
δ12(t)
δ13(t)

 =

 0.4
0.5
0.6

+

 1.2 sin(1.5t)e−0.4t

0.9 cos(1.5t)e−0.3t

−1.4 sin(1.5t)e−0.5t

, δ2(t) = 1.5 sin(1.5t)e−0.3t + 0.6.

Moreover, the controller gains are selected as k1 = k2 = k3 = k4 = 15, and k5 = k6 = 10.
According to Theorem 1, the the DO and RDO gains can be chosen as
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L1 =


0.0722 0.0926 −0.3604
6.0131 5.3514 −5.4992
0.6469 −2.9317 3.4851
−2.3726 4.2568 2.4424

, L2 =


0.7027 0.6797 1.1201
0.1535 0.1365 −1.5250
0.9054 0.8092 0.5258
0.6408 −1.7486 −2.5464

,

L3 =

 1.3988 0.2553 0.6536
−2.0415 0.2051 0.0936
0.0187 0.0236 0.1635

, L4 =

 0.6712 0.0419 1.5117
0.7152 10.3907 −10.8145
−2.6420 0.4816 10.7890

,

L5 =
[

0.0522 0.7051 1.2356 2.8508
]T , L6 = 1.55, L7 = 1.15.

The simulated results are presented in Figures 3–15. The modeled disturbances and
their estimations are shown in Figures 3–5, while the time-variable bounded disturbances
with their estimations are presented in Figures 6 and 7. Based on these figures, it is verified
that these disturbances di(t) (i = 1, 2, 3), δj(t) (j = 1, 2) can be effectively estimated, which
is further supported by the estimating errors in Figures 8 and 9. In Figures 8 and 9, the
estimation errors ξ̃2(t) + δ̃1(t) and ξ̃3(t) + δ̃2(t) are converge to zero over time. Except
for the disturbance estimations, we further give some simulations on the UAH states
and tracking errors, from which not only the effectiveness but also the superiority can be
presented to verify our proposed scheme. Initially, for convenience, we denote the position
tracking error x1(t) and the tracking error of yaw angle x5(t) as follows:

xT
1 (t) =

[
ex(t) ey(t) ez(t)

]
, x5(t) = eψ(t).

Then, by using the RDO-based controller in this work, the simulations in Figures 10–13
show that the responses of the position and the yaw angle can track the desired signals,
which can be further checked in Figure 14. Moreover, in order to show the advantages of our
designed controller based on the RDO and DO, we also utilized the DOBC method to obtain
the anti-disturbance tracking controller, in which the disturbances di(t) + δi−1(t) (i = 2, 3)
are regarded as the unified ones. From the Figures 10–15, it can be verified that the tracking
performance by the RDOBC is much better than the one by the DOBC, which means that
our methods can achieve higher tracking efficiency in terms of smaller amplitude and
better stability.
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Figure 3. The curves of the disturbance d1(t) and its estimation.
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Figure 4. The curves of the disturbance d2(t) and its estimation.
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Figure 5. The curves of the disturbance d3(t) and its estimation.
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Figure 6. The curves of the disturbance δ1(t) and its estimation.
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Figure 7. The curves of the disturbance δ2(t) and its estimation.
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Figure 8. The estimation error curves of the disturbance e1(t).
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Figure 9. The estimation error curves of the disturbance e2(t).
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Figure 10. The response curves of the position x(t) and its reference signal.
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Figure 11. The response curves of the position y(t) and its reference signal.
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Figure 12. The response curves of the position z(t) and its reference signal.
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Figure 13. The response curves of the yaw angle ψ(t) and its reference signal.
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Figure 14. The tracking error curves of the position.
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Now, in order to further compare our method with the DOBC in [10], based on the
Figures 10–13, we chose two typical moments (t = 0.4 s, 1 s) to derive exact values of
the tracking errors, which are summarized in Table 1. From this table, on the one hand,
at t = 0.4 s, the values of the tracking errors obtained by our method are ex = 0.17 m,
ey = 0.08 m, ez = 0.18 m, and eψ = 0.14 rad, while the ones of the tracking errors obtained
by the DOBC in [10] are derived as ex = 0.73 m, ey = 0.36 m, ez = 0.72 m, and eψ = 1.00 rad.
On the other hand, when t = 1 s, the values of the tracking errors obtained by our
method are given as ex = 0.01 m, ey = 0.01 m, ez = 0.01 m, and eψ = 0.00 rad, while the
ones of the tracking errors obtained by the DOBC in [10] are computed as ex = 0.24 m,
ey = 0.09 m, ez = 0.17 m, and eψ = 0.32 rad. Then, based on Table 1, no matter whether
t = 0.4 s or t = 1 s, the tracking efficiency achieved by our method is significantly higher
than the one by the DOBC method in [10], which further demonstrates the superiority of
our proposed method. Moreover, we provide some comparisons based on mean squared
errors (MSEs) to further highlight our control scheme, as shown in Table 2. From Table 2,
our method still obtain much smaller MSEs than that of the DOBC, indicating that our
approach achieves better tracking performance.

Table 1. The comparisons of tracking errors between our method and the DOBC in [10].

Methods

Tracking Errors ex ey ez eψψψ

0.4 s 1.0 s 0.4 s 1.0 s 0.4 s 1.0 s 0.4 s 1.0 s

DOBC in [10] 0.73 0.24 0.36 0.09 0.72 0.17 1.00 0.32

Theorem 1 in the work 0.17 0.01 0.08 0.01 0.18 0.01 0.14 0.00

Table 2. The comparisons of tracking errors based the MSE between our method and the DOBC
in [10].

Methods

Tracking Errors
(ex)MSE(ex)MSE(ex)MSE (ey)MSE(ey)MSE(ey)MSE (ez)MSE(ez)MSE(ez)MSE (eψ)MSE(eψ)MSE(eψ)MSE

DOBC in [10] 0.005618 0.038722 0.003318 0.003114

Theorem 1 in the work 0.000153 0.006365 0.001890 1.544 × 10−6

Meanwhile, since the term fp(t) is included into the observers in (26), it means that the
estimations of d2(t), x4(t) do not only depend on the main rotor thrust Tm(t), but also need
its time derivative Ṫm(t). However, in practical situations, when using sensors to collect the
information on main rotor thrust Tm(t) and its derivative, it is inevitable that the measure-
ment noises are existent. These noise effects will directly impact the estimation accuracy
of the observers in (26), thereby affecting the tracking performance of the UAH system.
In order to further illustrate the results of this work, based on above selected parameters,
it was assumed that the sensor measurements are affected by white noise with its power
ranging from [0, 0.1]. The simulation results are shown in Figures 16 and 17 to illustrate
our proposed observer and controller. From Figures 16 and 17, despite being influenced by
the white noise, even though the estimation error e1(t) in Figure 16 and the tracking error
x1(t) in Figure 17 exhibit oscillations, they are still limited within reasonable small ranges,
indicating that the observer and controller proposed in this work still remain effective.
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Figure 16. The estimation error of the disturbances d2(t) + δ1(t) under white noise.
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Figure 17. The tracking error of the position x1(t) under white noise.

7. Conclusions

In this work, the issue of trajectory tracking control has been investigated for full
degree-of-freedom UAH systems under multiple disturbances. Firstly, in order to simplify
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the procedure of controller design, an approximate feedback linearization method was
adopted to simplify the nonlinear UAH system. Secondly, two types of disturbance ob-
servers were utilized to describe the mismatched disturbance and matched ones, in which
the matched disturbances were divided into the modeled part and the variable-bounded
one. Thirdly, an anti-disturbance trajectory tracking controller was proposed on the basis
of backstepping control and disturbance estimations, which can ensure the bounded sta-
bility of the tracking error. Finally, some simulations and comparisons were conducted to
demonstrate the proposed control strategy.

Based on the proposed methods in this work, some illustrations are presented in
what follows. Initially, as for quantitative analysis, our control scheme can achieve better
efficiency of tracking errors by increasing multiple percentages at t = 0.4 s and 1 s when
compared with the ones obtained by the DOBC method; secondly, the advantage of our
control scheme mainly depends on the division of outside disturbances into the modeled
part and bounded one; a new design of a composite DO was presented to derive tighter
estimations and an effective tracking controller was proposed; thirdly, the disadvantage
of our methods includes the lack of good robustness, since the parameter uncertainties
and modeling error are not involved; fourthly, the limitation of this work manifests in
the fact that our anti-disturbance scheme can only tackle the disturbances with simple
characteristics, while more complicated ones cannot be dealt with, such as strong airflow,
strong gusts, wind shear, and turbulence. Therefore, in the future, we will investigate the
issue of anti-disturbance control for the UAH system under more complicated disturbances,
such as jumping disturbances, stochastic disturbances, and so on.
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