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Abstract: Mechanical memory elements cannot be accurately modeled using the Lagrangian method
in the classical sense, since these elements are nonconservative in the plane of their non-constitutive
relationships, and the system differential equations are not self-adjoint and therefore do not allow a
Lagrangian formulation. To overcome this problem, the integrated Lagrangian modeling method
is introduced, in which the associated conventional energies in the system are replaced by the
corresponding memory state functions of the memory elements. An example, a vehicle shimmy
system equipped with fluid mem-inerters, is presented to verify the improvement of modeling
accuracy of mechanical systems with memory elements via the integrated Lagrangian method. The
simulation results show that under pulse and random excitation, using the Lagrangian method
to model the system, the values of system response indicators exhibit significant errors ranging
from 5.17% to 24.54% compared with the values obtained by the integrated Lagrangian method,
namely, the accurate values. In addition, the influencing factors of the error and are discussed and
the fractional-order memory elements and their modeling are also briefly generalized.

Keywords: memory elements; mem-inerter; integrated Lagrangian method; vehicle shimmy; system
modeling; nonlinear dynamics

1. Introduction

As an important branch of nonlinear dynamics, memory elements and their related
mathematical theories have been well developed after the introduction of the memristor
concept [1–9]. In particular, since the seminal Nature paper in 2008 triggered unprecedented
attention from both industry and academia, publications in this area have seen explosive
growth [10]. In 1971, in order to enhance the logical completeness of circuit theory, Chua
proposed a novel two-terminal circuit element, named the memristor (short for memory
resistor), as the fourth fundamental circuit element, which is characterized by the rela-
tionship between the charge and the flux [1]. Five years later, the concept of memristors
was generalized to a class of nonlinear devices called memristive systems, and various
generic properties of memristive systems were derived [11]. In 2003, Chua presented a
periodic table of (α, β) circuit elements consisting of four circuit element species: frequency-
dependent resistors, capacitors, inductors, and negative resistors [12]. Just like Mendeleev’s
periodic table of chemical elements in chemistry, this table can be utilized to predict novel
circuit elements. Dr. Stanley Williams’ team from HP Labs fabricated a nano-scale titanium
dioxide device in 2008 and analytically proved that such a device is a physical realization of
the memristor [13]. Di Ventra et al., extended the concept of memory devices to capacitive
and inductive elements, called mem-capacitors and mem-inductors [14]. Inspired by the
observation that the quadrangle of the basic circuit element proposed by Chua may be
asymmetric, Wang presented an elementary circuit element triangle that is a collection of
passive fundamental circuit elements in 2013 [15]. Such circuit memory elements and their
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combination open up new possibilities in electronics. Their applications include (but are not
limited to) non-volatile memory, machine learning and neuromorphic computing [16–21].

Inspired by the circuit memory element theory, several mechanical devices were found
to exhibit memory characteristics and therefore were identified as mechanical memory
elements. As early as 1972, a tapered dashpot was found as a simple physical example of
the mem-damper by Oster and Auslander [22]. In 2018, Zhang et al., predicted the existence
of a new ideal mechanical element called the mem-inerter as the memory counterpart of
the inerter [6]. Furthermore, based on the elementary circuit element triangle presented
by Wang and force–current analogies, Zhang et al., also introduced a triangular periodic
table of elementary mechanical elements, as shown in Figure 1. Zhang et al., found one
of the physical embodiments of the mem-inerter, a displacement-dependent fluid inerter
device, although such a device has a parasitic element called the extended mem-damper [7].
It is worth noting that this displacement-dependent inerter device cannot be modeled
as a nonlinear inerter in the force versus acceleration plane but as a mem-inerter in the
integrated momentum versus displacement plane. The aforementioned finding, as well
as the existence of the mem-inerter and the extended mem-damper, were experimentally
verified. Zhang et al., also found that the mem-inerter can be equivalent to the semi-
active inerter performing an initial position-dependent inertial control strategy, thereby
improving the performance of the suspension system [9]. Mem-inerters, mem-dampers,
and mem-springs constitute an increasingly important class of two-terminal mechanical
elements whose inertance, damping, and stiffness memorize the past states through which
the elements have evolved. All three elements are nonlinear and can be identified by their
pinched hysteresis loop in the momentum versus velocity plane, force versus velocity plane,
and force versus displacement plane, respectively. A potential application of mechanical
memory elements is in vibration isolation systems, since they can naturally self-adjust their
inherent parameters according to load and excitation [23].

Inerter

Mem-inerter

1st-order

Mem-inerter

1st-order

Mem-spring

Mem-spring

Spring

Damper

Mem-damper

1st-order

Mem-damper
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/p x 

/p x

d / dp x
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/p x
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Figure 1. Triangular periodic table of elementary mechanical elements.

Over the past century, a significant amount of research has been devoted to describ-
ing and analyzing conventional mechanical systems via Lagrangian and Hamiltonian
methods [24–26]. The significance of these classical frameworks lies not only in their
broad range of applications, but also in their contribution to the advancement of profound
comprehension of physics. Bao et al., incorporated the Lagrangian physical knowledge
into neural networks and proposed a physics-guided Lagrangian neural network to es-
tablish differential equations of mechanical systems through data-driven and learning
methods [27,28]. In the field of electricity, in order to solve the issue that circuit memory
elements do not fit into the classical Lagrangian formulation, Jeltsema introduced a novel
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(co-)Lagrangian framework that includes circuit memory elements and their conventional
linear counterparts in 2012 [29]. Similarly, with the application of memory elements in
mechanical systems and the increasing number of geometric nonlinearities in mechanical
systems being proven to have memory characteristics, these classical modeling methods
are no longer able to describe the nonlinear dynamic behavior of the system accurately.
Therefore, it is necessary to consider the modeling method of mechanical systems made
from mem-inerters, mem-springs, and mem-dampers. In the past few decades, the study
of fractional calculus has attracted widespread attention from scholars, as it can accurately
describe complex physical change processes with memory and heredity. In addition to
fundamental mathematical research, fractional calculus is widely used in control engi-
neering, materials science, biology, medicine, and other fields, and has made significant
progress [30–35]. Inspired by the characteristics and development of fractional calculus,
it is natural to consider whether memory elements can be generalized to the fractional
calculus field, namely, the existence and modeling of fractional-order memory elements.

The motivation of this work is to provide a modeling method that can accurately
describe the nonlinear dynamic behavior of the mechanical system with memory elements.
In this paper, the integrated Lagrangian modeling method is proposed, using the corre-
sponding energies in constitutive relationship planes of memory elements as the memory
state functions to replace the conventional energies of the classical Lagrangian method.
Such a modeling method can avoid the problems of non-self-adjointness and path depen-
dence in modeling mechanical systems with memory elements via a classical Lagrangian
method. The improvement in modeling accuracy provided by the integrated Lagrangian
method is demonstrated by modeling a vehicle shimmy system with fluid mem-inerters.
The errors and influencing factors between the modeling results of the classical Lagrangian
method and the integrated Lagrangian method under pulse and random excitations are
analyzed. Moreover, this paper also briefly discusses the application of fractional calculus
to mechanical memory elements and their mathematical modeling.

The remainder of this paper is organized as follows. In Section 2, the definition
and mathematical properties of the mem-inerter, mem-damper, and mem-spring are dis-
cussed and a three-dimensional periodic table of mechanical memory elements, including
fractional-order memory elements, is proposed. The structure of the Lagrangian equa-
tions for a large class of conventional mechanical vibration systems is briefly reviewed
and extended to fractional calculus in Section 3. In Section 4, it is shown that mechanical
memory elements do not fit into the classical Lagrangian framework, since these elements
are nonconservative in their non-constitutive relation planes and the associated energies
are not state functions. To circumvent this problem, the integrated Lagrangian method
is proposed in Section 5, whose Lagrangian is defined by the difference between two
memory state functions and its fractional-order counterpart is also proposed. Mem-damper
and damper losses can be included via the introduction of a general dissipation function.
To verify the conclusion given in previous section, an example of a vehicle shimmy system
with mem-inerters is presented in Section 6. The modeling results of the system using the
Lagrangian method and integrated Lagrangian method are compared, and the influencing
factors of errors are analyzed. Finally, this paper is concluded in Section 7.

2. Definition of Elementary Mechanical Memory Elements

Observing the triangular periodic table of elementary mechanical elements shown in
Figure 1, from a mathematical perspective, the behavior of the three basic two-terminal
dampers, springs, and inerters, whether linear or nonlinear, is described by a relation-
ship between two of the four basic mechanical variables, namely, momentum p, force f ,
displacement x, and velocity v, where

p(t) =
∫ t

−∞
f (τ)dτ, (1)
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x =
∫ t

−∞
v(τ)dτ. (2)

A damper can be described by a relationship between force and velocity; a spring by
that of force and displacement; and an inerter by that of momentum and velocity.

Based on the research of circuit memory elements and inerters, Zhang postulated
the existence of a new ideal mechanical element that is characterized by a constitutive
relationship between the integrated momentum

∫
p and displacement x [7]. This element

is referred to as a mem-inerter (a contraction of memory and inerter) referring to an inerter
with memory. The memory aspect stems from the fact that a mem-inerter ‘remembers’ the
amount of its across-variable velocity or through-variable momentum. More specifically, if

δ :=
∫ t

−∞
p(τ)dτ (3)

denotes the the integrated momentum and x denotes the displacement, then a displacement-
controlled mem-inerter is defined by the constitutive relationship δ = δ̂(x). Since displace-
ment x is defined by the time integral of velocity v, and integrated momentum δ is the time
integral of momentum p, or equivalently, v = ẋ and p = δ̇, it can be obtained that

p = BM(x)v, (4)

where BM(x) := dδ/dx is the incremental mem-inertance.
Note that (4) is the definition of a mem-inerter in impedance form. The admittance

form v = B−1
M (δ)p, with incremental inverse mem-inertance B−1

M := dx/dδ, is obtained by
starting from the constitutive relationship x = x̂(δ).

In addition to the mem-inerter, the memory effect can be associated with dampers and
springs as well. To achieve this, let ζ denote the absement, a contraction of absence and
displacement, namely the time integral of displacement, which can be written as

ζ :=
∫ t

−∞
x(τ)dτ. (5)

Then, a memory damper, or mem-damper for short, is a two-terminal element defined
by a constitutive relationship p = p̂(x). Indeed, differentiation of the latter with respect to
time yields

f = CM(x)v, (6)

where CM(x) := dp/dx represents the incremental mem-damping and relates force to
velocity. The memory aspect of a displacement-controlled mem-damper stems from the
fact that it ’remembers’ the amount of velocity.

Dually, an absement-controlled mem-spring is defined by a constitutive relationship
p = p̂(ζ), which, after differentiation with respect to time, yields

f = KM(ζ)x, (7)

where KM(ζ) := dp/dζ denotes the incremental mem-stiffness. The memory aspect of
an absement-controlled mem-spring stems from the fact that it ‘remembers’ the amount
of displacement.

A mem-damper and a mem-spring that depend on the history of their force can
be formulated by starting from the constitutive relationship of the form x = x̂(p) and
ζ = ζ̂(p), respectively.

In the special case that the constitutive relationship of a mem-spring is linear, a mem-
spring becomes an ordinary linear spring. Indeed, in such a case, (7) reduces to p = Kζ,
with constant mem-stiffness K (the slope of the line), or equivalently, f = Kx, which pre-
cisely equals Hooke’s law. The same holds for a linear mem-inerter and linear mem-damper,
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where (4) reduces to δ = Bx, or equivalently, p = Bv, and (7) to p = Cx, or equivalently,
f = Cv, respectively.

Generalizing Figure 1, a three-dimensional periodic table of mechanical memory
elements is proposed, as shown in Figure 2, where Dα p and Dαx represent the α-order
derivatives of momentum p and displacement x, respectively. It is worth mentioning that
α can be any real number, and fractional-order memory elements are also included in the
periodic table. In the case that α is an integer, the element is a conventional integer-order
memory element.

1 /D p D x − − −1 /D p D x − − −

/p xD D − −/p xD D − −

1/D p D x − − −1/D p D x − − −

1 0/D p D x−1 0/D p D x−

0 0/D p D x0 0/D p D x

0 1/D p D x−0 1/D p D x−

1 /D p D x −1 /D p D x −

/D p D x /D p D x 

1/D p D x −1/D p D x −
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Figure 2. Three-dimensional periodic table of mechanical memory elements.

3. Self-Adjointness of Mechanical System Dynamics

The dynamic behavior of any mechanical system consisting of conventional, possibly
nonlinear, dampers, springs, and inerters is basically determined by Newton’s laws of
motion and the constitutive relationships between the elements. In many cases, this results
in differential equations that take the following form

Aij(ẋ)ẍj + Bi(x, ẋ) = 0, (8)

where i, j = 1, . . . , n, and x ∈ Rn represents a column vector of momentums or displace-
ments and ẋ and ẍ represent the first-order and second-order time-domain differentiation
of variable x, respectively.

The system of differential Equation (8) allows a Lagrangian description if a Lagrangian
L(x, ẋ) can be found that satisfies

d
dt

∂L
∂ẋj −

∂L
∂xj ≡ Aij(ẋ)ẍj + Bi(x, ẋ). (9)

In mechanics, it is known that the existence of a Lagrangian L(x, ẋ) depends on the
fact that the system of differential Equation (8) is self-adjoint, which for the present form is
equivalent to the following set of integrability conditions:

Aij = Aji, (10)

∂Aik

∂ẋj =
∂Ajk

∂ẋi , (11)

∂Bi

∂xj −
∂Bj

∂xi =
1
2

∂

∂xk

(
∂Bi

∂ẋj −
∂Bj

∂ẋi

)
ẋk, (12)
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∂Bi

∂ẋj +
∂Bj

∂ẋi = 0. (13)

Furthermore, differential Equation (8) can be generalized using fractional calculus and
subsequently rewritten as follows:

Aij(
C
tA

Dα
t x, C

t Dβ
tB

x)ẍj + Bi(x, C
tA

Dα
t x, C

t Dβ
tB

x) = 0, (14)

where C
tA

Dα
t x and C

t Dβ
tB

x denote the left and the right Caputo fractional derivative of x,
respectively, which can be expressed as

C
tA

Dα
t x =

1
Γ(n − α)

∫ t

tA

(t − ξ)n−a−1x(n)dξ, (15)

and
C
tB

Dβ
t x =

(−1)n

Γ(n − β)

∫ tb

t
(ξ − t)n−β−1x(n)dξ. (16)

Similarly, the system of differential Equation (14) allows a Lagrangian description if a
Lagrangian can be found that satisfies

tDα
tA

∂L
∂C

tA
Dα

t xj + tB Dβ
t

∂L
∂C

t Dβ
tB

xj
+

∂L
∂xj ≡ Aij(

C
tA

Dα
t x, C

t Dβ
tB

x)ẍj + Bi(x, C
tA

Dα
t x, C

t Dβ
tB

x). (17)

3.1. Conventional Conservative Mechanical System

From the perspective of Lagrangian, it is well known that for a large class of mechanical
systems consisting of displacement-controlled springs and velocity-controlled inerters,
the differential Equation (8) can be expressed as

d
dt

∂L
∂ẋ

− ∂L
∂x

= 0. (18)

For this case, the Lagrangian L(x, ẋ) equals the total kinetic co-energy stored in the
inerters, T∗(ẋ), minus the total potential energy stored in the springs, V(x).

On the other hand, if the springs are force-controlled and the inerters are momentum-
controlled, the so-called co-Lagrangian equation can be obtained, namely,

d
dt

∂L∗

∂ ṗ
− ∂L∗

∂p
= 0, (19)

where the co-Lagrangian L∗(p, ṗ) equals the total potential co-energy stored in the springs,
V∗( ṗ), minus the total kinetic energy stored in the inerters, T(p).

As an illustration, consider a mechanical system consisting of a nonlinear conventional
displacement-controlled spring with a constitutive relationship f = f̂ (x), a linear inerter,
and a mass, as shown in Figure 3.

The Lagrangian of the system reads

L(x, ẋ) =
1
2

Mẋ2 +
1
2

bẋ2 −
∫

f̂ (x)dx, (20)

which, upon substitution into (18), yields the equation of motion Mẍ + bẍ + f̂ (x) = 0.
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M

bK

Figure 3. Mechanical system with a nonlinear conventional spring.

Dually, if the nonlinear displacement-controlled spring is replaced by a nonlinear
force-controlled spring,

L(p, ṗ) =
∫

x̂( ṗ)dṗ − 1
2b

p2 − 1
2M

p2 (21)

needs to be considered to obtain the equation of motion x̂′( ṗ) + p/b + p/M = 0.

3.2. Conventional Nonconservative Mechanical System

The dissipation of conventional dampers in the mechanical system results in noncon-
servative dynamics that are not self-adjoint. Therefore, dampers cannot be included using
a (standard) Lagrangian function. To solve such a problem, a so-called content function
is usually introduced, which is a nonlinear multi-domain generalization of the Rayleigh
dissipation function.

As an example, a damper with a constant damping coefficient of c is added to the
system of Figure 3 in parallel with the spring and the inerter. In that case, the equation of
motion extends to Mẍ + bẍ + cẋ + f̂ (x) = 0, so that A(ẋ) = M + b and B(x, ẋ) = cẋ + f̂ (x).

For the case of c = 0, the conditions (10)–(13) are obviously satisfied, but if c ̸= 0,
condition (13) is violated and no Lagrangian can be associated with the system. On the
other hand, the introduction of a function of the form D(ẋ) = 1

2 cẋ2, satisfying

d
dt

∂L
∂ẋ

− ∂L
∂x

+
∂D
∂ẋ

= 0, (22)

can solve this problem. However, the variational character of the dynamics that makes the
Lagrangian form so attractive clearly disappears.

Note that the existence of the content function depends on the dampers in the mechan-
ical system being velocity-controlled. The inclusion of force-controlled dampers requires
the introduction of a co-content function D∗( ṗ).

Furthermore, generalizing Equation (22) to fractional form, leads to

tDα
tA

∂L
∂C

tA
Dα

t x
+ tB Dβ

t
∂L

∂C
t Dβ

tB
x
+

∂L
∂x

+
∂D

∂C
tA

Dα
t x

+
∂D

∂C
t Dβ

tB
x
= 0. (23)

4. Mechanical System with Memory Elements
4.1. Problem 1: Path Dependence

Consider a mechanical system consisting of a mem-inerter with the constitutive rela-
tionship δ = δ̂(x) and a linear spring, as shown in Figure 4. According to the constitutive
relationship of the mem-inerter, its inertial force can be obtained by

FM = BM(x)ẍ + ḂM(x)ẋ. (24)

Application of Newton’s law of motion yields

Mẍ + BM(x)ẍ + BM(x)ẋ2 + kx = 0. (25)



Machines 2024, 12, 208 8 of 25

M

BM(x)K

Figure 4. Mechanical system with a mem-inerter.

In order to derive the dynamics using the Lagrangian method, one is tempted to start
from a Lagrangian that equals the kinetic co-energy stored in the mem-inerter and mass
minus the potential energy stored in the spring, namely,

L(x, ẋ) =
1
2

BM(x)ẋ2 +
1
2

Mẋ2 − 1
2

kx2. (26)

However, since the latter depends on the path x, it is clearly not an appropriate
state function.

Furthermore, substituting the (26) into (18) yields the equation

Mẍ + BM(x)ẍ +
1
2

BM(x)ẋ2 + kx = 0, (27)

where the inertial force of the mem-inerter in the system can be expressed as

FB = BM(x)ẍ +
1
2

ḂM(x)ẋ2. (28)

Comparing (28) and (24), the appearance of an erroneous factor 1
2 can be observed.

4.2. Problem 2: Self-Adjointness

The reason for this inconsistency is the non-self-adjointness of the differential
Equation (25). To understand this, one needs to consider the general form of a mechanical
system consisting of mem-inerters, mem-springs, mem-dampers, and their (possibly
nonlinear) conventional counterparts, given by

Aij(x, ẋ)ẍj + Bi(x, ẋ) = 0, (29)

where, in contrast to (8), it is observed that Aij now depends on the x-coordinates as well.
For this case, the necessary and sufficient conditions for the existence of a Lagrangian is
extended to

Aij = Aji, (30)

∂Aik

∂ẋj =
∂Ajk

∂ẋi , (31)

∂Bi

∂xj −
∂Bj

∂xi =
1
2

∂

∂xk

(
∂Bi

∂ẋj −
∂Bj

∂ẋi

)
ẋk (32)

∂Bi

∂ẋj +
∂Bj

∂ẋi = 2
∂Aij

∂xk ẋk. (33)

Returning to the differential Equation (25), it is directly verified that, with A(x, ẋ) =
M + BM(x) and B(x, ẋ) = ḂM(x)ẋ + cẋ + kx, the system is not self-adjoint, meaning that a
Lagrangian formulation is not allowed.
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One possible solution to compensate for the erroneous term is to add opposite terms to
the right-hand side of the differential equation. This is equivalent to introducing a content
function expressed as

D(x, ẋ) =
1
6

ḂM(x)ẋ3, (34)

similar to (22). However, as mentioned before, the variational character is no longer present.

5. Integrated Lagrangian Method for Mechanical Systems with Memory Elements
5.1. Memory State Functions

The most basic relationship of a displacement-controlled mem-inerter, as mentioned in
Section 2, can be expressed as δ = δ̂(x), and (4) is a consequence of the latter. Therefore, it
seems more natural to consider a novel memory state function called the integrated kinetic
co-energy in the δ versus x plane of the form

T̄∗(x) :=
∫

δ̂(x)dx, (35)

instead of the stored kinetic co-energy obtained in (26) as the integral of (4) with respect to
the velocity.

When plotted in the δ versus x plane, (35) represents the region below the constitutive
relationship curve of the mem-inerter. On the other hand, its complementary part is defined
as the region above the curve and takes the form

T̄(δ) :=
∫

x̂(δ)dδ. (36)

Since δ = δ̂(x) and x = x̂(δ) can perform a one-to-one inverse transformation, the two
memory-state functions can be related via the Legendre transform

T̄ + T̄∗ = δx, x =
d
dδ

T̄∗(δ), δ =
d

dx
T̄(x). (37)

Similarly, for an absement-controlled mem-spring, its integrated potential energy of
the form

V̄(ζ) :=
∫

p̂(ζ)dζ (38)

can be derived, representing the region underneath its constitutive relationship curve,
whereas for a momentum-controlled mem-spring,

V̄∗(p) :=
∫

ζ̂(p)dp, (39)

denotes the region above the curve.
Furthermore, one can obtain that

V̄ + V̄∗ = pζ, ζ =
d

dp
V̄∗(p), p =

d
dζ

V̄(ζ). (40)

Note that T̄, T̄∗, V̄, and V̄∗ all act as state functions and are all in units of energy times
time-squared (Joule-second-squared [Js2]).

Furthermore, for a displacement-controlled mem-damper, its integrated dissipation
energy can be expressed as

D̄(x) :=
∫

p̂(x)dx, (41)

which represents the region underneath the constitutive relationship curve in the p versus
x plane.

For a momentum-controlled mem-damper, the complementary function, namely,
the integrated dissipation co-energy
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D̄∗(p) :=
∫

x̂(p)dp, (42)

denotes the region above the curve. Note that (41) and (42) are in units of energy times
time (Joule-second [Js]).

5.2. Integrated Lagrangian Modeling Method

Consider the system shown in Figure 4 again. First, instead of a displacement x,
the absement ζ, with ζ̇ = x, is selected as the configuration variable. In terms of the
memory-state functions proposed in the previous subsection, the Lagrangian can be defined
in the form of

L̄(ζ, ζ̇) =
∫ ζ̇

0
δ(x)dx +

1
2

Mζ̇2 − 1
2

kζ2. (43)

Then, according to Hamilton’s principle of least action and considering the variation
of ζ, the Lagrangian type of equation

d
dt

∂L̄
∂ζ̇

− ∂L̄
∂ζ

= 0 (44)

can be obtained, and then the nonlinear differential equation Mζ̈ + δ′(ζ̇)ζ̈ + kζ = 0 can be
derived. Differentiating both sides with respect to time leads to

M
...
ζ + δ′(ζ̇)

...
ζ + δ′′(ζ̇)ζ̈2 + kζ̇ = 0. (45)

After replacing the variables ζ̇ = x and identifying that the incremental mem-inertance
BM(x) := dδ/dx, it is clearly consistent with the correct equation of motion (25). Therefore,
the system dynamics become self-adjoint by modeling in the constitutive relationship plane
of the memory element.

In general, the Lagrangian equations for mechanical systems containing displacement-
controlled mem-inerters, absement-controlled mem-springs, and their linear conventional
counterparts, can be expressed as

d
dt

∂L̄
∂ζ̇

− ∂L̄
∂ζ

= 0, (46)

with the Lagrangian L̄(ζ, ζ̇) = T̄∗(ζ̇)− V̄(ζ), where T̄∗(ζ̇) and V̄(ζ) now represent the
sums of the individual memory state functions associated with the mem-inerters and the
mem-springs in the mechanical system, respectively.

The dual version of (46) is as follows:

d
dt

∂L̄∗

∂δ̇
− ∂L̄∗

∂δ
= 0, (47)

with the co-Lagrangian L̄∗(δ, δ̇) = V̄∗(δ̇)− T̄(δ).
Furthermore, when a system contains dampers or mem-dampers, its Lagrangian

equation can be written as
d
dt

∂L̄
∂ζ̇

− ∂L̄
∂ζ

+
∂D̄
∂ζ̇

= 0 (48)

or
d
dt

∂L̄∗

∂δ̇
− ∂L̄∗

∂δ
+

∂D̄∗

∂δ̇
= 0. (49)

The fractional-order counterpart of (48) and (49) leads to

tDα ∂L
∂C

tA
Dα

t ζ
+ tB Dβ

t
∂L

∂C
t Dβ

tB
ζ
+

∂L
∂ζ

+
∂D

∂C
tA

Dα
t ζ

+
∂D

∂C
t Dβ

tB
ζ
= 0 (50)
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and

tDα
tA

∂L∗

∂C
tA

Dα
t δ

+ tB Dβ
t

∂L∗

∂C
t Dβ

tB
δ
+

∂L∗

∂δ
+

∂D∗

∂C
tA

Dα
t δ

+
∂D∗

∂C
t Dβ

tB
δ
= 0. (51)

6. An Example: Vehicle Shimmy System with Mem-Inerters

In order to intuitively compare the differences in modeling results of mechanical
systems containing memory elements via the Lagrangian method and the integrated La-
grangian method, a vehicle shimmy system with mem-inerters is presented as an example
in this section.

6.1. Displacement-Dependent Fluid Mem-Inerter

A displacement-dependent fluid mem-inerter shown in Figure 5 is selected as the
mem-inerter in the vehicle shimmy system, which was proposed and manufactured by
Zhang et al., in 2018 and 2020, respectively [6,7].

Cylinder Helical channel Piston Piston rod

Ph

w
d

Drh

(a) (b)

Figure 5. Displacement-dependent fluid mem-inerter. (a) Device schematic. (b) Device prototype.

The constitutive relationship of the mem-inerter, δ = δ̂(x), can be specifically ex-
pressed as

δ =
b0

2
(w − x)x, (52)

where w and x denote the piston width and the relative displacement between the cylinder
and the piston, respectively.

It can be obtained that the incremental mem-inertance of the mem-inerter is of the form

B(x) = ρl(x)
A1

2

A2
=

b0

2
(w − 2x), (53)

where ρ is the fluid density, and the effective cross-sectional area of the piston A1, the chan-
nel cross-sectional area A2 and the channel length function l(x) are as follows:

A1 =
1
4

π(D2 − d2), (54)

A2 =
1
2

πr2
h, (55)

l(x) =

√
P2

h + (πD)2

Ph
(

w
2
− x), (56)

where D, d, rh, and Ph are the piston diameter, the piston rod diameter, the helical channel
radius, and the helix pitch, respectively.

Furthermore, the parameter b0 in (52) can be expressed as

b0 =
πρ(D2 − d2)2

√
P2

h + (πD)2

8Phr2
h

. (57)
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The structural parameters of the fluid mem-inerter device are demonstrated in Table 1,
and the memory characteristic curves obtained by numerical simulation are compared with
the experimental data, as shown in Figure 6.

Table 1. Structural parameters of the mem-inerter prototype.

Parameter Value

Piston diameter D 0.05 m
Piston rod diameter d 0.02 m
Helical channel radius rh 0.006 m
Helix pitch Ph 0.014 m
Piston width w 0.1 m
Fluid density ρ 760 kg · m−3

Figure 6a shows a one-to-one correspondent relationship in the integrated momentum
versus displacement plane, which is also the constitutive relationship plane of the mem-
inerter, and the curve shows significant nonlinearity. Plotting the loci of (p(t), v(t)) in the
p − v plane, as shown in Figure 6b, one can obtain the pinched hysteresis loop, which
has been identified as the fingerprint of memory elements. Observe from Figure 6c,d that
whenever the waveform of the velocity v(t) crosses the time axis, the waveform of the
momentum p(t) must cross the time axis at the same instants of time. Such a feature is
called the coincident zero-crossing signature by Chua, which is a more general experimental
memory element identification scheme. Comparing the theoretical data and experimental
data in Figure 6, although the curves are not smooth, the memory characteristics can still
be identified and it is also in good agreement with the theoretical data.
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Figure 6. Memory characteristic curves of the displacement-dependent fluid mem-inerter. (a) Consti-
tutive relationship. (b) Pinched hysteresis loop. (c) Coincident zero-crossing signature for theoretical
data. (d) Coincident zero-crossing signature for experimental data.
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6.2. Mathematical Modeling

The mechanical model of the vehicle shimmy system equipped with mem-inerters
and the parameters related to the structural dimensions of the vehicle marked on the model
are shown in Figure 7. In which, O represents the center of gravity (COG) of the vehicle
shimmy model, while Ob represents the COG of the sprung mass:

k1 k2

k3

c2c1

c3

θ2θ1J1 J1

θ3

la

lb

R J3

x

y O

x

y O
J2J2 k1 k2

k3

c2c1

c3

θ2θ1J1 J1

θ3

la

lb

R J3

x

y O
J2J2

(a)

θ1

k4

c4

B(x)
O

lc ldle

lg

Ob

zb

z

y

c4

B(x)k4

zb1

zs1

zw1

z1

r1

zb2

zs2

zw2

z2

r2

θr

Lf Lf

J1 θ2J1

(b)

Figure 7. Mechanical model of vehicle shimmy system with mem-inerters. (a) Top view. (b) Rare view.

L f is half of the distance between the two connection points of the front suspension
and the vehicle body; la is the moment arm of the steering rod acting on the kingpin; lb
is the moment arm of the steering tie rod acting on the pitman arm; lc is the length of the
lateral swing arm of front suspension; ld is the distance from the intersection point of the
kingpin extension line and the ground to the wheel symmetry plane; le is the horizontal
distance between the connection point between the suspension and the vehicle body and
the connection point between the vehicle body and the suspension arm; lg is the vertical
distance between the O and Ob; R is the diameter of the wheels.

The shimmy model has seven degrees of freedom (DOF): θ1 and θ2 are the shimmy
angles of the left and right front wheel, θ3 is the swing angle of the pitman arm, zb is the
vertical displacement of the sprung mass, zw1 and zw2 are the vertical displacements of the
left and right front wheel, and θr is the roll angle of the vehicle body. In addition, zs1 and
zs2 denote the vertical displacement of the nodes between the mem-inerter and the damper
of left and right front suspension
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The mathematical model of vehicle shimmy with mem-inerters can be formulated via
the integrated Lagrangian equations, which can expressed as

d
dt

(
d
dt

∂L̄
∂q̇i

− ∂L̄
∂qi

+
∂D̄
∂q̇i

) = Qi, i = 1, 2, 3, . . . , 9. (58)

where L̄ = T̄∗ − V̄, T̄∗ represents the integrated kinetic co-energy of the system, V̄ repre-
sents the integrated potential energy of the system, D̄ represents the integrated dissipative
energy of the system, Qi represents the generalized force acting on each DOF of the
system, and qi represents the generalized coordinate of the system, which is as follows:
[q1 q2 · · · q9] = [θ1 θ2 θ3 zb zw1 zw2 zs1 zs2 θr].

Let ρi, ζi, ui, and ξi denote the time integrals of angle θi, vertical displacement zi,
running speed vi, and road displacement excitation ri of the system, respectively,

ρi =
∫ t

0
θidτ, i = 1, 2, 3, r, (59)

ζi =
∫ t

0
zidτ, i = 1, 2, w1, w2, s1, s2, b1, b2, b, (60)

ui =
∫ t

0
vidτ, i = 1, 2, (61)

ξi =
∫ t

0
ridτ, i = 1, 2, (62)

The integrated kinetic energy of the system can be expressed as

T̄ =
1
2

J1ρ̇2
1 +

1
2

J2(
u1

R
)2 +

1
2

mwu2
1 +

1
2

mwζ̇2
w +

1
2

J1ρ̇2
2 +

1
2

J2(
u2

R
)2

+
1
2

mwu2
2 +

1
2

mwζ̇2
w +

1
2

J3ρ̇2
3 +

∫ ζ̇1−ζ̇s1

0
δ(x)dx +

∫ ζ̇2−ζ̇s2

0
δ(x)dx

+
1
2

mbu2 +
1
2

mbζ̇2
b +

1
2

mb(lgρ̇r)
2 +

1
2

Jbr ρ̇2
r ,

(63)

where J1 and J2 are the inertia moments of front wheels around diameters and spin
axes, respectively; J3 is the inertia moment of the pitman arm; Jbr is the inertia moment
of the sprung mass about its roll axis; mb and mw are the mass of sprung mass and
wheels, respectively.

The integrated potential energy of the system can be given by

V̄ =
1
2

k1(laρ1 − lbρ3)
2 +

1
2

k2(laρ2 − lbρ3)
2 +

1
2

k3ρ2
3 +

1
2

kt(ξ1 − ζw1)
2

+
1
2

kt(ξ2 − ζw2)
2 +

1
2

k4(
le

lc − ld
ζw1 − ζb − L f ρr)

2

+
1
2

k4(
le

lc − ld
ζw2 − ζb + L f ρr)

2 − 1
2

mglgρr
2,

(64)

where k1 and k2 denote the stiffness of left and right steering tie rods, respectively; k3
denotes the stiffness of the pitman arm; k4 denotes the stiffness of the front suspensions; kt
denotes the tire vertical stiffness.

The integrated dissipative energy can be expressed as

D̄ =
1
2

ce(ρ̇
2
1 + ρ̇2

2) +
1
2

c1(laρ̇1 − lbρ̇3)
2 +

1
2

c2(laρ̇2 − lbρ̇3)
2 +

1
2

c3ρ̇2
3

+
1
2

c4(ζ̇s1 − ζ̇b − L f ρ̇r)
2 +

1
2

c4(ζ̇s2 − ζ̇b + L f ρ̇r)
2,

(65)
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where ce is the equivalent damping of front wheels around their kingpins; c1 and c2 are the
damping of left and right steering tie rods, respectively; c3 is the damping of the pitman
arm; c4 is the damping of front suspension.

The generalized forces corresponding to each DOF of the system can be expressed as

Qθ1 = −FY1(Rγ + e),

Qθ2 = −FY2(Rγ + e),

Qθ3 = 0,

Qzw1 = −ktldγθ1,

Qzw2 = ktldγθ2,

Qzb = 0,

Qθr = 0,

(66)

where FY1 and FY2 represent the lateral forces of the front wheels, respectively, and e
represent the pneumatic trail of the tire.

Substituting (59)–(66) into (58), the differential equations of the system can be derived
as follows:

J1θ̈1 + (ce + c1la
2)θ̇1 + k1l2

a θ1 − c1lalb θ̇3 − k1lalbθ3 + FY1(Rγ + e) = 0, (67)

J1θ̈2 + (ce + c2la
2)θ̇2 + k2l2

a θ2 − c2lalb θ̇3 − k2lalbθ3 + FY2(Rγ + e) = 0, (68)

J3θ̈3 + (c1l2
b + c2l2

b + c3)θ̇3 + (k1l2
b + k2l2

b + k3)θ3 − c1lalb θ̇1 − c2lalb θ̇2 − k1lalbθ1 − k2lalbθ2 = 0, (69)

mwz̈w1 +
le

lc − ld
B(

le
lc − ld

zw1 − zs1)(
le

lc − ld
z̈w1 − z̈s1) +

le
lc − ld

Ḃ(
le

lc − ld
zw1 − zs1)(

le
lc − ld

żw1 − żs1)

+kt(zw1 − q1) + k4
le

lc − ld
(

le
lc − ld

zw1 − zb − L f θr)− ktldγθ1 = 0,
(70)

mwz̈w2 +
le

lc − ld
B(

le
lc − ld

zw2 − zs2)(
le

lc − ld
z̈w2 − z̈s2) +

le
lc − ld

Ḃ(
le

lc − ld
zw2 − zs2)(

le
lc − ld

żw2 − żs2)

+kt(zw2 − q2) + k4
le

lc − ld
(

le
lc − ld

zw2 − zb + L f θr) + ktldγθ2 = 0,
(71)

mbz̈b − c4(żs1 − żb)− c4(żs2 − żb)− k4(
le

lc − ld
zw1 − zb)− k4(

le
lc − ld

zw2 − zb) = 0, (72)

(mblg
2 + Jbr)θ̈r − c4L f (żs1 − L f θ̇r) + c4L f (żs2 + L f θ̇r)− k4L f (

le
lc − ld

zw1 − L f θr) + k4L f (
le

lc − ld
zw2 + L f θr)− mblgθr = 0, (73)

In the study of vehicle shimmy, tires are also an important factor. Therefore, Pacejka’s
Magic Formula [36] is chosen as the nonlinear tire model in this study, and the tire lateral
force can be represented in the form

FY = D sin{C arctan[B(1 − E)(α + SH) + E arctan B(α + SH)]}+ SV , (74)

where α is the slip angle of the wheel, B is the stiffness factor, C is the shape factor, D is the
peak value, E is the curvature factor, SH is the horizontal shift, and SV is the vertical shift.
Here, let SH = 0 and SV = 0, and parameters B, C, D and E can be calculated by
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C = pC1,

D = pD1F2
z + pD2,

BCD = pBCD1 sin(2 arctan
Fz

pBCD2
)(1 − pBCD3|φ|),

B =
BCD
C · D

,

E = pE1Fz + pE2,

(75)

where Fz is the vertical load acting on the wheels, φ is the camber angle of the wheels,
and the parameters pC1, pD1, pD2, pBCD1, pBCD2, pBCD3, pE1, and pE2 are all constants
determined for each tire. In this study, the value of φ is 0, and the values of pC1, pD1, pD2,
pBCD1, pBCD2, pBCD3, pE1, and pE2 are listed in Table 2 [37–39].

Assuming that the vehicle has no lateral acceleration, the vertical loads acting on the
left-front wheel Fz1 and the right-front wheel Fz2 are as follows:

Fz1 = Ff 0 − kt(zw1 − q1),

Fz2 = Ff 0 − kt(zw2 − q2),
(76)

where Ff 0 is the static vertical load acting on the front wheels, which can be obtained by

Ff 0 =
1
2

a
a + b

(mb + 4mw)g, (77)

where a and b represent the distance from the COG of the vehicle to its front and rear
axle, respectively.

Table 2. Coefficient values of Magic Formula.

Parameter Value

pC1 1.6500
PD1 −34.00
pD2 1250.00
pE1 −0.0210
pE2 0.7739
pBCD1 3036.00
pBCD2 12.80
pBCD3 0.0050

The constrain between the slip angle and the shimmy angle of the front wheel can be
given as

α̇1 +
v
σ

α1 +
v
σ

θ1 −
am

σ
θ̇1 = 0,

α̇2 +
v
σ

α2 +
v
σ

θ2 −
am

σ
θ̇2 = 0,

(78)

where σ is the relaxation length of tires and am is the half-length of the tire contact area.
In this study, σ is equal to 0.65 m and am is equal to 0.2 m.

6.3. Simulation Analysis

To verify the accuracy improvement of the integrated Lagrangian method in modeling
the vehicle shimmy system with mem-inerters and to study the influence factor of error
between the Lagrangian method and integrated Lagrangian method, simulation analysis
and comparison are performed under pulse and random excitation, respectively.
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Body acceleration, suspension working space, dynamic tire load, body roll angle
acceleration, the shimmy angle of the front wheels and the swing angle of the pitman
arm, which are the main evaluation indicators of a vehicle shimmy model, are selected
as comparison indicators in simulation analysis. For the sake of conciseness, the body
acceleration, suspension working space, dynamic tire load, and body roll angle acceleration
are abbreviated as BA, SWS, DTL, and BRAA, respectively.

Let m2F = 960 kg, m2H = 780 kg and m2N = 600 kg represent the sprung mass
under full-load, half-load and no-load conditions, respectively. In addition, the value of the
remaining vehicle parameters are listed in Table 3.

Table 3. Parameter values of the vehicle shimmy system.

Parameter Value

Inertia moment of front wheels around diameters J1 8 kg · m2

Inertia moment of front wheels around spin axes J2 6 kg · m2

Inertia moment of pitman arm J3 3 kg · m2

Mass of wheels mw 45 kg
Distance from the COG of the vehicle to its front axle a 1.22 m
Distance from the COG of the vehicle to its rear axle b 1.473 m
Half of the distance between the two connection points of the front suspension and the vehicle body L f 0.37 m
Stiffness of left steering tie rod k1 2240 kN · m−1

Stiffness of right steering tie rod k2 2240 kN · m−1

Stiffness of pitman arm k3 60 kN · m−1

Stiffness of front suspensions k4 22 kN · m−1

Tire vertical stiffness kt 192 kN · m−1

Damping of left steering tie rod c1 630 N · m · s−1

Damping of right steering tie rod c2 630 N · m · s−1

Damping of pitman arm c3 100 N · m · s−1

Damping of front suspension c4 4500 N · m · s−1

Equivalent damping of front wheels around their kingpins ce 44 N · m · s−1

Caster angle of front wheels γ 0.06 rad
Diameter of the wheels R 0.4 m
Moment arm of force of steering rod acting on kingpin la 0.125 m
Moment arm of force of steering tie rod acting on pitman arm lb 0.1 m
Lateral swing arm of front suspension lc 0.612 m
Distance from the intersection point of the kingpin extension line and the ground to the symmetry plane of the
wheel ld

0.2 m

Horizontal distance between the suspension and the connection points of the vehicle body and suspension arm le 0.14 m
Vertical displacement between O and Ob lg 0.55 m
Pneumatic trail of tire e 0.07 m

First, consider a pulse excitation of the form

q(t) =
A
2
(1 − cos

v
l

2πt) 0 ⩽ t ⩽
l
v

, (79)

where v = 10 m · s−1, A = 0.08 m, and t = 5 s.
The time-domain responses of the system under no-load, half-load, and full-load con-

ditions are studied, respectively. To avoid redundancy, only the results for the no-load case
are shown in Figure 8. The peak-to-peak (PTP) values, calculated from max x(t)− min x(t),
where x(t) denote the values of the signal in a period and the absolute value of the error
(abbreviated as AE), are listed in Table 4 and are shown as a line chart in Figure 9.

Based on the data shown in Figure 8 and Table 4, compared with the integrated
Lagrangian method (i.e., accurate values), each system indicator modeled using the La-
grangian method for the vehicle shimmy system with mem-inerters exhibits errors ranging
from 6.07% to 24.54%. Such errors indicate that modeling mechanical systems equipped
with memory elements using the Lagrangian method is inaccurate and cannot accurately
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represent the dynamical behavior of the systems. Furthermore, it can be seen from Table 4
and Figure 9 that, under pulse excitation, as the vehicle load increases, the PTP value errors
in body acceleration, suspension working space, shimmy angle of the front wheels, swing
angle of the pitman arm, and body roll angle acceleration increase, and the PTP value error
of dynamic tire load decreases.
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Figure 8. Comparison of time-domain responses between the Lagrangian and the integral Lagrangian
methods under pulse excitation and no-load condition. (a) BA. (b) SWSL. (c) SWSR. (d) DTLL.
(e) DTLR. (f) θ1. (g) θ2. (h) θ3. (i) BRAA. Integrated Lagrangian method;
Lagrangian method.
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Table 4. The absolute values of PTP value error of time-domain responses between the Lagrangian
and the integrated Lagrangian methods under pulse excitation.

Vehicle Load Indicator Integrated Lagrangian Method Lagrangian Method Absolute Value of Error

No-load BA/m · s−2 9.4783 11.7546 24.01%
SWSL/m 0.078 0.0691 11.39%
SWSR/m 0.0781 0.0692 11.33%
DTLL/kN 3.5971 3.3392 7.17%
DTLR/kN 3.3586 3.1106 7.39%
θ1/rad 0.0509 0.0478 6.07%
θ2/rad 0.0497 0.0466 6.19%
θ3/rad 0.0277 0.0259 6.37%
BRAA/rad · s−2 0.1608 0.1424 11.48%

Half-load BA/m · s−2 8.1265 10.1024 24.31%
SWSL/m 0.089 0.0787 11.65%
SWSR/m 0.0893 0.0789 11.60%
DTLL/kN 3.8765 3.6027 7.06%
DTLR/kN 3.6253 3.3611 7.29%
θ1/rad 0.0548 0.0511 6.83%
θ2/rad 0.0537 0.05 6.86%
θ3/rad 0.0299 0.0278 6.83%
BRAA/rad · s−2 0.1884 0.1656 12.11%

Full-load BA/m · s−2 7.0558 8.7876 24.54%
SWSL/m 0.0965 0.0851 11.75%
SWSR/m 0.0968 0.0855 11.71%
DTLL/kN 4.0503 3.768 6.97%
DTLR/kN 3.7962 3.523 7.19%
θ1/rad 0.0623 0.057 8.55%
θ2/rad 0.0611 0.0559 8.57%
θ3/rad 0.0341 0.0312 8.61%
BRAA/rad · s−2 0.2184 0.1912 12.46%
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Figure 9. Influence of vehicle load on the absolute values of PTP value error under pulse excitation.
(a) BA. (b) SWSL,R. (c) DTLL,R. (d) θ1,2. (e) θ3. (f) BRAA.
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Since the road excitation is usually random, a time-domain model of random road
excitation is established to discuss the errors of the system response obtained by these two
modeling methods under random road excitation

q̇(t) = −2π f0q(t) + 2π
√

G0vw(t), (80)

where f0 is the cut-off frequency, G0 is the road unevenness coefficient, and v is the vehicle
speed, ω(t) is the integrated white noise. In this study, four cases are investigated, namely,
(1) Class A road profile, vehicle speed v = 30 m · s−1, no-load; (2) Class B road profile,
vehicle speed v = 20 m · s−1, no-load; (3) Class B road profile, vehicle speed v = 30 m · s−1,
no-load; (4) Class B road profile, vehicle speed v = 30 m · s−1, full-load.

To avoid redundancy, only the results for case (2) are presented in Figure 10. The RMS
values and the absolute value of errors of the time-domain response using the Lagrangian
method and the integrated Lagrangian method are shown in Table 5. According to Figure 10
and Table 5, compared with the integrated Lagrangian method, each of the system in-
dicators modeled using the Lagrangian method for the vehicle shimmy system with
mem-inerters results in errors ranging from 5.17% to 17.23%. This reaffirms the previ-
ous finding that modeling mechanical systems equipped with memory elements using the
Lagrangian method is inaccurate and cannot accurately represent the dynamical behavior
of such systems.
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Figure 10. Comparison of time-domain responses between the Lagrangian and the integrated
Lagrangian methods under random excitation. (a) BA. (b) SWSL. (c) SWSR. (d) DTLL. (e) DTLR.
(f) θ1. (g) θ2. (h) θ3. (i) BRAA. Integrated Lagrangian method; Lagrangian method.
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Table 5. The absolute values of RMS value error of time-domain response between the Lagrangian
and the integrated Lagrangian methods under random excitation.

Case Condition Indicator Integrated
Lagrangian Method Lagrangian Method Absolute Value

of Error

1 Class A road BA/m · s−2 0.4655 0.5137 10.35%
v = 30 m · s−1 SWSL/m 0.0039 0.0035 8.85%
No-load SWSR/m 0.0027 0.0024 9.89%

DTLL/kN 0.2577 0.2444 5.16%
DTLR/kN 0.2005 0.1901 5.17%
θ1/rad 0.0054 0.0047 13.53%
θ2/rad 0.0052 0.0045 12.22%
θ3/rad 0.0029 0.0025 13.06%
BRAA/rad · s−2 0.2258 0.1964 13.02%

2 Class B road BA/m · s−2 0.7616 0.8431 10.71%
v = 20 m · s−1 SWSL/m 0.0066 0.0059 10.95%
No-load SWSR/m 0.0046 0.004 13.13%

DTLL/kN 0.418 0.396 5.27%
DTLR/kN 0.3234 0.3059 5.44%
θ1/rad 0.0087 0.0075 13.72%
θ2/rad 0.0083 0.0071 13.63%
θ3/rad 0.0046 0.004 13.39%
BRAA/rad · s−2 0.3727 0.3234 13.23%

3 Class B road BA/m · s−2 0.9309 1.0315 10.81%
v = 30 m · s−1 SWSL/m 0.0078 0.0068 12.18%
No-load SWSR/m 0.0054 0.0046 14.94%

DTLL/kN 0.5092 0.4821 5.32%
DTLR/kN 0.3938 0.3719 5.55%
θ1/rad 0.0106 0.0091 13.89%
θ2/rad 0.0101 0.0087 14.05%
θ3/rad 0.0056 0.0048 13.59%
BRAA/rad · s−2 0.4513 0.3901 13.57%

4 Class B road BA/m · s−2 0.5912 0.6566 11.06%
v = 30 m · s−1 SWSL/m 0.0096 0.0082 15.18%
Full-load SWSR/m 0.0065 0.0054 17.23%

DTLL/kN 0.503 0.475 5.56%
DTLR/kN 0.3877 0.3646 5.95%
θ1/rad 0.0131 0.012 8.16%
θ2/rad 0.0129 0.0111 13.55%
θ3/rad 0.0073 0.0068 7.02%
BRAA/rad · s−2 0.4516 0.3897 13.71%

To study the influence of road roughness, vehicle speed, and load condition on the
RMS value errors of system time-domain response under random excitation, the results are
plotted in Figures 11–13. As can be seen from Figure 11 and the data of cases (1) and (3) in
Table 5, the RMS value errors for each indicator between the Lagrangian method and the
integrated Lagrangian method increase as the road unevenness increases, i.e., as the road
condition deteriorates.

As shown in Figure 12 and the data of cases (2) and (3) in Table 5, the RMS value errors
for each indicator between the Lagrangian method and the integrated Lagrangian method
increase as the vehicle speed increases.

Figure 13 and the data of case (3) and (4) in Table 5 show that, under random excitation,
the RMS value error of BA, SWS, DTL, BRAA increase, the RMS value error of θ1 and θ3
decrease, and the RMS value error of θ2 increases and then decreases with the increase in
the vehicle load, where load rates of 0, 0.5, and 1 indicate no load, a half load, and a full
load, respectively. The abnormal changes in θ2 may be due to the complex nonlinearity of
the system, which needs to be analyzed in future research.
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Figure 11. Influence of road roughness on the absolute values of RMS value error under random
excitation. (a) BA. (b) SWSL,R. (c) DTLL,R. (d) θ1,2. (e) θ3. (f) BRAA.
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Figure 12. Influence of vehicle speed on the absolute values of RMS value error under random
excitation. (a) BA. (b) SWSL,R. (c) DTLL,R. (d) θ1,2. (e) θ3. (f) BRAA.
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Figure 13. Influence of vehicle load on the absolute values of RMS value error under random
excitation. (a) BA. (b) SWSL,R. (c) DTLL,R. (d) θ1,2. (e) θ3. (f) BRAA.

7. Conclusions

In this paper, a novel modeling method, referred to as the integrated Lagrangian
modeling method, is proposed to accurately describe the nonlinear dynamic behavior
of the mechanical systems consisting of mem-inerters, mem-springs, and mem-dampers,
together with their conventional linear counterparts. Based on the constitutive relationships
of memory elements, the corresponding memory state functions are introduced, and then
the Lagrangian of the system can be obtained based on the difference between two memory-
state functions. In the case of a mechanical system that consists only of mem-inerters,
mem-springs, and their conventional linear counterparts, the dynamic equations can
be obtained from Hamilton’s least action principle. Mem-dampers and linear damping
elements can be included by introducing an action function that plays a role similar to the
Rayleigh dissipation function. Furthermore, this paper also briefly generalizes memory
elements and their modeling to fractional calculus.

By comparing the results of using the classical Lagrangian method and the inte-
grated Lagrangian method to model the vehicle shimmy system equipped with the fluid
mem-inerter, the modeling accuracy improvement of the integrated Lagrangian method is
verified. The results show that

• Under pulse and random road excitation, there are obvious errors in each indicator
of system modeling using the Lagrangian method compared to the results obtained
using the integrated Lagrangian method (accurate values). The existence of such
errors demonstrates the accuracy and necessity of using the integrated Lagrangian
method to model mechanical systems with memory elements.

• Under pulse excitation, as the vehicle load increases, the PTP value errors of BA,
SWSL,R, θ1,2 and θ3 increase, and the PTP value error of DTLL,R decreases.

• Under random excitation, the RMS value errors for each indicator increase as the
road unevenness increases, i.e., as the road condition deteriorates; the RMS value
errors for each indicator increase as the vehicle speed increases; the RMS value errors
of BA, SWSL,R, DTLL,R, BRAA increase, the RMS value errors of θ1 and θ3 decrease,
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and the RMS value error of θ2 increases and then decreases with the increase in the
vehicle load.

The integrated Lagrangian method provides a more accurate theoretical method for
modeling and analysis of mechanical systems with memory elements. Refs. [6,7] proposed a
fluid mem-inerter device and clarified its constitutive relationship in the δ − x plane. Based
on the research of [6,7], this paper applied the mem-inerter to the vehicle suspension system
and conducted shimmy modeling analysis, pointing out an easily overlooked problem in
that the classical Lagrangian method is not accurate for modeling the mechanical system
with memory elements. As a next step, a more in-depth exploration of fractional-order
memory elements and the application of fractional-order calculus in modeling mechanical
systems with memory elements should be considered, and this method should be integrated
with data-driven modeling in future research. Furthermore, the response results of the
vehicle shimmy system under pulse and random excitation in the simulation analysis
section also need to be experimentally verified in a future study.
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