
Citation: Liu, M.; Chen, M.; Wu, Z.;

Zhong, B.; Deng, W. Implementation

of Intelligent Indoor Service Robot

Based on ROS and Deep Learning.

Machines 2024, 12, 256. https://

doi.org/10.3390/machines12040256

Academic Editor: Dan Zhang

Received: 19 March 2024

Revised: 6 April 2024

Accepted: 9 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Implementation of Intelligent Indoor Service Robot Based on
ROS and Deep Learning
Mingyang Liu 1 , Min Chen 1,*, Zhigang Wu 1, Bin Zhong 1 and Wangfen Deng 2

1 School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology,
Nanchang 330013, China; 5720210912@mail.jxust.edu.cn (M.L.); 9520170024@jxust.edu.cn (Z.W.);
5720210833@mail.jxust.edu.cn (B.Z.)

2 Business School, Jiangxi University of Science and Technology, Nanchang 330013, China;
5720212906@mail.jxust.edu.cn

* Correspondence: 9519940007@jxust.edu.cn; Tel.: +86-15879081939

Abstract: When faced with challenges such as adapting to dynamic environments and handling
ambiguous identification, indoor service robots encounter manifold difficulties. This paper aims
to address this issue by proposing the design of a service robot equipped with precise small-object
recognition, autonomous path planning, and obstacle-avoidance capabilities. We conducted in-depth
research on the suitability of three SLAM algorithms (GMapping, Hector-SLAM, and Cartographer)
in indoor environments and explored their performance disparities. Upon this foundation, we have
elected to utilize the STM32F407VET6 and Nvidia Jetson Nano B01 as our processing controllers. For
the program design on the STM32 side, we are employing the FreeRTOS operating system, while
for the Jetson Nano side, we are employing ROS (Robot Operating System) for program design.
The robot employs a differential drive chassis, enabling successful autonomous path planning and
obstacle-avoidance maneuvers. Within indoor environments, we utilized the YOLOv3 algorithm
for target detection, achieving precise target identification. Through a series of simulations and
real-world experiments, we validated the performance and feasibility of the robot, including map-
ping, navigation, and target detection functionalities. Experimental results demonstrate the robot’s
outstanding performance and accuracy in indoor environments, offering users efficient service and
presenting new avenues and methodologies for the development of indoor service robots.

Keywords: ROS; service robot; SLAM algorithm; deep learning

1. Introduction

Mobile robots possess the autonomy to navigate within their designated environments.
They can perceive their surroundings, execute actions according to instructions, and make
decisions, thereby efficiently, effectively, and safely accomplishing tasks [1]. Various service
robots have already been providing assistance across various industries, including man-
ufacturing, warehousing, healthcare, agriculture, and hospitality [2]. Within the service
industry, there is a growing trend of utilizing robots as restaurant attendants. Due to a short-
age of human servers, restaurant owners have begun seeking robots to assist in customer
service [3]. With the advancement of artificial intelligence technology, powerful onboard
processors, ubiquitous sensors, and the development of simultaneous localization and
mapping (SLAM) techniques, automated guided vehicle (AGV) systems have evolved into
autonomous mobile robots (AMRs), offering greater operational flexibility and enhanced
productivity [4]. In recent years, service robots have emerged as a highly active research
area [5].

Following an in-depth investigation and analysis by Zhang Xiaoying and colleagues,
they concluded that the rapid advancement of predictive remote control technology has
opened up extensive application prospects for mobile service robots [6]. From navigation
assistants in commercial retail to precise control of advanced medical devices, mobile

Machines 2024, 12, 256. https://doi.org/10.3390/machines12040256 https://www.mdpi.com/journal/machines

https://doi.org/10.3390/machines12040256
https://doi.org/10.3390/machines12040256
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://orcid.org/0009-0007-8879-3277
https://doi.org/10.3390/machines12040256
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines12040256?type=check_update&version=1

Machines 2024, 12, 256 2 of 25

service robots have become an indispensable part of modern society [6]. Jha Sanjay Ku-
mar discussed the application of robots in libraries and information centers, how they
are transforming library services, and speculated on the future possibilities and trends of
robot utilization in libraries, while also citing current applications of robots in libraries and
providing a case study of library adoption of telepresence robots. The study combined
examples of libraries employing various types of robots, summarizing the scenarios where
AI-mediated robots engage in various activities within libraries [7]. Scholars such as Ye
Yangqing delved into the requirements for real-time accurate identification and localization
of target objects in indoor settings for household service robots operating in homes and of-
fices. This presents certain challenges for object detection, especially in scenarios involving
small objects such as fruits and utensils in everyday life, making object recognition and
localization more complex [8].

To address the challenges of accurate object recognition and indoor navigation, this
study endeavors to research and design a service robot tailored specifically for indoor
environments, aiming to resolve issues such as unclear recognition, path planning, and ob-
stacle avoidance. In comparison to existing software and hardware solutions, the proposed
method is targeted and efficient, offering effective solutions for small-object recognition
and indoor path-planning challenges. The main contributions of this paper are as follows:

1. Design of a specialized indoor service robot: The focus of this research is to develop an
indoor service robot tailored for office environments, aimed at addressing challenges
such as accurate target recognition, path planning, and obstacle avoidance. This robot
is capable of accurately identifying small objects and autonomously planning paths
while avoiding obstacles.

2. Indoor SLAM algorithm analysis: This paper conducts an in-depth analysis of three
commonly used SLAM algorithms (GMapping, Hector-SLAM, Cartographer) to as-
sess their suitability and performance differences in indoor environments [9]. The
research begins with preliminary planning through SLAM simulation experiments.
Subsequently, by comparing the output results of different algorithms in experimental
settings, the most suitable algorithm for application scenarios involving the robot
is selected.

3. Hardware and software implementation: This paper utilizes the STM32F407VET6 and
Nvidia Jetson Nano B01 as the main control units. The FreeRTOS operating system is
employed for program design on the STM32 side, while the ROS (Robot Operating
System) is used on the Jetson Nano side. This selection maximizes the resources of the
STM32F407VET6 for hardware choices. Considering the computational capabilities of
the Jetson Nano B01, appropriate navigation and vision algorithms have been selected
for the software implementation. For global path planning, Dijkstra’s algorithm is
used, while for local path planning, the teb_local_planner algorithm is employed. In
terms of visual recognition, the lightweight YOLOv3 algorithm is chosen for object
detection. This configuration enables the robot to autonomously plan paths and
navigate when encountering obstacles, while also ensuring precise object detection
using machine vision. Ultimately, this setup guarantees efficient service provision to
users by facilitating accurate navigation and object recognition.

The paper begins by introducing the overall design of the robot, including chassis
design, control system design, and visual component design. In the robot design section,
it focuses on discussing the differential wheel chassis design and kinematic analysis, as
well as the control system design. Subsequently, it provides detailed descriptions of the
experimental design and results, including SLAM simulation experiments, path planning
and navigation simulation experiments, and real-world experiments in actual and office
environments. Finally, it analyzes and discusses the experimental results and draws
conclusions. This study aims to reduce the time cost of indoor item recognition while
effectively addressing challenges of accurate object recognition and indoor navigation.

Machines 2024, 12, 256 3 of 25

2. Robot Design
2.1. Robot Chassis Design and Kinematics Analysis
2.1.1. Differential Wheel Chassis Design

Considering the need for robots to possess the capability of flexible steering and
stable motion, we have chosen to adopt a design consisting of two differential-driven
wheels paired with two sets of omni-directional wheels. This layout enables the chassis to
maneuver freely while maintaining stability. In this design, the two main wheels are placed
on the left and right sides of the chassis, combined with two sets of omni-directional wheels,
facilitating the chassis’ free steering and motion, as depicted in Figure 1. Additionally,
through a meticulously designed suspension system, we ensure the stability and balance
of the chassis across various terrains. In this configuration, the basic principle of the
differential drive is independently applied to each side, akin to traditional two-wheel
differential drive robots. This means that each side can autonomously adjust the speed
and direction of the wheels to achieve differential motion, thereby controlling the robot to
achieve non-slipping rotation and zero-radius turns [10].

Machines 2024, 12, x FOR PEER REVIEW 3 of 28

environments. Finally, it analyzes and discusses the experimental results and draws con-
clusions. This study aims to reduce the time cost of indoor item recognition while effec-
tively addressing challenges of accurate object recognition and indoor navigation.

2. Robot Design
2.1. Robot Chassis Design and Kinematics Analysis
2.1.1. Differential Wheel Chassis Design

Considering the need for robots to possess the capability of flexible steering and sta-
ble motion, we have chosen to adopt a design consisting of two differential-driven wheels
paired with two sets of omni-directional wheels. This layout enables the chassis to ma-
neuver freely while maintaining stability. In this design, the two main wheels are placed
on the left and right sides of the chassis, combined with two sets of omni-directional
wheels, facilitating the chassis’ free steering and motion, as depicted in Figure 1. Addi-
tionally, through a meticulously designed suspension system, we ensure the stability and
balance of the chassis across various terrains. In this configuration, the basic principle of
the differential drive is independently applied to each side, akin to traditional two-wheel
differential drive robots. This means that each side can autonomously adjust the speed
and direction of the wheels to achieve differential motion, thereby controlling the robot to
achieve non-slipping rotation and zero-radius turns [10].

The differential drive chassis design possesses relatively stable motion control char-
acteristics, as it allows the robot to more flexibly adjust speed and direction during mo-
tion. This stable motion control is crucial for the performance and stability of SLAM algo-
rithms. It can reduce errors and uncertainties during mapping and localization processes,
thereby enhancing the navigation accuracy and reliability of the robot. Therefore, by se-
lecting the differential drive chassis design, we can better meet the motion requirements
of indoor service robots in complex environments and provide them with a stable and
reliable motion control foundation.

Figure 1. Differential wheel chassis diagram.

2.1.2. Kinematic Analysis
Below, we will conduct a kinematic analysis of the two-wheel differential drive chas-

sis, as depicted in the schematic in Figure 2.

Figure 1. Differential wheel chassis diagram.

The differential drive chassis design possesses relatively stable motion control charac-
teristics, as it allows the robot to more flexibly adjust speed and direction during motion.
This stable motion control is crucial for the performance and stability of SLAM algorithms.
It can reduce errors and uncertainties during mapping and localization processes, thereby
enhancing the navigation accuracy and reliability of the robot. Therefore, by selecting the
differential drive chassis design, we can better meet the motion requirements of indoor
service robots in complex environments and provide them with a stable and reliable motion
control foundation.

2.1.2. Kinematic Analysis

Below, we will conduct a kinematic analysis of the two-wheel differential drive chassis,
as depicted in the schematic in Figure 2.

Next, the forward and inverse kinematics solution formula of the robot chassis
is obtained:

ArcL = VL ∗ t, ArcM = Vx ∗ t, ArcR = VR ∗ t (1)

where the distance from the center is point O, ArcL, ArcM and ArcR represent the paths
traveled by the left wheel, point O, and the right wheel of the robot within a certain time
t, measured in meters. R is the turning radius generated by the robot simultaneously
advancing and rotating, measured in meters. VL and VR are the speeds of the left and right
wheels of the robot, positive for forward motion, measured in meters per second. W is the
distance between the two drive wheels, measured in meters. θ is the angle that the robot

Machines 2024, 12, 256 4 of 25

rotates during a certain time t, measured in radians. The equation relating arc length to
radius is given by dividing the arc length by the radius, resulting in radians:

θ =
ArcL

R − W
2

=
ArcM

R
=

ArcR

R + W
2

(2)

Substitute ArcL, ArcM and ArcR into the equation:

θ =
VL ∗ t
R − W

2
=

VL ∗ t
R

=
VR ∗ t
R + W

2
(3)

Divide both sides of the equation by t, and then integrate with respect to time:

Vz =
VL

R − W
2

=
Vx

R
=

VR

R + W
2

(4)

where Vx is the target forward velocity of the robot at point O, positive for forward motion,
measured in meters per second. Vz is the target rotational velocity of the robot around point
O, positive for counterclockwise rotation, measured in radians per second. Decomposing
Equation (4) yields:

VL = Vx −
W
2

∗ Vz (5)

VR = Vx +
W
2

∗ Vz (6)
Machines 2024, 12, x FOR PEER REVIEW 4 of 28

Figure 2. Kinematic analysis structure of two-wheel differential chassis.

Next, the forward and inverse kinematics solution formula of the robot chassis is ob-
tained:

*L LArc V t= , *M xArc V t= , *R RArc V t= (1)

where the distance from the center is point O , LArc , MArc and RArc represent the
paths traveled by the left wheel, point O , and the right wheel of the robot within a certain
time t, measured in meters. R is the turning radius generated by the robot simultane-
ously advancing and rotating, measured in meters. LV and RV are the speeds of the left
and right wheels of the robot, positive for forward motion, measured in meters per second.
W is the distance between the two drive wheels, measured in meters. θ is the angle that
the robot rotates during a certain time t, measured in radians. The equation relating arc
length to radius is given by dividing the arc length by the radius, resulting in radians:

+
2 2

L M RArc Arc Arc
W WRR R

θ = = =
−

(2)

Substitute LArc , MArc and RArc into the equation:

* * *

+
2 2

L L RV t V t V t
W WRR R

θ = = =
−

(3)

Divide both sides of the equation by t, and then integrate with respect to time:

+
2 2

xL R
z

VV VV W WRR R
= = =

−

(4)

where xV is the target forward velocity of the robot at point O , positive for forward mo-

tion, measured in meters per second. zV is the target rotational velocity of the robot
around point O , positive for counterclockwise rotation, measured in radians per second.
Decomposing Equation (4) yields:

Figure 2. Kinematic analysis structure of two-wheel differential chassis.

Formulas (5) and (6) are changed into the forward kinematics solution formula, and
the current speed of the driving wheel VL and VR are known to find the real-time speed Vx
and Vz of the current robot:

Vx =
VL + VR

2
(7)

Vz =
VR − VL

W
(8)

On the STM32F4 side, the process executed is the kinematic inverse solution. Through
functions written in the C language, relevant parameters Vx and Vz are passed in, along with
the robot’s velocity in the X and Y axes, to solve for the target velocities of the two motors.

Machines 2024, 12, 256 5 of 25

Through this process, precise control of the rotation speed of the drive wheels is achieved,
allowing for accurate control of the robot’s motion.

2.2. Control System Design

The chassis control of the service robot stands as the nucleus of the entire robotic
control system. Considering the computational capabilities, complexity of the encoder
and motor control, and future optimization needs, our objective is to fully leverage the
GPIO, timers, and serial port resources of the microcontroller chip for the development
board. The STM32F407VET6 is a powerful and feature-rich microcontroller based on the
ARM Cortex-M4 core, operating at a high frequency of up to 168 MHz. It comes equipped
with a rich set of peripherals and functional modules, including multiple general-purpose
timers and communication interfaces (such as USART, SPI, I2C, etc.). Additionally, the
STM32F407VET6 incorporates a low-power design to ensure efficient power management
while maintaining high performance, making it suitable for applications such as mobile
robots that demand low power consumption. The STM32F407VET6 offers a high cost-
effectiveness ratio relative to its performance and feature advantages, making it an excellent
choice for widespread use in embedded systems, including robotics. Therefore, selecting
the STM32F407VET6 as the main controller is well-suited to our project requirements.

The STM32F407VET6 microcontroller integrates a rich array of peripherals and com-
munication interfaces, allowing direct connectivity with the MPU6050 sensor and TB6612
motor driver chip when integrated on a single development board. This integration simpli-
fies hardware layout and interconnections, facilitating increased system integration and
stability. The MPU6050 sensor integrates a three-axis gyroscope and three-axis accelerome-
ter, enabling it to be used for robot attitude perception and motion control. The TB6612
motor driver chip supports the driving of DC motors and, when paired with Hall effect en-
coder motors, enables precise position and motion control. This combination enhances the
robot’s motion stability and accuracy. To ensure efficient program execution, we leverage
the portability, interrupt management, task operations, list queues, and software timers
provided by the FreeRTOS operating system on the STM32 platform [11]. By designing
and extending the control program within the FreeRTOS environment, we maximize sys-
tem efficiency and leverage the capabilities of FreeRTOS for task management, interrupt
handling, and overall system reliability.

Considering the practical requirements for low power consumption, cost-effectiveness,
and a compact main control processor, along with the capability to smoothly run the
ROS operating system, we have selected the Nvidia Jetson Nano B01 running on the
Ubuntu 18.04 operating system environment. Compared to other high-end embedded
computing platforms, the Jetson Nano B01 offers high-performance computing capabilities
at a relatively lower price point, making it highly cost-effective and suitable for robot
applications where cost efficiency is important.

The Nvidia Jetson Nano B01 provides a balance of performance and affordability,
making it an ideal choice for robotics applications that require computational power within
budget constraints. Its compatibility with Ubuntu and ability to support ROS enable
seamless integration into robotics projects, facilitating tasks such as perception, planning,
and control. Overall, the Jetson Nano B01 aligns well with the requirements of robotics
applications that prioritize cost efficiency without compromising on performance. Given
the memory requirements of the Jetson Nano B01’s central processing unit (CPU) and
graphics processing unit (GPU) need to remain within reasonable bounds, while ensuring
the service robot achieves low inference time and superior recognition accuracy in object
detection tasks, we decide to employ the YOLOv3 algorithm under the Darknet framework.
To maximize hardware resource utilization, we choose a lower computational power RGB
camera for the recognition module. Such a configuration not only meets the algorithmic
demands but also efficiently utilizes hardware resources, thereby enhancing the overall
performance and efficiency of the system.

Machines 2024, 12, 256 6 of 25

The overall system architecture, as depicted in Figure 3, comprises two main compo-
nents: the ROS side and the STM32 side, interconnected via serial communication. These
two ends collaboratively facilitate robot motion control. Hardware devices of the robot
exchange information with the control system, enabling the execution of corresponding
functions. The robot can obtain input information from the camera or ROS terminal, pro-
cess it through the control system, and execute the corresponding functions via the output
mechanism. A conceptual prototype of the robot, as illustrated in Figure 4, includes the
RPLIDAR A1 and STM32F407 at the bottom layer, responsible for low-level hardware
control and sensor data acquisition. Positioned on the second layer, the Jetson Nano under-
takes data processing and high-level control. The mechanical arm, equipped with a camera,
resides at the top layer, responsible for executing object detection tasks.

Machines 2024, 12, x FOR PEER REVIEW 6 of 28

Considering the practical requirements for low power consumption, cost-effective-
ness, and a compact main control processor, along with the capability to smoothly run the
ROS operating system, we have selected the Nvidia Jetson Nano B01 running on the Ub-
untu 18.04 operating system environment. Compared to other high-end embedded com-
puting platforms, the Jetson Nano B01 offers high-performance computing capabilities at
a relatively lower price point, making it highly cost-effective and suitable for robot appli-
cations where cost efficiency is important.

The Nvidia Jetson Nano B01 provides a balance of performance and affordability,
making it an ideal choice for robotics applications that require computational power
within budget constraints. Its compatibility with Ubuntu and ability to support ROS ena-
ble seamless integration into robotics projects, facilitating tasks such as perception, plan-
ning, and control. Overall, the Jetson Nano B01 aligns well with the requirements of ro-
botics applications that prioritize cost efficiency without compromising on performance.
Given the memory requirements of the Jetson Nano B01’s central processing unit (CPU)
and graphics processing unit (GPU) need to remain within reasonable bounds, while en-
suring the service robot achieves low inference time and superior recognition accuracy in
object detection tasks, we decide to employ the YOLOv3 algorithm under the Darknet
framework. To maximize hardware resource utilization, we choose a lower computational
power RGB camera for the recognition module. Such a configuration not only meets the
algorithmic demands but also efficiently utilizes hardware resources, thereby enhancing
the overall performance and efficiency of the system.

The overall system architecture, as depicted in Figure 3, comprises two main compo-
nents: the ROS side and the STM32 side, interconnected via serial communication. These
two ends collaboratively facilitate robot motion control. Hardware devices of the robot
exchange information with the control system, enabling the execution of corresponding
functions. The robot can obtain input information from the camera or ROS terminal, pro-
cess it through the control system, and execute the corresponding functions via the output
mechanism. A conceptual prototype of the robot, as illustrated in Figure 4, includes the
RPLIDAR A1 and STM32F407 at the bottom layer, responsible for low-level hardware con-
trol and sensor data acquisition. Positioned on the second layer, the Jetson Nano under-
takes data processing and high-level control. The mechanical arm, equipped with a cam-
era, resides at the top layer, responsible for executing object detection tasks.

Figure 3. Block diagram of robot system structure. Figure 3. Block diagram of robot system structure.

Machines 2024, 12, x FOR PEER REVIEW 7 of 28

Figure 4. Structure diagram of robot prototype. 1—Liquid crystal display, 2—Nvidia Jetson Nano
B01, 3—Battery, 4—Universal wheel, 5—Driving wheel, 6—STM32F407 Core Board, 7—Laser Ra-
dar, 8—Serial steering gear robot arm, 9—RGB camera.

2.3. Robot Vision Part Design
Presently, deep learning methods have emerged as the focal point of research in the

field of object detection, particularly those based on convolutional neural networks
(CNNs). CNNs excel in accurately processing visual data without the need for separate
feature extraction processes [12]. In this study, we employed the YOLOv3 algorithm, de-
picted in Figure 5, which represents an improvement over its predecessors, YOLOv1 and
YOLOv2 [13]. Built upon the Darknet deep learning framework, as illustrated in Figure 6,
this algorithm boasts exceptional hierarchical feature extraction, learning capabilities, and
efficient processing of large-scale data on specific hardware environments. This enables it
to better meet the requirements of object detection algorithm systems for recognition ac-
curacy and real-time performance.

By collecting image data from the camera and preprocessing them before inputting
them into the network, including data augmentation and input adjustments [14], the al-
gorithm ensures optimal performance. Through the forward propagation of neural net-
works, the Darknet-53 backbone network is utilized to extract image features, generating
object detection results via multiple layers of convolution and detection layers.

Figure 4. Structure diagram of robot prototype. 1—Liquid crystal display, 2—Nvidia Jetson Nano
B01, 3—Battery, 4—Universal wheel, 5—Driving wheel, 6—STM32F407 Core Board, 7—Laser Radar,
8—Serial steering gear robot arm, 9—RGB camera.

Machines 2024, 12, 256 7 of 25

2.3. Robot Vision Part Design

Presently, deep learning methods have emerged as the focal point of research in
the field of object detection, particularly those based on convolutional neural networks
(CNNs). CNNs excel in accurately processing visual data without the need for separate
feature extraction processes [12]. In this study, we employed the YOLOv3 algorithm,
depicted in Figure 5, which represents an improvement over its predecessors, YOLOv1 and
YOLOv2 [13]. Built upon the Darknet deep learning framework, as illustrated in Figure 6,
this algorithm boasts exceptional hierarchical feature extraction, learning capabilities, and
efficient processing of large-scale data on specific hardware environments. This enables
it to better meet the requirements of object detection algorithm systems for recognition
accuracy and real-time performance.

Machines 2024, 12, x FOR PEER REVIEW 8 of 28

Figure 5. YOLOv3 frame diagram.

Figure 6. Darknet frame diagram.

The neural network architecture primarily consists of a backbone network and three
detection scales (13 × 13, 26 × 26, 52 × 52). Its backbone network is built upon Darknet53,
replacing DarkNet-19 to become the new feature extractor for YOLOv3 [15]. YOLOv3 uti-
lizes Darknet-53 to extract features of target objects, constructing three different scale fea-
ture maps [16], with their respective parameters outlined in Table 1. Compared to Dark-
Net-19, ResNet-101, and ResNet-152 networks, DarkNet-53 exhibits significant ad-
vantages in terms of Top-1 accuracy, Top-5 accuracy, and floating-point operations per
second [17]. The CBL module represents the convolutional structure, followed by BN nor-
malization to reduce overfitting, and Leaky RELU is chosen as the activation function.

Figure 5. YOLOv3 frame diagram.

Machines 2024, 12, x FOR PEER REVIEW 8 of 28

Figure 5. YOLOv3 frame diagram.

Figure 6. Darknet frame diagram.

The neural network architecture primarily consists of a backbone network and three
detection scales (13 × 13, 26 × 26, 52 × 52). Its backbone network is built upon Darknet53,
replacing DarkNet-19 to become the new feature extractor for YOLOv3 [15]. YOLOv3 uti-
lizes Darknet-53 to extract features of target objects, constructing three different scale fea-
ture maps [16], with their respective parameters outlined in Table 1. Compared to Dark-
Net-19, ResNet-101, and ResNet-152 networks, DarkNet-53 exhibits significant ad-
vantages in terms of Top-1 accuracy, Top-5 accuracy, and floating-point operations per
second [17]. The CBL module represents the convolutional structure, followed by BN nor-
malization to reduce overfitting, and Leaky RELU is chosen as the activation function.

Figure 6. Darknet frame diagram.

Machines 2024, 12, 256 8 of 25

By collecting image data from the camera and preprocessing them before inputting
them into the network, including data augmentation and input adjustments [14], the
algorithm ensures optimal performance. Through the forward propagation of neural
networks, the Darknet-53 backbone network is utilized to extract image features, generating
object detection results via multiple layers of convolution and detection layers.

The neural network architecture primarily consists of a backbone network and three
detection scales (13 × 13, 26 × 26, 52 × 52). Its backbone network is built upon Darknet53,
replacing DarkNet-19 to become the new feature extractor for YOLOv3 [15]. YOLOv3
utilizes Darknet-53 to extract features of target objects, constructing three different scale
feature maps [16], with their respective parameters outlined in Table 1. Compared to
DarkNet-19, ResNet-101, and ResNet-152 networks, DarkNet-53 exhibits significant ad-
vantages in terms of Top-1 accuracy, Top-5 accuracy, and floating-point operations per
second [17]. The CBL module represents the convolutional structure, followed by BN
normalization to reduce overfitting, and Leaky RELU is chosen as the activation function.

Table 1. Comparison table of DarkNet-53 network parameters with those of DarkNet-19, ResNet-101,
and ResNet-152 networks.

Backbone Top-1 Top-5 Bn Ops BFLOP/s FPS

DarkNet-19 74.1 91.8 7.29 1246 171
ResNet-101 77.1 93.7 19.7 1039 53
ResNet-152 77.6 93.8 29.4 1090 37
DarkNet-53 77.2 93.8 18.7 1457 78

The experiment utilized the VOC dataset, comprising five categories: chair, pen,
glasses, USB drive, and cup, totaling 1488 images. The dataset annotation process is
illustrated in Figure 7. The dataset was divided into 70% training set, 20% validation
set, and 10% test set. By adjusting network parameters, the objective was to train the
object detection model to adapt to the characteristics of the VOC dataset and enhance
performance. Target features and positional information were learned on the training set,
and network weights were iteratively optimized through multiple epochs to achieve more
accurate detection results. The GeForce RTX 4080 GPU on Ubuntu 18.04 was chosen to
train the YOLOv3 network to fully leverage hardware performance. Training parameters
were repeatedly adjusted to obtain a series of experimental results, and a model with good
performance was selected through comparison. When evaluating model performance,
attention was paid to precision, recall, F1 score, and average precision (AP), with mAP
calculated as a comprehensive metric.

Machines 2024, 12, x FOR PEER REVIEW 9 of 28

Table 1. Comparison table of DarkNet-53 network parameters with those of DarkNet-19, ResNet-
101, and ResNet-152 networks.

Backbone Top-1 Top-5 Bn Ops BFLOP/s FPS
DarkNet-19 74.1 91.8 7.29 1246 171
ResNet-101 77.1 93.7 19.7 1039 53
ResNet-152 77.6 93.8 29.4 1090 37
DarkNet-53 77.2 93.8 18.7 1457 78

The experiment utilized the VOC dataset, comprising five categories: chair, pen,
glasses, USB drive, and cup, totaling 1488 images. The dataset annotation process is illus-
trated in Figure 7. The dataset was divided into 70% training set, 20% validation set, and
10% test set. By adjusting network parameters, the objective was to train the object detec-
tion model to adapt to the characteristics of the VOC dataset and enhance performance.
Target features and positional information were learned on the training set, and network
weights were iteratively optimized through multiple epochs to achieve more accurate de-
tection results. The GeForce RTX 4080 GPU on Ubuntu 18.04 was chosen to train the
YOLOv3 network to fully leverage hardware performance. Training parameters were re-
peatedly adjusted to obtain a series of experimental results, and a model with good per-
formance was selected through comparison. When evaluating model performance, atten-
tion was paid to precision, recall, F1 score, and average precision (AP), with mAP calcu-
lated as a comprehensive metric.

(a) (b)

Figure 7. Figure (a) shows the process of labeling glasses using labelImg, and Figure (b) shows the
process of labeling cups using labelImg.

In terms of optimization algorithm selection, we compared the use of Adam and
SGD, two different optimization algorithms. The detection results of each algorithm on
the dataset are presented in Table 2. By examining the performance indicators in the table
and contrasting different experimental results, particularly those depicted in Figure 8, spe-
cifically Figure a and Figure b, we have drawn several important conclusions:
1. The Adam optimization algorithm exhibits a higher mAP value compared to SGD,

indicating that Adam is more suitable for object detection tasks based on comprehen-
sive evaluation.

2. We also considered precision, recall, and F1 score to comprehensively assess model
performance, assisting in balancing accuracy and comprehensiveness.

3. After thorough parameter tuning and comparative experiments, it was confirmed
that the Adam optimization algorithm performs better in object detection, displaying
significant advantages across various metrics.

Figure 7. Figure (a) shows the process of labeling glasses using labelImg, and Figure (b) shows the
process of labeling cups using labelImg.

Machines 2024, 12, 256 9 of 25

In terms of optimization algorithm selection, we compared the use of Adam and
SGD, two different optimization algorithms. The detection results of each algorithm on
the dataset are presented in Table 2. By examining the performance indicators in the table
and contrasting different experimental results, particularly those depicted in Figure 8,
specifically Figure 8a,b, we have drawn several important conclusions:

1. The Adam optimization algorithm exhibits a higher mAP value compared to SGD,
indicating that Adam is more suitable for object detection tasks based on comprehen-
sive evaluation.

2. We also considered precision, recall, and F1 score to comprehensively assess model
performance, assisting in balancing accuracy and comprehensiveness.

3. After thorough parameter tuning and comparative experiments, it was confirmed
that the Adam optimization algorithm performs better in object detection, displaying
significant advantages across various metrics.

4. The comprehensive experimental results provide strong support for selecting outstand-
ing object detection models, highlighting the importance of optimization algorithms
in performance and offering valuable guidance for practical applications.

Table 2. Each algorithm detects the result on the data set.

Algorithm Name Category AP/% mAP/%

SGD

Chair 94.03%

79.00%
Cup 82.29%

Flash drive 89.93%
Glasses 86.25%

Pen 42.53%

Adam

Chair 98.02%

86.10%
Cup 88.72%

Flash drive 93.96%
Glasses 95.91%

Pen 53.88%

Machines 2024, 12, x FOR PEER REVIEW 10 of 28

4. The comprehensive experimental results provide strong support for selecting out-
standing object detection models, highlighting the importance of optimization algo-
rithms in performance and offering valuable guidance for practical applications.

Table 2. Each algorithm detects the result on the data set.

Algorithm Name Category AP/% mAP/%

SGD

Chair 94.03%

79.00%
Cup 82.29%

Flash drive 89.93%
Glasses 86.25%

Pen 42.53%

Adam

Chair 98.02%

86.10%
Cup 88.72%

Flash drive 93.96%
Glasses 95.91%

Pen 53.88%

(a) (b)

Figure 8. Figure (a) is the actual test interface, and Figure (b) is the test result of the office environ-
ment. Figure (a) shows the output result of Adam mAP, and Figure (b) shows the output result of
SGD mAP.

Upon obtaining the available weight files, we successfully ported them to the
YOLOv3 algorithm package on the Jetson Nano B01. Environmental data were captured
in real time using an RGB camera for perception. The main controller processed this data
and evaluated the recognition results. Ultimately, the results were fed back on the display
screen and printed in the ROS terminal. This system architecture allows us to effectively
apply image processing tasks to service robots while ensuring processing efficiency and
accuracy.

3. Experimental Design and Results
3.1. Experimental Design

Firstly, we will conduct simulation experiments using three different SLAM algo-
rithms to map and navigate in a simulated environment. This step aims to evaluate the
performance of different algorithms under ideal conditions and compare their differences.
Subsequently, we will replicate the map environment of the simulation experiments in
real scenes and conduct experiments in real-world scenarios to verify the feasibility and
applicability of the simulation results in actual environments. This will help determine
the accuracy of the simulation results in real environments and whether adjustments or

Figure 8. Figure (a) is the actual test interface, and Figure (b) is the test result of the office environment.
Figure (a) shows the output result of Adam mAP, and Figure (b) shows the output result of SGD mAP.

Upon obtaining the available weight files, we successfully ported them to the YOLOv3
algorithm package on the Jetson Nano B01. Environmental data were captured in real time
using an RGB camera for perception. The main controller processed this data and evaluated
the recognition results. Ultimately, the results were fed back on the display screen and
printed in the ROS terminal. This system architecture allows us to effectively apply image
processing tasks to service robots while ensuring processing efficiency and accuracy.

Machines 2024, 12, 256 10 of 25

3. Experimental Design and Results
3.1. Experimental Design

Firstly, we will conduct simulation experiments using three different SLAM algo-
rithms to map and navigate in a simulated environment. This step aims to evaluate the
performance of different algorithms under ideal conditions and compare their differences.
Subsequently, we will replicate the map environment of the simulation experiments in
real scenes and conduct experiments in real-world scenarios to verify the feasibility and
applicability of the simulation results in actual environments. This will help determine
the accuracy of the simulation results in real environments and whether adjustments or
improvements to our solution are necessary. Next, we will conduct experiments in more
complex real-world scenarios to assess the robustness and resilience of the solution in differ-
ent environmental conditions. By experimenting in different scenes and conditions, we will
evaluate the performance of algorithms and technologies, optimize parameters to improve
performance, and further enhance the effectiveness of the solution. The purpose of this
series of experimental designs is to comprehensively validate the reliability and practicality
of the robot solution, providing sufficient support and assurance for its deployment in
real-world applications.

3.2. SLAM Simulation Experiment

A SLAM system that uses only a laser rangefinder or integrates other sensors with
a laser rangefinder is referred to as a laser SLAM system [18]. In our system, the sensor
module selection includes a laser rangefinder and an inertial measurement unit (IMU) for
collecting environmental information. Through the processing of mapping algorithms, a
two-dimensional map is ultimately generated. Classical laser SLAM algorithms include the
Gmapping algorithm, Cartographer algorithm, and Hector-SLAM.

3.2.1. Virtual Simulation Environment

In order to verify the above algorithms, we conducted simulation experiments on
the Gazebo platform and built the simulation environment as shown in Figure 9. We
designed the virtual environment to ensure that it has real physical characteristics, so that
the simulation results are highly referential and can effectively reflect the situation in the
real environment.

Machines 2024, 12, x FOR PEER REVIEW 11 of 28

improvements to our solution are necessary. Next, we will conduct experiments in more
complex real-world scenarios to assess the robustness and resilience of the solution in dif-
ferent environmental conditions. By experimenting in different scenes and conditions, we
will evaluate the performance of algorithms and technologies, optimize parameters to im-
prove performance, and further enhance the effectiveness of the solution. The purpose of
this series of experimental designs is to comprehensively validate the reliability and prac-
ticality of the robot solution, providing sufficient support and assurance for its deploy-
ment in real-world applications.

3.2. SLAM Simulation Experiment
A SLAM system that uses only a laser rangefinder or integrates other sensors with a

laser rangefinder is referred to as a laser SLAM system [18]. In our system, the sensor
module selection includes a laser rangefinder and an inertial measurement unit (IMU) for
collecting environmental information. Through the processing of mapping algorithms, a
two-dimensional map is ultimately generated. Classical laser SLAM algorithms include
the Gmapping algorithm, Cartographer algorithm, and Hector-SLAM.

3.2.1. Virtual Simulation Environment
In order to verify the above algorithms, we conducted simulation experiments on the

Gazebo platform and built the simulation environment as shown in Figure 9. We designed
the virtual environment to ensure that it has real physical characteristics, so that the sim-
ulation results are highly referential and can effectively reflect the situation in the real
environment.

(a) (b)

Figure 9. Set up the virtual simulation environment in Gazebo. Figure (a) is a plane diagram, and
Figure (b) is a three-dimensional diagram.

Using a laser rangefinder as the sensor, we simulated the GMapping, Hector-SLAM,
and Cartographer algorithms. We established a simulation environment in the Gazebo
platform that corresponds to the experimental site and tested these three different SLAM
algorithms. We compared the quality of the final effect maps. During the mapping pro-
cess, the known environment layout is represented in light gray, while the data collected
by the laser rangefinder are presented with red markers.

3.2.2. GMapping
To estimate the robot’s pose, we utilize the Rao-Blackwellized particle filter (RBPF)

[19]. The core idea of particle filtering is to represent probabilities using a particle set, and
the most commonly used algorithm in particle filtering is the Importance Resampling al-
gorithm. This algorithm iteratively predicts the robot’s pose, and it consists of the follow-
ing five steps:

Figure 9. Set up the virtual simulation environment in Gazebo. Figure (a) is a plane diagram, and
Figure (b) is a three-dimensional diagram.

Using a laser rangefinder as the sensor, we simulated the GMapping, Hector-SLAM,
and Cartographer algorithms. We established a simulation environment in the Gazebo
platform that corresponds to the experimental site and tested these three different SLAM
algorithms. We compared the quality of the final effect maps. During the mapping process,
the known environment layout is represented in light gray, while the data collected by the
laser rangefinder are presented with red markers.

Machines 2024, 12, 256 11 of 25

3.2.2. GMapping

To estimate the robot’s pose, we utilize the Rao-Blackwellized particle filter (RBPF) [19].
The core idea of particle filtering is to represent probabilities using a particle set, and
the most commonly used algorithm in particle filtering is the Importance Resampling
algorithm. This algorithm iteratively predicts the robot’s pose, and it consists of the
following five steps:

• Sampling: According to the motion model, sampling is conducted on the preceding

generation of particles, denoted as particle ‘(x(i)t−1)’, yielding the emergence of novel

particles termed ‘(x(i)t)’. These particles are utilized to forecast the posture of the robot
by amalgamating the most recent motion data.

• Calculated weight: Within the framework of particle filtering, the utilization of sensor
measurements and motion models allows for the computation of the weight associated
with each new particle. These weights are then allocated to individual particles,
thus providing a more precise representation of the robot’s actual position within
its environment.

• Resampling: Particles endowed with higher weights are preserved, whereas those
with lower weights are eliminated. This process aids in concentrating the distribution
of particles, thereby enhancing the efficiency of the filtering algorithm.

• Map estimation: By employing the Rao-Blackwellization technique, the degree of
congruence between observation data and the map can be assessed. This facilitates
the inference of the conditional probability of observation data under a given map,
thereby enabling the updating of particle weights.

• Based on RBPF, selective resampling and proposal distribution are improved: These
enhancements contribute to the enhancement of the algorithm’s performance in practi-
cal applications, enabling the robot to construct and update environmental maps more
reliably, thus improving the performance and robustness of mapping algorithms.

1. Selective resampling: As particles are solely responsible for representing the robot’s
pose, it is feasible to estimate the map by conditioning on the updated particle
set. This ensures that the particle set effectively reflects both the robot’s state and
map information.

2. Improved proposal distribution: To accurately simulate the state distribution, it is
imperative to discard particles with lower weights and replicate particles with higher
weights, thereby concentrating the particle set closer to the true state.

Figure 10 illustrates the simulated results of the GMapping algorithm. During the
mapping process, laser sensor data are utilized to match the poses of particles and the
map. By aligning the poses of particles and the map, the weights of particles are updated.
Subsequently, resampling is conducted, and the grid map is updated based on the poses
of particles with higher weights. This process effectively utilizes laser sensor data to
continuously optimize the grid map, reflecting the true state of the environment.

3.2.3. Hector-SLAM

Hector-SLAM stands as a renowned open-source 2D SLAM system, dedicated to laser
data map construction and distinctive localization methods. Initially, acquiring laser data
as the first frame, by time t, the algorithm matches laser scan data with the map from time
t − 1, thereby determining the robot’s pose. This process aims to maximize the utilization
of laser scan points to optimize the robot’s positioning within the environment [20]. The
key features of Hector-SLAM include robust real-time performance, support for single-
laser radar, and highly optimized occupancy grid maps. Its algorithmic steps encompass
initialization, scan matching, feature extraction, occupancy grid map updating, tracking,
loop closure detection, and output. This algorithm is suitable for scenarios demanding
rapid localization and map construction, such as mobile robots and autonomous vehicles.
Due to its simple yet efficient design, Hector-SLAM has garnered extensive applications in
mobile robotics and embedded systems.

Machines 2024, 12, 256 12 of 25

Machines 2024, 12, x FOR PEER REVIEW 12 of 28

• Sampling: According to the motion model, sampling is conducted on the preceding
generation of particles, denoted as particle ‘ ()

1()itx − ’, yielding the emergence of novel

particles termed ‘ ()()itx ’. These particles are utilized to forecast the posture of the
robot by amalgamating the most recent motion data.

• Calculated weight: Within the framework of particle filtering, the utilization of sensor
measurements and motion models allows for the computation of the weight associ-
ated with each new particle. These weights are then allocated to individual particles,
thus providing a more precise representation of the robot’s actual position within its
environment.

• Resampling: Particles endowed with higher weights are preserved, whereas those
with lower weights are eliminated. This process aids in concentrating the distribution
of particles, thereby enhancing the efficiency of the filtering algorithm.

• Map estimation: By employing the Rao-Blackwellization technique, the degree of
congruence between observation data and the map can be assessed. This facilitates
the inference of the conditional probability of observation data under a given map,
thereby enabling the updating of particle weights.

• Based on RBPF, selective resampling and proposal distribution are improved: These
enhancements contribute to the enhancement of the algorithm’s performance in prac-
tical applications, enabling the robot to construct and update environmental maps
more reliably, thus improving the performance and robustness of mapping algo-
rithms.

1. Selective resampling: As particles are solely responsible for representing the robot’s
pose, it is feasible to estimate the map by conditioning on the updated particle set.
This ensures that the particle set effectively reflects both the robot’s state and map
information.

2. Improved proposal distribution: To accurately simulate the state distribution, it is
imperative to discard particles with lower weights and replicate particles with higher
weights, thereby concentrating the particle set closer to the true state.
Figure 10 illustrates the simulated results of the GMapping algorithm. During the

mapping process, laser sensor data are utilized to match the poses of particles and the
map. By aligning the poses of particles and the map, the weights of particles are updated.
Subsequently, resampling is conducted, and the grid map is updated based on the poses
of particles with higher weights. This process effectively utilizes laser sensor data to con-
tinuously optimize the grid map, reflecting the true state of the environment.

(a) (b)

Figure 10. Set mapping process of GMapping. Figure (a) is the initial state of the experiment, and
Figure (b) is the state of the experiment process.

Figure 10. Set mapping process of GMapping. Figure (a) is the initial state of the experiment, and
Figure (b) is the state of the experiment process.

Figure 11 illustrates the results of simulated simulation utilizing the Hector-SLAM
algorithm. By matching the current frame with the previous frame’s laser radar data, the
algorithm estimates the robot’s motion. Simultaneously, certain features are extracted
from the laser radar data, such as edges and corners, to aid subsequent localization and
map construction. Based on the matching results and feature extraction, the Hector-SLAM
algorithm updates the occupancy grid map, accurately reflecting the robot’s position in the
environment and the distribution of obstacles. This process contributes to the establishment
of precise and comprehensive environmental maps.

Machines 2024, 12, x FOR PEER REVIEW 13 of 28

3.2.3. Hector-SLAM
Hector-SLAM stands as a renowned open-source 2D SLAM system, dedicated to la-

ser data map construction and distinctive localization methods. Initially, acquiring laser
data as the first frame, by time t, the algorithm matches laser scan data with the map from
time t − 1, thereby determining the robot’s pose. This process aims to maximize the utili-
zation of laser scan points to optimize the robot’s positioning within the environment [20].
The key features of Hector-SLAM include robust real-time performance, support for sin-
gle-laser radar, and highly optimized occupancy grid maps. Its algorithmic steps encom-
pass initialization, scan matching, feature extraction, occupancy grid map updating, track-
ing, loop closure detection, and output. This algorithm is suitable for scenarios demand-
ing rapid localization and map construction, such as mobile robots and autonomous ve-
hicles. Due to its simple yet efficient design, Hector-SLAM has garnered extensive appli-
cations in mobile robotics and embedded systems.

Figure 11 illustrates the results of simulated simulation utilizing the Hector-SLAM
algorithm. By matching the current frame with the previous frame’s laser radar data, the
algorithm estimates the robot’s motion. Simultaneously, certain features are extracted
from the laser radar data, such as edges and corners, to aid subsequent localization and
map construction. Based on the matching results and feature extraction, the Hector-SLAM
algorithm updates the occupancy grid map, accurately reflecting the robot’s position in
the environment and the distribution of obstacles. This process contributes to the estab-
lishment of precise and comprehensive environmental maps.

(a) (b)

Figure 11. Set mapping process of Hector-SLAM. Figure (a) is the initial state of the experiment, and
Figure (b) is the state of the experiment process.

3.2.4. Cartographer
The Cartographer algorithm, a graph-based optimization approach, serves as

Google’s solution for SLAM. Its open-source code comprises two main components: Car-
tographer and Cartographer_ROS. Employing graph-based mapping techniques, the Car-
tographer algorithm enables real-time acquisition of relatively high-precision 2D maps,
suitable for large-scale mapping [21]. Its functionalities encompass processing data from
sensors such as laser radar, IMU, and odometry to construct maps. Subsequently, Cartog-
rapher_ROS utilizes the ROS communication mechanism to acquire sensor data and con-
vert it into Cartographer’s format for processing [22]. Furthermore, Cartographer_ROS is
responsible for displaying or storing the processing results from Cartographer. This inte-
grated process facilitates the convenient use of Cartographer for real-time SLAM applica-
tions within ROS. The authors of this software have extensively described impressive real-
time results achieved by the software in addressing 2D SLAM problems [23].

Figure 11. Set mapping process of Hector-SLAM. Figure (a) is the initial state of the experiment, and
Figure (b) is the state of the experiment process.

3.2.4. Cartographer

The Cartographer algorithm, a graph-based optimization approach, serves as Google’s
solution for SLAM. Its open-source code comprises two main components: Cartographer
and Cartographer_ROS. Employing graph-based mapping techniques, the Cartographer
algorithm enables real-time acquisition of relatively high-precision 2D maps, suitable for
large-scale mapping [21]. Its functionalities encompass processing data from sensors such
as laser radar, IMU, and odometry to construct maps. Subsequently, Cartographer_ROS
utilizes the ROS communication mechanism to acquire sensor data and convert it into
Cartographer’s format for processing [22]. Furthermore, Cartographer_ROS is responsible
for displaying or storing the processing results from Cartographer. This integrated process
facilitates the convenient use of Cartographer for real-time SLAM applications within
ROS. The authors of this software have extensively described impressive real-time results
achieved by the software in addressing 2D SLAM problems [23].

Machines 2024, 12, 256 13 of 25

Figure 12 illustrates the results of simulated simulation using the Cartographer algo-
rithm. In the initial stage, initial localization is performed to estimate the robot’s initial
position. Subsequently, motion estimation is conducted by scan-matching the laser radar
data from the current frame with the data from the previous frame. Throughout the map-
ping process, loop-closure detection is performed to enhance the consistency and accuracy
of the map when the robot revisits previously accessed locations. The area scanned by the
laser radar transitions from light gray to white as the entire map is completed. Finally,
optimized robot trajectories and constructed 3D maps are outputted. This series of steps
effectively demonstrates the efficiency and accuracy of the Cartographer algorithm in the
mapping process.

Machines 2024, 12, x FOR PEER REVIEW 14 of 28

Figure 12 illustrates the results of simulated simulation using the Cartographer algo-
rithm. In the initial stage, initial localization is performed to estimate the robot’s initial
position. Subsequently, motion estimation is conducted by scan-matching the laser radar
data from the current frame with the data from the previous frame. Throughout the map-
ping process, loop-closure detection is performed to enhance the consistency and accuracy
of the map when the robot revisits previously accessed locations. The area scanned by the
laser radar transitions from light gray to white as the entire map is completed. Finally,
optimized robot trajectories and constructed 3D maps are outputted. This series of steps
effectively demonstrates the efficiency and accuracy of the Cartographer algorithm in the
mapping process.

(a) (b)

Figure 12. Set mapping process of Cartographer. Figure (a) is the initial state of the experiment, and
Figure (b) is the state of the experiment process.

3.2.5. Results of SLAM Simulation Mapping Experiment
In terms of computational time, both the Hector-SLAM and GMapping algorithms

exhibit shorter processing times compared to Cartographer. Regarding mapping effective-
ness, the maps generated by Hector-SLAM and GMapping algorithms appear more orga-
nized compared to Cartographer’s output. Conversely, Cartographer’s maps exhibit nu-
merous jagged edges and irregularities along the walls. Furthermore, upon further com-
parison between the Hector-SLAM and GMapping algorithms, the maps produced by
Hector-SLAM algorithm exhibit a more aesthetically pleasing appearance and closely re-
semble real-world scenes. These observations underscore the importance of considering
not only computational efficiency but also factors such as map quality and appearance
when selecting SLAM algorithms. The mapping results of the three algorithms are de-
picted in Figure 13.

(a) (b) (c)

Figure 13. Output result of the simulation experiment. Figure (a) shows the output of Cartographer,
Figure (b) shows the output of GMapping, and Figure (c) shows the output of Hector-SLAM.

Figure 12. Set mapping process of Cartographer. Figure (a) is the initial state of the experiment, and
Figure (b) is the state of the experiment process.

3.2.5. Results of SLAM Simulation Mapping Experiment

In terms of computational time, both the Hector-SLAM and GMapping algorithms
exhibit shorter processing times compared to Cartographer. Regarding mapping effec-
tiveness, the maps generated by Hector-SLAM and GMapping algorithms appear more
organized compared to Cartographer’s output. Conversely, Cartographer’s maps exhibit
numerous jagged edges and irregularities along the walls. Furthermore, upon further
comparison between the Hector-SLAM and GMapping algorithms, the maps produced
by Hector-SLAM algorithm exhibit a more aesthetically pleasing appearance and closely
resemble real-world scenes. These observations underscore the importance of considering
not only computational efficiency but also factors such as map quality and appearance
when selecting SLAM algorithms. The mapping results of the three algorithms are depicted
in Figure 13.

Machines 2024, 12, x FOR PEER REVIEW 14 of 28

Figure 12 illustrates the results of simulated simulation using the Cartographer algo-
rithm. In the initial stage, initial localization is performed to estimate the robot’s initial
position. Subsequently, motion estimation is conducted by scan-matching the laser radar
data from the current frame with the data from the previous frame. Throughout the map-
ping process, loop-closure detection is performed to enhance the consistency and accuracy
of the map when the robot revisits previously accessed locations. The area scanned by the
laser radar transitions from light gray to white as the entire map is completed. Finally,
optimized robot trajectories and constructed 3D maps are outputted. This series of steps
effectively demonstrates the efficiency and accuracy of the Cartographer algorithm in the
mapping process.

(a) (b)

Figure 12. Set mapping process of Cartographer. Figure (a) is the initial state of the experiment, and
Figure (b) is the state of the experiment process.

3.2.5. Results of SLAM Simulation Mapping Experiment
In terms of computational time, both the Hector-SLAM and GMapping algorithms

exhibit shorter processing times compared to Cartographer. Regarding mapping effective-
ness, the maps generated by Hector-SLAM and GMapping algorithms appear more orga-
nized compared to Cartographer’s output. Conversely, Cartographer’s maps exhibit nu-
merous jagged edges and irregularities along the walls. Furthermore, upon further com-
parison between the Hector-SLAM and GMapping algorithms, the maps produced by
Hector-SLAM algorithm exhibit a more aesthetically pleasing appearance and closely re-
semble real-world scenes. These observations underscore the importance of considering
not only computational efficiency but also factors such as map quality and appearance
when selecting SLAM algorithms. The mapping results of the three algorithms are de-
picted in Figure 13.

(a) (b) (c)

Figure 13. Output result of the simulation experiment. Figure (a) shows the output of Cartographer,
Figure (b) shows the output of GMapping, and Figure (c) shows the output of Hector-SLAM.

Figure 13. Output result of the simulation experiment. Figure (a) shows the output of Cartographer,
Figure (b) shows the output of GMapping, and Figure (c) shows the output of Hector-SLAM.

Machines 2024, 12, 256 14 of 25

3.3. Path Planning and Navigation Simulation Experiments
3.3.1. Global Path Planning Using Dijkstra’s Pathfinding Algorithm

The fundamental principle of the Dijkstra algorithm is simple and intuitive, making it
applicable to various scenarios. The Dijkstra algorithm, a shortest-path routing method, is
used to compute the minimum cost of moving from one node to all other nodes. Its main
feature is the expansion from the initial node outward layer by layer until reaching the
target node [24]. The algorithm expands outward layer by layer, creating two lists: the
Open list and the Closed list. The Open list stores points on the path to be determined,
while the Closed list stores points on the path that have been determined. Each point
records its parent node and the distance to the initial point. The algorithm starts from the
initial point, selects the node with the minimum distance in the Open list as the center
point, moves it into the Closed list, and adds its unvisited neighboring nodes to the Open
list. This process is repeated until the expansion reaches the target node. Finally, based
on the recorded parent nodes, the shortest path is extracted by propagating information
in reverse.

3.3.2. Local Path Planning teb_local_planner

The teb_local_planner stands out as a premier navigation algorithm within the ROS
framework, focusing on achieving local path planning through the optimization of time
and space. At its core lies the technique of trajectory rollout and elastic band (TEB),
which employs the Timed Elastic Band algorithm—an enhanced approach akin to a rubber
band method, aimed at path planning for robots by considering time–space optimiza-
tion [25]. TEB has the capability to consider dynamic obstacles when computing velocity
commands [26], with the objective of striking a balance between trajectory smoothness,
robot dynamics, and obstacle-avoidance performance. TEB allows robots to plan smooth
trajectories in local environments while also accounting for the robot’s dynamic characteris-
tics and obstacle-avoidance requirements. The advantage of this approach lies in providing
a path-planning strategy adaptable to changes in dynamic environments, as illustrated in
Equation (9).

u(t) =
[

V(t)
ω(t)

]
=

(1
2

1
2

1
W − 1

W

)[
VL
VR

]
(9)

VL and VR represent the left and right wheel speeds of the robot, with forward as
positive, in units of meters per second. W denotes the distance between the two drive
wheels, measured in meters. Relative to the Dynamic Window Approach (DWA) algorithm,
the Timed Elastic Band (TEB) algorithm offers significant advantages in several aspects
including path optimization, dynamic obstacle handling, path trajectory smoothness, con-
sideration of time factors, and comprehensive integration of robot dynamics constraints.
According to experimental conclusions by Jiaying Guo, the TEB algorithm demonstrates
superior performance in local path planning, successfully navigating through obstacles
to reach specified target points while avoiding collisions or getting stuck, outperforming
the DWA algorithm overall [27]. Therefore, the TEB algorithm is better suited for appli-
cations such as indoor service robots that require flexible and real-time path planning. It
significantly enhances robot navigation performance and path-planning quality, providing
reliable support for safe robot movement in complex environments.

3.3.3. Path Planning Simulation Experiment

After obtaining the corresponding mapping map, global and local path planning
is conducted using the previously described path-planning algorithms. Within the ROS
framework, the rviz software 1.14.20 package is utilized for path planning and navigation
simulation. The constructed map, as shown in the left image, depicts black dots representing
obstacles, green regions indicating the safe distance between the robot and obstacles, and
red arrows indicating the target point and direction of the robot. The entire map enclosed
by the blue box represents the global map, while the square blue box surrounding the robot

Machines 2024, 12, 256 15 of 25

represents the local map. Figure 14 displays the results of path planning and navigation,
presented as green lines. The starting position of the robot is slightly below the obstacles.
From the simulation results, it can be observed that the generated path successfully avoids
the obstacles, representing a relatively suitable path.

Machines 2024, 12, x FOR PEER REVIEW 16 of 28

framework, the rviz software 1.14.20 package is utilized for path planning and navigation
simulation. The constructed map, as shown in the left image, depicts black dots represent-
ing obstacles, green regions indicating the safe distance between the robot and obstacles,
and red arrows indicating the target point and direction of the robot. The entire map en-
closed by the blue box represents the global map, while the square blue box surrounding
the robot represents the local map. Figure 14 displays the results of path planning and
navigation, presented as green lines. The starting position of the robot is slightly below
the obstacles. From the simulation results, it can be observed that the generated path suc-
cessfully avoids the obstacles, representing a relatively suitable path.

(a) (b)

Figure 14. Process of path planning and navigation. Figure (a) is the schematic diagram of the path-
planning simulation experiment, and Figure (b) is the schematic diagram of the path-planning ex-
periment route amplification.

3.4. SLAM Live Field Experiment
We will replicate the simulation environment map in the actual field to test the three

SLAM algorithms and select the most effective one based on the real-world scenario for
subsequent path-planning experiments. The actual experimental site is depicted in Figure
15:

Figure 14. Process of path planning and navigation. Figure (a) is the schematic diagram of the
path-planning simulation experiment, and Figure (b) is the schematic diagram of the path-planning
experiment route amplification.

3.4. SLAM Live Field Experiment

We will replicate the simulation environment map in the actual field to test the
three SLAM algorithms and select the most effective one based on the real-world sce-
nario for subsequent path-planning experiments. The actual experimental site is depicted
in Figure 15:

Machines 2024, 12, x FOR PEER REVIEW 17 of 28

(a) (b)

(c) (d)

Figure 15. Test site. Figure (a) is the right side of the T-shaped field of the experiment site, Figure
(b) is the interchange of the T-shaped field of the experiment site, Figure (c) is the left side of the T-
shaped field of the experiment site, and Figure (d) is the overall schematic diagram of the experi-
ment site.

3.4.1. SLAM Actual Site Construction Process
During the experimental process, we consistently started the robot from the same

initial point for SLAM mapping experiments. We aimed to maintain a steady speed for
the robot as it approached various adjacent boundaries, ensuring optimal mapping output
quality. This approach helped ensure that the mapping results were as accurate and effec-
tive as possible. The construction process of the three algorithms is shown in Figure 16.

Figure 15. Test site. Figure (a) is the right side of the T-shaped field of the experiment site, Figure (b) is
the interchange of the T-shaped field of the experiment site, Figure (c) is the left side of the T-shaped
field of the experiment site, and Figure (d) is the overall schematic diagram of the experiment site.

Machines 2024, 12, 256 16 of 25

3.4.1. SLAM Actual Site Construction Process

During the experimental process, we consistently started the robot from the same
initial point for SLAM mapping experiments. We aimed to maintain a steady speed for
the robot as it approached various adjacent boundaries, ensuring optimal mapping output
quality. This approach helped ensure that the mapping results were as accurate and effective
as possible. The construction process of the three algorithms is shown in Figure 16.

Machines 2024, 12, x FOR PEER REVIEW 18 of 28

(a) (b)

(c)

Figure 16. The experimental process of the site experiment in the simulated environment. Three
algorithmic mapping processes. Figure (a) shows the construction process of Cartographer, Figure
(b) shows the construction process of GMapping, and Figure (c) shows the construction process of
Hector-SLAM.

3.4.2. SLAM Actual Site Construction Results
The results of the three algorithms are shown in Figure 17. Compared with the sim-

ulation results, only the Gmapping algorithm is satisfactory.

(a) (b) (c)

Figure 17. Output result of experiment site that replicates the simulation environment. Figure (a)
shows the output of Cartographer, Figure (b) shows the output of GMapping, and Figure (c) shows
the output of Hector-SLAM.

3.4.3. Practical Path Planning and Navigation Experiments

During the path-planning stage, we utilize the Dijkstra algorithm as the global path-
planning algorithm, while the teb_local_planner algorithm is employed for local path

Figure 16. The experimental process of the site experiment in the simulated environment.
Three algorithmic mapping processes. Figure (a) shows the construction process of Cartographer,
Figure (b) shows the construction process of GMapping, and Figure (c) shows the construction
process of Hector-SLAM.

3.4.2. SLAM Actual Site Construction Results

The results of the three algorithms are shown in Figure 17. Compared with the
simulation results, only the Gmapping algorithm is satisfactory.

Machines 2024, 12, x FOR PEER REVIEW 18 of 28

(a) (b)

(c)

Figure 16. The experimental process of the site experiment in the simulated environment. Three
algorithmic mapping processes. Figure (a) shows the construction process of Cartographer, Figure
(b) shows the construction process of GMapping, and Figure (c) shows the construction process of
Hector-SLAM.

3.4.2. SLAM Actual Site Construction Results
The results of the three algorithms are shown in Figure 17. Compared with the sim-

ulation results, only the Gmapping algorithm is satisfactory.

(a) (b) (c)

Figure 17. Output result of experiment site that replicates the simulation environment. Figure (a)
shows the output of Cartographer, Figure (b) shows the output of GMapping, and Figure (c) shows
the output of Hector-SLAM.

3.4.3. Practical Path Planning and Navigation Experiments

During the path-planning stage, we utilize the Dijkstra algorithm as the global path-
planning algorithm, while the teb_local_planner algorithm is employed for local path

Figure 17. Output result of experiment site that replicates the simulation environment.
Figure (a) shows the output of Cartographer, Figure (b) shows the output of GMapping, and Figure
(c) shows the output of Hector-SLAM.

Machines 2024, 12, 256 17 of 25

3.4.3. Practical Path Planning and Navigation Experiments

During the path-planning stage, we utilize the Dijkstra algorithm as the global path-
planning algorithm, while the teb_local_planner algorithm is employed for local path
planning. Through this combination, we can achieve the overall path planning and motion
process of the robot.

Figure 18 illustrates the process of path planning and navigation, with the robot
heading towards the set endpoint. The planned path is represented by green lines, with
the black area surrounding the map being the Global map, and the white box around the
robot representing the Local map. Thus, we can verify the feasibility and effectiveness of
the selected path-planning algorithm in the actual field. This experimental result will help
confirm the selection of the optimal SLAM algorithm and demonstrate the effectiveness of
path planning in real-world applications.

Machines 2024, 12, x FOR PEER REVIEW 19 of 28

planning. Through this combination, we can achieve the overall path planning and motion
process of the robot.

Figure 18 illustrates the process of path planning and navigation, with the robot
heading towards the set endpoint. The planned path is represented by green lines, with
the black area surrounding the map being the Global map, and the white box around the
robot representing the Local map. Thus, we can verify the feasibility and effectiveness of
the selected path-planning algorithm in the actual field. This experimental result will help
confirm the selection of the optimal SLAM algorithm and demonstrate the effectiveness
of path planning in real-world applications.

Figure 18. Process of path planning and navigation.

Figure 18. Process of path planning and navigation.

3.4.4. Real Scene Target Detection

During the robot’s movement towards the target point, it will lift its robotic arm to
ensure that the camera accurately aligns with the small objects that need to be identified.
This step aims to ensure that the camera can capture clear images. Once the robot reaches
the target point and lifts the robotic arm, the RGB camera starts capturing images and
transmits them to the target recognition algorithm. This algorithm utilizes computer
vision techniques to process the images and identify objects within them. The process
of object detection in the experimental field is depicted in Figure 19. Before starting the
experiment, we placed common small items that might be found in an office environment at
the robot’s destination. We then waited for the robot to reach the designated target point, at
which point the robot began the process of identifying the items. During the identification
process, according to the experimental setup, the recognition algorithm categorizes objects
in the images and locates the target objects. As described, the red box represents the
identified office chair with confidence scores of 0.91 and 0.51; the yellow box represents the
identified water cup with confidence scores of 0.55, 0.62, and 0.86; the blue box represents
the identified pen with a confidence score of 0.59; the green box represents the identified
USB drive with a confidence score of 0.71; and the purple box represents the identified
glasses with a confidence score of 0.95.

3.5. Office Real Site Experiment

We will replace the experimental field with an office scene and conduct SLAM experi-
ments in a real office environment. The actual experimental site is depicted in Figure 20.

Machines 2024, 12, 256 18 of 25

Machines 2024, 12, x FOR PEER REVIEW 20 of 28

3.4.4. Real Scene Target Detection
During the robot’s movement towards the target point, it will lift its robotic arm to

ensure that the camera accurately aligns with the small objects that need to be identified.
This step aims to ensure that the camera can capture clear images. Once the robot reaches
the target point and lifts the robotic arm, the RGB camera starts capturing images and
transmits them to the target recognition algorithm. This algorithm utilizes computer vi-
sion techniques to process the images and identify objects within them. The process of
object detection in the experimental field is depicted in Figure 19. Before starting the ex-
periment, we placed common small items that might be found in an office environment at
the robot’s destination. We then waited for the robot to reach the designated target point,
at which point the robot began the process of identifying the items. During the identifica-
tion process, according to the experimental setup, the recognition algorithm categorizes
objects in the images and locates the target objects. As described, the red box represents
the identified office chair with confidence scores of 0.91 and 0.51; the yellow box repre-
sents the identified water cup with confidence scores of 0.55, 0.62, and 0.86; the blue box
represents the identified pen with a confidence score of 0.59; the green box represents the
identified USB drive with a confidence score of 0.71; and the purple box represents the
identified glasses with a confidence score of 0.95.

(a) (b)

(c) (d)

Figure 19. Picture of the robot performing target detection in the experimental site. Figure (a) shows
that the robot is in the recognition state. Figure (b) shows that it has recognized pens, USB disks and Figure 19. Picture of the robot performing target detection in the experimental site. Figure (a) shows

that the robot is in the recognition state. Figure (b) shows that it has recognized pens, USB disks and
water cups. Figure (c) shows that it has recognized office chairs and water cups. Figure (d) shows
that it has recognized office chairs, water cups and glasses.

3.5.1. SLAM Office Site Construction Process

Due to transitioning to an actual office environment, which is inherently more complex
than simulated or controlled environments, including potential dead-end areas unreachable
by the robot, we conducted the SLAM experiment with the robot moving at a slower,
steadier pace. This approach allowed for the collection of more environmental data points,
ensuring optimal mapping output quality. By moving slowly and steadily, we aimed to
capture a comprehensive representation of the environment, thus ensuring that the mapped
output closely reflected the real-world office environment. The construction process of the
three algorithms is shown in Figure 21.

3.5.2. SLAM Office Site Construction Results

The map construction results of the three algorithms are depicted in Figure 22. It is
evident that desks and chairs are clearly discernible, and even the tripod in the corner
is visible in the map generated by GMapping. The Cartographer algorithm requires
IMU-assisted localization and may exhibit slight errors, particularly after minor slippage,
with more noise and error at the map edges. Hector-SLAM performs admirably in the
initial stages but is susceptible to the deterministic factors of robot motion, leading to
error accumulation.

Machines 2024, 12, 256 19 of 25

Machines 2024, 12, x FOR PEER REVIEW 21 of 28

water cups. Figure (c) shows that it has recognized office chairs and water cups. Figure (d) shows
that it has recognized office chairs, water cups and glasses.

3.5. Office Real Site Experiment
We will replace the experimental field with an office scene and conduct SLAM exper-

iments in a real office environment. The actual experimental site is depicted in Figure 20.

(a) (b)

Figure 20. Schematic diagram of the actual office site Figure (a) is a panoramic view of the office,
and Figure (b) is a view of the main working areas of the office.

3.5.1. SLAM Office Site Construction Process
Due to transitioning to an actual office environment, which is inherently more com-

plex than simulated or controlled environments, including potential dead-end areas un-
reachable by the robot, we conducted the SLAM experiment with the robot moving at a
slower, steadier pace. This approach allowed for the collection of more environmental
data points, ensuring optimal mapping output quality. By moving slowly and steadily,
we aimed to capture a comprehensive representation of the environment, thus ensuring
that the mapped output closely reflected the real-world office environment. The construc-
tion process of the three algorithms is shown in Figure 21.

Figure 20. Schematic diagram of the actual office site Figure (a) is a panoramic view of the office, and
Figure (b) is a view of the main working areas of the office.

Machines 2024, 12, x FOR PEER REVIEW 22 of 28

(a) (b)

(c)

Figure 21. The experimental process diagram of the office site experiment. Three algorithmic map-
ping processes. Figure (a) shows the construction process of Cartographer, Figure (b) shows the
construction process of GMapping, and Figure (c) shows the construction process of Hector-SLAM.

3.5.2. SLAM Office Site Construction Results
The map construction results of the three algorithms are depicted in Figure 22. It is

evident that desks and chairs are clearly discernible, and even the tripod in the corner is
visible in the map generated by GMapping. The Cartographer algorithm requires IMU-
assisted localization and may exhibit slight errors, particularly after minor slippage, with
more noise and error at the map edges. Hector-SLAM performs admirably in the initial
stages but is susceptible to the deterministic factors of robot motion, leading to error ac-
cumulation.

(a) (b) (c)

Figure 21. The experimental process diagram of the office site experiment. Three algorithmic
mapping processes. Figure (a) shows the construction process of Cartographer, Figure (b) shows the
construction process of GMapping, and Figure (c) shows the construction process of Hector-SLAM.

3.5.3. Experiment on Route Planning and Navigation in Office Environment

Figure 23 illustrates the process of path planning and navigation, with the robot
successfully plotting a path and navigating to the target point. The clear green path
generated during the path-planning process is clearly visible. In the experiment, different
target points were selected to demonstrate the effectiveness of path planning in a real office
scenario. Despite the presence of various obstacles and complex structures in the office

Machines 2024, 12, 256 20 of 25

environment, the robot is able to accurately calculate the optimal path to avoid obstacles
and successfully navigate to the target point. This indicates that the chosen path-planning
algorithm exhibits good applicability and reliability in real-world scenarios, providing a
viable solution for autonomous navigation of robots in complex environments.

Machines 2024, 12, x FOR PEER REVIEW 22 of 28

(a) (b)

(c)

Figure 21. The experimental process diagram of the office site experiment. Three algorithmic map-
ping processes. Figure (a) shows the construction process of Cartographer, Figure (b) shows the
construction process of GMapping, and Figure (c) shows the construction process of Hector-SLAM.

3.5.2. SLAM Office Site Construction Results
The map construction results of the three algorithms are depicted in Figure 22. It is

evident that desks and chairs are clearly discernible, and even the tripod in the corner is
visible in the map generated by GMapping. The Cartographer algorithm requires IMU-
assisted localization and may exhibit slight errors, particularly after minor slippage, with
more noise and error at the map edges. Hector-SLAM performs admirably in the initial
stages but is susceptible to the deterministic factors of robot motion, leading to error ac-
cumulation.

(a) (b) (c)

Figure 22. Output result of experiment in the actual office site. Figure (a) shows the output of Cartog-
rapher, Figure (b) shows the output of GMapping, and Figure (c) shows the output of Hector-SLAM.

Machines 2024, 12, x FOR PEER REVIEW 23 of 28

Figure 22. Output result of experiment in the actual office site. Figure (a) shows the output of Car-
tographer, Figure (b) shows the output of GMapping, and Figure (c) shows the output of Hector-
SLAM.

3.5.3. Experiment on Route Planning and Navigation in Office Environment
Figure 23 illustrates the process of path planning and navigation, with the robot suc-

cessfully plotting a path and navigating to the target point. The clear green path generated
during the path-planning process is clearly visible. In the experiment, different target
points were selected to demonstrate the effectiveness of path planning in a real office sce-
nario. Despite the presence of various obstacles and complex structures in the office envi-
ronment, the robot is able to accurately calculate the optimal path to avoid obstacles and
successfully navigate to the target point. This indicates that the chosen path-planning al-
gorithm exhibits good applicability and reliability in real-world scenarios, providing a
viable solution for autonomous navigation of robots in complex environments.

(a)

(b)

Figure 23. Office real-life path planning and navigation diagram. Figure (a) is a randomly selected
target point, and Figure (b) is another randomly selected target point different from Figure (a).

Figure 23. Office real-life path planning and navigation diagram. Figure (a) is a randomly selected
target point, and Figure (b) is another randomly selected target point different from Figure (a).

Machines 2024, 12, 256 21 of 25

3.5.4. Office Site Target Detection

In the office environment, object detection is performed when the robot reaches the
target point, identifying small items on the desktop as shown in Figure 24. According to the
experimental setup, the recognition algorithm categorizes objects in the image and locates
the target objects. In the description, the red box represents the identified office chair with a
confidence score of 0.88; the yellow box represents the identified water cup with confidence
scores of 0.57 and 0.64 in two separate identifications; the blue box represents the identified
pen with a confidence score of 0.58; and the purple box represents the identified glasses
with a confidence score of 0.62.

Machines 2024, 12, x FOR PEER REVIEW 24 of 28

3.5.4. Office Site Target Detection
In the office environment, object detection is performed when the robot reaches the

target point, identifying small items on the desktop as shown in Figure 24. According to
the experimental setup, the recognition algorithm categorizes objects in the image and
locates the target objects. In the description, the red box represents the identified office
chair with a confidence score of 0.88; the yellow box represents the identified water cup
with confidence scores of 0.57 and 0.64 in two separate identifications; the blue box repre-
sents the identified pen with a confidence score of 0.58; and the purple box represents the
identified glasses with a confidence score of 0.62.

(a) (b)

(c) (d)

Figure 24. Picture of the robot performing target detection in a real-life office scene Figure (a) shows
the robot in the recognition state. Figure (b) shows the recognized pen, glasses and water cup. Figure
(c) shows that the office chair has been identified. Figure (d) shows that the cup (water cup with cup
sleeve), water cup, and glasses have been recognized.

3.6. Analysis and Discussion of Experimental Results
3.6.1. Analysis of SLAM and Navigation Experiment Results

Based on the experiments conducted, successful robot path planning and navigation
were achieved, with the Dijkstra algorithm employed for global path planning and the
teb_local_planner algorithm serving as a crucial component for local path planning. In
this process, environmental and pose information was provided by the SLAM mapping
system, furnishing the robot with accurate perceptual data. During navigation, the integ-
rity and accuracy of the map are critical factors determining navigation and localization
accuracy. Significant errors in map construction often result in localization failures and
subsequent navigation inaccuracies [28].

Figure 24. Picture of the robot performing target detection in a real-life office scene Figure (a) shows
the robot in the recognition state. Figure (b) shows the recognized pen, glasses and water cup.
Figure (c) shows that the office chair has been identified. Figure (d) shows that the cup (water cup
with cup sleeve), water cup, and glasses have been recognized.

3.6. Analysis and Discussion of Experimental Results
3.6.1. Analysis of SLAM and Navigation Experiment Results

Based on the experiments conducted, successful robot path planning and navigation
were achieved, with the Dijkstra algorithm employed for global path planning and the
teb_local_planner algorithm serving as a crucial component for local path planning. In this
process, environmental and pose information was provided by the SLAM mapping system,
furnishing the robot with accurate perceptual data. During navigation, the integrity and
accuracy of the map are critical factors determining navigation and localization accuracy.
Significant errors in map construction often result in localization failures and subsequent
navigation inaccuracies [28].

In real-world environments, the practical effects exhibited by the three algorithms
differ from those in simulated experiments. The Hector-SLAM algorithm places high

Machines 2024, 12, 256 22 of 25

demands on LiDAR for turnover rate and measurement noise, presenting certain limitations.
Conversely, the Cartographer algorithm requires more computational resources [29].

The unique aspect of the Hector-SLAM algorithm is its independence from odometry
information, granting it autonomy. However, in the absence of odometry information,
Hector-SLAM is more susceptible to environmental dynamics and uncertainties in robot
motion, leading to map drift. Map drift refers to the gradual accumulation of errors
during map construction, resulting in inconsistency between the constructed map and the
actual environment.

The graph optimization in the Cartographer algorithm exhibits a degree of ambiguity.
In real environments, sensor measurements and robot motion may be influenced by noise
and uncertainties. These factors may increase the complexity of graph optimization, and its
results may be affected by environmental changes and fluctuations in sensor performance.
The Cartographer algorithm supports the fusion of multiple sensor data types and performs
well in handling large-scale environments, generating accurate maps in complex scenarios.
However, it consumes considerable memory and has a large algorithmic footprint. When
using high-resolution sensor data, it may lead to significant memory usage and computa-
tional load. Moreover, in geometrically symmetric environments, this algorithm is prone to
loop closure errors, resulting in inaccurate localization.

In simulated environments, where conditions are idealized, the Hector-SLAM algo-
rithm excels. However, in actual experimental sites, various uncertainties exist. Due to
hardware limitations of the robot, the Cartographer algorithm is also not the optimal choice.
Throughout the experimental process and in the final output map data, the GMapping
algorithm demonstrates excellent performance. Its output maps have clearer boundaries
and fewer noise artifacts, outperforming the Hector-SLAM and Cartographer algorithms in
indoor mapping performance. Relatively, GMapping excels in real-time indoor map con-
struction, offering relatively lower computational burden and higher accuracy for indoor
scene mapping.

3.6.2. Analysis of Experimental Results of Target Detection

YOLOv3 is a lightweight model with fewer parameters and less depth, enabling faster
detection processing speed. In our trained dataset, the model performs exceptionally well
during experiments. We chose the Adam optimization algorithm to further enhance the
accuracy of object detection, which is suitable for running on embedded devices. For
instance, in the dataset, identifying pens might pose a challenge because the appearance of
pens is closely related to their types and brands in real life, leading to significant differences
in appearance among different brands and types of pens. Therefore, the confidence score for
identifying pens may be lower compared to other objects. However, even when objects have
indistinguishable features or are only partially visible, the model can still identify them
with relatively low confidence scores. Improving the comprehensiveness and continuous
refinement of the dataset annotations would help enhance recognition accuracy. Despite the
presence of multiple small objects or robot movements, the model can accurately identify
objects in the dataset.

3.6.3. Discussion

1. The applicability and performance of SLAM algorithms vary: In the simulation
environment, the Hector-SLAM algorithm excels, but its performance in real-world
settings is affected by the accuracy of the LiDAR and measurement noise, leading to
suboptimal performance. In contrast, the GMapping algorithm demonstrates greater
stability and reliability in real-world environments, with higher localization accuracy.
This difference may stem from disparities between the simulation environment and
real-world conditions, as well as variations in the algorithms’ sensitivity to sensor
accuracy and environmental noise.

2. Stability and practicality of SLAM algorithms: The stability and practicality of SLAM
algorithms are paramount for ensuring the integrity and accuracy of maps, which

Machines 2024, 12, 256 23 of 25

directly influence the precision of navigation and localization. Significant errors
during map construction can lead to localization failures and inaccurate navigation.
Therefore, when selecting a SLAM algorithm, it is crucial to consider the algorithm’s
autonomy, reliance on sensor data, and performance under different environmental
conditions. The robustness of the algorithm in handling sensor data, managing noise
and uncertainty, and maintaining accuracy over time is critical for reliable perfor-
mance. Evaluating the performance of SLAM algorithms under varied environmental
conditions is key. Some algorithms may excel in structured indoor environments but
perform poorly in outdoor settings with dynamic lighting and changing terrain. A
versatile SLAM algorithm should demonstrate robustness across different scenarios
and adapt to challenging conditions encountered in real-world applications. There-
fore, when choosing a SLAM algorithm, it is essential to prioritize stability, autonomy,
robustness to sensor data, and adaptability to various environmental conditions to en-
sure that robotic systems can conduct map construction, navigation, and localization
accurately and reliably.

3. Performance and robustness of object-detection algorithms: The YOLOv3 model per-
forms well in experiments, demonstrating fast processing speed and high recognition
accuracy. Although it may face challenges in recognizing objects with significant ap-
pearance variations, the model still exhibits robustness and generalization capabilities.

4. Directions for future work: SLAM algorithms can be further optimized to enhance
their applicability and stability in complex environments, for example, by incorpo-
rating additional sensor data or improving algorithm optimization strategies. For
object-detection algorithms, continuous refinement of datasets can improve recogni-
tion accuracy, especially for objects with significant appearance variations. In practical
applications, exploring the integration of different algorithms and technologies can
achieve more accurate and reliable indoor service robot systems.

4. Conclusions

This paper delves into the exploration of issues concerning the indoor mobility and
identification of service robots. A comparative analysis of the performance of Gmapping,
Cartographer, and Hector-SLAM algorithms in experimental environments is conducted.
Additionally, the Dijkstra algorithm is employed as the global path-planning algorithm,
while the teb_local_planner algorithm serves as the local path-planning algorithm. Through
a juxtaposition of simulation and real-world experimental environments, it is convincingly
demonstrated that the Gmapping algorithm is better suited to experimental site envi-
ronments compared to the other two algorithms, owing to its accuracy and adaptability,
making it the ideal choice for service robots navigating and identifying objects indoors.
However, as the robot operates in different environments, the choice of SLAM algorithm
should correspondingly be adjusted to achieve optimal output results. Comparisons, such
as those conducted by Pengtao Qu and other scholars, who experimented with three SLAM
algorithms in corridors and rooms, concluded that Cartographer exhibited the smallest
mapping errors across all experiments, making it the preferred 2D mapping solution
compared to other algorithms [30]. This example highlights the varying performance of
different SLAM algorithms in different environments. Therefore, it is essential to select an
algorithm based on the characteristics of the environment to enable the robot to move and
work more efficiently. By choosing the most suitable algorithm for the environment’s fea-
tures, the robot’s efficiency in movement and tasks can be significantly enhanced. Moreover,
the feasibility of the Dijkstra algorithm and teb_local_planner algorithm in path planning
is showcased, providing an effective strategy for the motion of service robots.

The utilization of the YOLOv3 algorithm significantly enhances the accuracy of target
detection, duly considering the computational capabilities of robot hardware and effectively
leveraging device performance. In the selection of optimization algorithms, a comparison
is made between the Adam and SGD algorithms. The detection results on the dataset
demonstrate that the Adam optimization algorithm outperforms SGD in terms of mAP

Machines 2024, 12, 256 24 of 25

value, precision, recall, and F1 score. Following meticulous parameter adjustment and com-
parative experiments, it is confirmed that the Adam optimization algorithm performs better
in target detection, with significant advantages in various metrics. For instance, the average
precision (AP) of the Adam optimization algorithm on the dataset is 88.04%, whereas that of
the SGD algorithm is only 79.16%. These results provide robust support for the selection of
excellent target detection models, emphasizing the importance of optimization algorithms
for performance and offering valuable guidance for practical applications.

The experimental results indicate that the service robot can significantly enhance
work efficiency and facilitate efficient exchange and transfer of items in office or other
indoor environments. The deep-learning-based robot vision recognition algorithm provides
efficiency in accurately conveying specific objects, showcasing its potential for widespread
application in office areas and home environments. Future directions for development
should include optimization of robot vision to better understand environmental mapping
relationships, thereby demonstrating superior performance in real-world environments.
These research findings offer valuable insights into the optimization and improvement of
service robots in practical applications.

Author Contributions: Conceptualization, M.L. and B.Z.; methodology, M.L.; software, M.L. and B.Z.;
validation, M.C., Z.W. and W.D.; formal analysis, M.L. and B.Z.; investigation, M.L., B.Z. and W.D.;
resources, M.C., Z.W. and W.D.; data curation, M.L. and B.Z.; writing—original draft preparation, M.L.
and B.Z.; writing—review and editing, M.L., M.C. and Z.W.; visualization, M.L. and B.Z.; supervision,
M.C. and Z.W.; project administration, M.L., M.C. and Z.W.; funding acquisition, W.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National College Student Innovation and Entrepreneur-
ship Training Program No. 232310407040X. This project comes from China’s national innovation
training program for college students. The project name is SLAM Genie—the leader of unmanned
management intelligent robots in university laboratories. The project number is 232310407040X. The
project leader is Deng Wangfen, who is also the fifth author of the paper.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Niloy, M.A.K.; Shama, A.; Chakrabortty, R.K.; Ryan, M.J.; Badal, F.R.; Tasneem, Z.; Ahamed, H.; Moyeen, S.I.; Das, S.K.; Ali,

F.; et al. Critical design and control issues of indoor autonomous mobile robots: A review. IEEE Access 2021, 9, 35338–35370.
[CrossRef]

2. Fragapane, G.; De Koster, R.; Sgarbossa, F.; Strandhagen, J.O. Planning and control of autonomous mobile robots for intralogistics:
Literature review and research agenda. Eur. J. Oper. Res. 2021, 294, 405–426. [CrossRef]

3. Cheong, A.; Lau, M.W.S.; Foo, E.; Hedley, J.; Bo, J.W. Development of a robotic waiter system. IFAC-PapersOnLine 2016, 49,
681–686. [CrossRef]

4. Guo, P.; Shi, H.; Wang, S.; Tang, L.; Wang, Z. An ROS Architecture for Autonomous Mobile Robots with UCAR Platforms in
Smart Restaurants. Machines 2022, 10, 844. [CrossRef]

5. Fang, G.; Cook, B. A Service Baxter Robot in an Office Environment. In Robotics and Mechatronics, Proceedings of the Fifth
IFToMM International Symposium on Robotics & Mechatronics (ISRM 2017), Taipei, Taiwan, 28–30 October 2019; Springer International
Publishing: Cham, Switzerland, 2019; pp. 47–56. [CrossRef]

6. Zhang, X.; Li, J. Research and Innovation in Predictive Remote Control Technology for Mobile Service Robots. Adv. Comput.
Signals Syst. 2023, 7, 1–6. [CrossRef]

7. Kumar, S.J. Application and use of telepresence robots in libraries and information center services: Prospect and challenges.
Libr. Hi Tech News 2023, 40, 9–13. [CrossRef]

8. Ye, Y.; Ma, X.; Zhou, X.; Bao, G.; Wan, W.; Cai, S. Dynamic and Real-Time Object Detection Based on Deep Learning for Home
Service Robots. Sensors 2023, 23, 9482. [CrossRef] [PubMed]

9. Kolhatkar, C.; Wagle, K. Review of SLAM algorithms for indoor mobile robot with LIDAR and RGB-D camera technology.
Innov. Electr. Electron. Eng. Proc. ICEEE 2020, 2021, 397–409.

10. Zhou, Y.; Shi, F.; Chen, J. Design and application of pocket experiment system based on STM32F4. In Proceedings of the 2020
8th International Conference on Information Technology: IoT and Smart City, Xi’an China, 25–27 December 2020; pp. 40–45.
[CrossRef]

https://doi.org/10.1109/ACCESS.2021.3062557
https://doi.org/10.1016/j.ejor.2021.01.019
https://doi.org/10.1016/j.ifacol.2016.10.679
https://doi.org/10.3390/machines10100844
https://doi.org/10.1007/978-3-030-17677-8_4
https://doi.org/10.23977/acss.2023.071101
https://doi.org/10.1108/LHTN-10-2023-0184
https://doi.org/10.3390/s23239482
https://www.ncbi.nlm.nih.gov/pubmed/38067855
https://doi.org/10.1145/3446999.3447007

Machines 2024, 12, 256 25 of 25

11. Moshayedi, A.J.; Roy, A.S.; Liao, L.; Khan, A.S.; Kolahdooz, A.; Eftekhari, A. Design and Development of Foodiebot Robot: From
Simulation to Design. IEEE Access 2024, 12, 36148–36172. [CrossRef]

12. Pebrianto, W.; Mudjirahardjo, P.; Pramono, S.H.; Setyawan, R.A. YOLOv3 with Spatial Pyramid Pooling for Object Detection with
Unmanned Aerial Vehicles. arXiv 2023, arXiv:2305.12344. [CrossRef]

13. Al-Owais, A.; Sharif, M.E.; Ghali, S.; Abu Serdaneh, M.; Belal, O.; Fernini, I. Meteor detection and localization using YOLOv3 and
YOLOv4. Neural Comput. Appl. 2023, 35, 15709–15720. [CrossRef]

14. Li, H.; Liu, L.; Du, J.; Jiang, F.; Guo, F.; Hu, Q.; Fan, L. An improved YOLOv3 for foreign objects detection of transmission lines.
IEEE Access 2022, 10, 45620–45628. [CrossRef]

15. Lawal, M.O. Tomato detection based on modified YOLOv3 framework. Sci. Rep. 2021, 11, 1447. [CrossRef]
16. Kim, K.; Kim, J.; Lee, H.-G.; Choi, J.; Fan, J.; Joung, J. UAV Chasing Based on YOLOv3 and Object Tracker for Counter UAV

Systems. IEEE Access 2023, 11, 34659–34673. [CrossRef]
17. Wang, H.; Zhang, F.; Liu, X.; Li, Q. Fruit image recognition based on DarkNet-53 and YOLOv3. J. Northeast Norm. Univ. (Nat.

Sci. Ed.) 2020, 52, 60–65.
18. Tian, C.; Liu, H.; Liu, Z.; Li, H.; Wang, Y. Research on multi-sensor fusion SLAM algorithm based on improved gmapping.

IEEE Access 2023, 11, 13690–13703. [CrossRef]
19. Zhang, L.; Wei, L.; Shen, P.; Wei, W.; Zhu, G.; Song, J. Semantic SLAM based on object detection and improved octomap.

IEEE Access 2018, 6, 75545–75559. [CrossRef]
20. Zhang, Y.; Li, R.; Wang, F.; Zhao, W.; Chen, Q.; Zhi, D.; Chen, X.; Jiang, S. An autonomous navigation strategy based on improved

hector slam with dynamic weighted a* algorithm. IEEE Access 2023, 11, 79553–79571. [CrossRef]
21. Xu, J.; Wang, D.; Liao, M.; Shen, W. Research of cartographer graph optimization algorithm based on indoor mobile robot. J. Phys.

Conf. Ser. 2020, 1651, 012120. [CrossRef]
22. Zhang, X.; Lai, J.; Xu, D.; Li, H.; Fu, M. 2d lidar-based slam and path planning for indoor rescue using mobile robots. J. Adv. Transp.

2020, 2020, 8867937. [CrossRef]
23. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), IEEE, Stockholm, Sweden, 16–21 May 2016; Volume 20, pp. 1271–1278.
[CrossRef]

24. Mi, Z.; Xiao, H.; Huang, C. Path planning of indoor mobile robot based on improved A* algorithm incorporating RRT and JPS.
AIP Adv. 2023, 13, 045313. [CrossRef]

25. Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; Bertram, T. Trajectory modification considering dynamic constraints of
autonomous robots. In Proceedings of the ROBOTIK 2012; 7th German Conference on Robotics, Munich, Germany, 21–22 May 2012;
VDE: Offenbach, Germany, 2012; pp. 1–6, ISBN 978-3-8007-3418-4.

26. Macenski, S.; Martín, F.; White, R.; Clavero, J.G. The marathon 2: A navigation system. In Proceedings of the 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE, Las Vegas, NV, USA, 24 October 2020–24 January 2021;
pp. 2718–2725. [CrossRef]

27. Guo, J. Research and Optimization of Local Path Planning for Navigation Robots Based on ROS Platform. Mod. Inf. Technol. 2022,
6, 144–148. (In Chinese) [CrossRef]

28. Zhang, B.; Li, S.; Qiu, J.; You, G.; Qu, L. Application and Research on Improved Adaptive Monte Carlo Localization Algorithm for
Automatic Guided Vehicle Fusion with QR Code Navigation. Appl. Sci. 2023, 13, 11913. [CrossRef]

29. Yong, T.; Shan, J.; Fan, R.; Tianmiao, W.; He, G. An improved Gmapping algorithm based map construction method for indoor
mobile robot. High Technol. Lett. 2021, 27, 227–237.

30. Qu, P.; Su, C.; Wu, H.; Xu, X.; Gao, S.; Zhao, X. Mapping performance comparison of 2D SLAM algorithms based on different
sensor combinations. J. Phys. Conf. Ser. 2021, 2024, 012056. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2024.3355278
https://doi.org/10.48550/arXiv.2305.12344
https://doi.org/10.1007/s00521-023-08575-0
https://doi.org/10.1109/ACCESS.2022.3170696
https://doi.org/10.1038/s41598-021-81216-5
https://doi.org/10.1109/ACCESS.2023.3264603
https://doi.org/10.1109/ACCESS.2023.3243633
https://doi.org/10.1109/ACCESS.2018.2873617
https://doi.org/10.1109/ACCESS.2023.3299293
https://doi.org/10.1088/1742-6596/1651/1/012120
https://doi.org/10.1155/2020/8867937
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1063/5.0144960
https://doi.org/10.1109/IROS45743.2020.9341207
https://doi.org/10.19850/j.cnki.2096-4706.2022.05.038
https://doi.org/10.3390/app132111913
https://doi.org/10.1088/1742-6596/2024/1/012056

	Introduction
	Robot Design
	Robot Chassis Design and Kinematics Analysis
	Differential Wheel Chassis Design
	Kinematic Analysis

	Control System Design
	Robot Vision Part Design

	Experimental Design and Results
	Experimental Design
	SLAM Simulation Experiment
	Virtual Simulation Environment
	GMapping
	Hector-SLAM
	Cartographer
	Results of SLAM Simulation Mapping Experiment

	Path Planning and Navigation Simulation Experiments
	Global Path Planning Using Dijkstra’s Pathfinding Algorithm
	Local Path Planning teb_local_planner
	Path Planning Simulation Experiment

	SLAM Live Field Experiment
	SLAM Actual Site Construction Process
	SLAM Actual Site Construction Results
	Practical Path Planning and Navigation Experiments
	Real Scene Target Detection

	Office Real Site Experiment
	SLAM Office Site Construction Process
	SLAM Office Site Construction Results
	Experiment on Route Planning and Navigation in Office Environment
	Office Site Target Detection

	Analysis and Discussion of Experimental Results
	Analysis of SLAM and Navigation Experiment Results
	Analysis of Experimental Results of Target Detection
	Discussion

	Conclusions
	References

