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Abstract: The need for industrial and commercial machinery to maintain high torque while accurately
following a variable angular speed is increasing. To meet this demand, induction motors (IMs)
are commonly used with variable speed drives (VSDs) that employ a field-oriented control (FOC)
scheme. Over the last thirty years, IMs have been replacing independent connection direct current
motors due to their cost-effectiveness, reduced maintenance needs, and increased efficiency. However,
IMs and VSDs exhibit nonlinear behavior, uncertainties, and disturbances. This paper proposes a
robust combined adaptive passivity-based control (CAPBC) for this class of nonlinear systems that
applies to angular rotor speed and stator current regulation inside an FOC scheme for IMs’ VSDs.
It uses general Lyapunov-based design energy functions and adaptive laws with σ-modification to
assure robustness after combining control and monitoring variables. Lyapunov’s second method
and the Barbalat Lemma prove that the control and identification error tends to be zero over time.
Moreover, comparative experimental results with a standard proportional–integral controller (PIC)
and direct APBC show the proposed CAPBC’s effectiveness and robustness under normal and
changing conditions.

Keywords: robust adaptive systems; combined adaptive passivity-based control; field-oriented
control; variable speed drives

1. Introduction

Since the late 1800s, machines used in industry and commerce have relied on direct
current (DC) motors. Since the 20th century, DC variable speed drives (VSDs) have been
used based on Thyristor rectifiers for high starting torque and variable speed accuracy.
However, these DC motors tend to spark and are susceptible to threading, grooving, and
flashover, as noted in [1]. As a result, induction motors (IMs), particularly the squirrel cage
type, have gradually replaced them over the past three decades. IMs are more cost-effective
and efficient and require less maintenance, as stated in [2]. Consequently, the sales of
IMs have increased by 85%, accounting for 60% of the total electricity consumption in the
industrial sector [2].

However, due to their nonlinear characteristics, alternating current (AC) VSDs are
more complex than DC VSDs [2]. They require IGBT-based inverters to regulate the stator
voltage and frequency. AC VSDs use three main control schemes: scalar control [3], direct
torque control (DTC) [4,5], and field-oriented control (FOC) [6,7]. Nevertheless, the indirect
FOC (IFOC) scheme [7] delivers higher output torque, higher stationary speed accuracy,
and fast and nonoscillatory transient behavior. It performs more closely to DC’s VSDs for
the machinery under study in this manuscript.

The IFOC method simplifies the mathematical model of an IM by choosing a specific
electrical angular slip. This simplification allows for the independent control of the elec-
tromagnetic torque and the rotor magnetic flux [8]. The basic IFOC relies on knowledge
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of the rotor time constant (τr) and uses proportional–integral controllers (PICs). These
PICs assume constant angular rotor speed operation and neglect disturbances such as load
torque and the inverter model uncertainty to deal with simple linear dynamical systems
(LDSs) [9]. Adjusting them also requires information on all the motor load parameters,
which can be obtained from diverse methods [10], such as offline algorithms [11,12], offline
tests [13,14], and self-commissioning tests [15,16].

Improving controller performance for FOC of IM has been a hot topic for the last
decades and today [17–25]. The work in [20] proposes substituting the PICs with parallel
PICs, improving robustness and performance indexes. However, [20] (Section 4) recognizes
tuning difficulties with a doubled number of parameters, using genetic algorithms and
particle swarm optimization (PSO) algorithms. The studies in [21,23] propose using a
fractional-order PIC for the speed control outer loop, again with tuning issues for the
fractional order value. The proposals in [24,25] design sliding mode controllers (SMCs),
which are also nonadaptive depending on the parameter’s knowledge. The review in [22]
discusses this SMC issue and compares it with DMRAC, fuzzy, and artificial neural network
(ANN) controllers. These last two need optimization techniques for minimal error, error
adjustment, and membership function, with a more complex design and adjustment, as
described in [22,26]. The proposed DAPBC [17] has a more straightforward design but
still has tuning difficulties, depending on trial and error. The work in [27] enhances [17]
by providing a specific formula depending on the operational range and not on the plant
parameters for the DAPBC controller parameters tuning; however, it is not applied to
FOC controllers.

It is clear that robust adaptive controllers ensure robustness under parameter vari-
ations without relying on their explicit knowledge [28–30]. There are three approaches
to adaptive control—direct (D), indirect (I), and combined (C) [30]. The direct method
is the most widely used. It has been applied to various applications such as self-piloted
crafts [31–33], robotics [34–36], power systems [37,38], including induction motors [17,39,40].
However, the C method proposed in the work in [41] aims to improve the transient perfor-
mance beyond the direct and indirect dynamic methods. Nevertheless, all these techniques
have tuning issues. Therefore, this manuscript proposes a combined approach with a
tuning method by expanding [27] with a tuning method.

In particular, the work in [41] introduced the C approach for the model reference
adaptive control (MRAC) technique for scalar LDS. Later, ref. [42] applied CMRAC to pH
control for a chemical reactor, outperforming a PID controller and DMRAC. The method
was then extended to single-input and single-output (SISO) LDS by controlling longitudinal
airplane movement [43]. These studies consider unknown plant parameters with the known
sign of the input parameter b, referred to as the known control direction (KCD). The KCD
assumes that the input parameter equals its unknown modulus multiplied by its known
sign. This is valid for SISO plants and multiple-input multiple-output (MIMO) systems
with a diagonal input matrix B, where B = |B|sign(B), such as IMs.

On the other hand, refs. [44,45] propose a CMRAC for MIMO LDS. However, they
assume a known input matrix B, substantially simplifying the adaptive control problem.
Meanwhile, ref. [46] considered an adaptive control law with a known input matrix sub-
stituted by its estimate. Lastly, refs. [47,48] neglected the estimation error and considered
an unknown input matrix to control uncrewed underwater and air vehicles, respectively.
Hence, this manuscript uses the ideas originally proposed by CMRAC [41–43] to extend
the D adaptive passivity-based control (APBC) technique [27], which ensures faster results
than MRAC for the IFOC scheme.

As a contribution, this paper proposes a new control technique called CAPBC for a
broader class of MIMO nonlinear linear dynamical systems (NLDSs). The proposed tech-
nique can handle systems with unmodeled dynamics and bounded external disturbance,
including the case of IMs. The CAPBC considers the parameters closed-loop estimation
error, first introduced by Duarte et al. [41]. To ensure robustness, the CAPBC incorporates
a MIMO sigma-modification [28–30]. The proposed technique was applied to the outer and
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inner controllers of an IFOC scheme for IMs and tested in a laboratory. The contributions
of this proposal are detailed as follows:

1. Proposing a novel CAPBC. This paper proposes a novel CAPBC technique that ex-
tends the existing DAPBC scheme from [27]. Compared with previous works [41–43],
the CAPBC can handle a wider range of MIMO NLDS with bounded external distur-
bance and unmodeled dynamic. In contrast to [44–46,48], the proposal considers the
estimation error originally proposed by [41–43].

2. Implementing a SISO CAPBC angular speed control. The proposed technique
is applied to the outer loop of an IFOC for IMs, where it controls the angular
speed. Implementing the CAPBC is more complex than the DAPBC from [27] but
improves performance by incorporating online parameter adaptive estimation. The
controller does not require knowledge of the motor load mechanical parameters,
unlike the PIC.

3. Implementing a MIMO CAPBC d-q axis current control. The proposed technique is
also applied to the inner loop of an IFOC for IMs, where it controls the stator current
vector components. In contrast to previous works [44–46,48], the CAPBC can handle
systems with an utterly unknown B with a known control direction (KCD), which is
the case for IMs.

Moreover, this paper presents experimental results that compare the proposed CAPBC,
DAPBC, and PIC techniques in an IFOC scheme for IMs. These tests include more changes
than the ones considered in previous studies [27,39,40]. Specifically, the tests consider
changes in angular speed reference, parameters that affect field orientation, and load
torque. The results demonstrate that the proposed technique is effective and outperforms
DAPBC and PIC techniques.

This paper has five sections. The first section is the introduction. Section 2 explains
the IM dynamical model and the IFOC control scheme for IMs. This section also provides
detailed information on the PIC adjustments and CMRAC basis. Section 3 proposes the
CAPBC method for a specific type of nonlinear system that includes IMs. In addition, the
authors provide theoretical proof of the proposed method. Section 4 depicts comparative
experimental results with PIC and DAPBC, showing the effectiveness and robustness of
CMRAC. This section also includes a discussion of the results. Lastly, Section 5 concludes
the findings of this paper.

2. Preliminaries
2.1. d-q IM Dynamic Model and IFOC Diagram

The IM model considers a two-pole machine whose results can be expanded for more
poles. It is assumed that the rotor and stator windings are distributed symmetrically, the
signals are sinusoidal (neglecting the harmonic effects), and that hysteresis, iron losses, and
saturation are negligible. The machine operates within the linear zone of the magnetic field,
and all motor parameters are constant and referred to the stator. Moreover, a quadrature-
phase machine with a smooth air gap is considered [49] (Section 2.1.5). Kirchhoff laws for
the stator and rotor circuit are applied [49], and the Park transformation [50] is used to
shift the electrical equations to a rotating synchronous reference frame. The vectors are
then split into real and imaginary parts, and the IM d-q model used by the FOC scheme is
obtained. This is combined with the motion equation obtained from the second Newton
law for rotational motion, resulting in the following [49] (Section 2.8):



Machines 2024, 12, 272 4 of 24
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(1)

Here, the variables are the amplitude of the sinusoidal signals at the motor terminals
expressed as the direct and quadrature stator current amplitudes Isd, Isq, the direct and
quadrature stator voltage amplitudes Vsd, Vsq, and the direct and quadrature rotor flux
amplitudes Ψrd and Ψrq. ωr is the rotor angular speed at the shaft, ωe is the angular electrical
frequency or speed of the synchronous reference frame, Te is the electromagnetic motor
output torque, and Tl is the load torque. The parameters Rs, Rr are the stator and rotor
resistances of a phase winding, p are the poles number, J is the motor load inertia, Bp is
the viscous coefficient, Ls, Lr , and Lm are the stator, rotor, and magnetizing inductances,

respectively, σ = 1 − L2
m

Lr Ls
is the dispersion coefficient, and R′

s = Rs +
L2

mRr
L2

r
is the stator

transient resistance. Finally, the model uses the following first-time derivatives: İsd = dIsd
dt ,

İsq =
dIsq
dt , Ψ̇sd = dΨsd

dt , Ψ̇sq =
dΨsq

dt , and ω̇r =
dωr
dt .

Remark 1. The coupling between electromagnetic torque, stator current, and rotor flux can be
observed in Equation (1). As a solution, the IFOC is then achieved for the IM d-q model (1) after
imposing the following electrical angular frequency (please see details in Appendix A) and operating
with a fixed I∗sd [5] (Section 4.1):

ωe =
p
2

ωr + α
1
τ̂r

I∗sq

I∗sd
. (2)

Here, I∗sd, I∗sq are the required direct and quadrature stator current amplitudes. τ̂r is the
estimated rotor time constant, and α = 1.

As a result of applying the electrical angular frequency (2), the quadrature component of the
rotor flux tends to zero Ψrq → 0. Thus, Ψrd → Lm Isd, and the electromagnetic torque Te → KTe Isq,

with a constant KTe =
3
2

p
2

L2
m

Lr
Isd. Therefore, the following simplified IM d-q model is obtained [49]

(Section 2.8):

İsd = − R′
s

σLs
Isd +

(
ωe Isq +

Rr L2
m

σLs L2
r

Isd

)
+ 1

σLs
Vsd,

İsq = − R′
s

σLs
Isq +

(
−ωe Isd +

L2
m

σLs Lr

p
2 ωr Isd

)
+ 1

σLs
Vsq,

ω̇r = − Bp
J ωr − KTe Isq +

(
1
J Tl

)
.

(3)

This simplified d-q model considers Isq as an electromagnetic torque-producing current and Isd
as a rotor-flux-producing current. Then, Isd is controlled to achieve constant rotor flux control, and
Isq is used to control the electromagnetic torque for the load demands at different rotor speeds. This
way, torque and flux can be controlled independently, similar to DC machines that are separately
excited, which is the aim of the IFOC (3). Figure 1 depicts the IFOC block diagram.

Remark 2. The simplified d-q model (3) has the nonlinear terms ωe Isd, ωe Isq, and ωr Isd. Moreover,
the load torque term Tl is often considered as a disturbance.

The following section describes the adjustment of the basic PIC considered for rotor
angular speed and stator current vector of the IFOC for IMs. This controller assumes the
operation at a fixed angular rotor speed. Thus, ωe and ωr are constant, and model (3)
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behaves as an LDS. Furthermore, the outer loop PIC neglects the Tl disturbance and expects
robustness in front of its variations.

𝜔𝑟

Power 
Supply

IM

𝒖𝑠
∗

𝒊𝑠

Trip & 
Inverter 

Unit

dq

abc

dq

abc

Speed
Controller

𝜔𝑟
∗

𝑽𝑠𝑞
∗

𝑰𝑠𝑑𝑞

Load

Current
Vector

Controller

E

𝐼𝑠𝑞
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𝐼𝑠𝑞
∗

IFOC
𝜔𝑒

𝐼𝑠𝑑
∗

𝑽𝑠𝑑
∗

𝐼𝑠𝑞
∗

𝐼𝑠𝑑
∗

𝜔𝑟

𝜔𝑒

𝜔𝑒

+

−

+

−

+

−

Figure 1. IFOC diagram for IMs based on [5] (Section 4.1).

2.2. PIC Adjustment

Appendix B describes the PIC adjustment theory in detail. As a summary, the inner
current controllers’ parameters are computed as follows (based on [9]):

V∗
sq =

(
KPieIsq + KIi

∫
eIsq dτ

)
and V∗

sd =

(
KPieIsd + KIi

∫
eIsd dτ

)
where KIi =

R′
sτiω

2
ni

Ho Hi
and KPi =

R′
s(τi2ξiωni − 1)

Ho Hi
.

(4)

Here, V∗
sq and V∗

sd are the direct and quadrature stator voltage references, KPi and KIi
are the PICs inner proportional and integral parameters, eIsq and eIsd are the direct and
quadrature stator current errors, τi is the electrical time-constant, Ho is the inverter gain,
and Hi is the current sensor gain.

As design criteria, a root locus method is often applied. The inner damping coefficient
value ξi is chosen between 0.5 and 0.8, with the most common value for this application
considering ξi =

√
2

2 ≈ 0.707. The inner natural frequency equals ωni =
2.3
τi

[51], which in
this AC drive case should be higher than the switching frequency of the inverter´s IGBTs,
having a value between 1.7 kHz and 16 kHz for powers between 1500 kW and 37 kW,
respectively [52].

Moreover, the outer angular speed controllers’ parameters are computed as follows
(based on [9]):

I∗sq =

(
KPoeωr + KIo

∫
eωr dτ

)
K−1

Te

where KIo =
HiBpτoω2

no

Ho
and KPo =

HiBp(2ξoωnoτo − 1)
Ho

,

(5)

where I∗sq is the quadrature stator current set point, KPo and KIo are the PICs outer propor-
tional and integral parameters, eωr is the rotor angular speed error, τo is the mechanical
time-constant, and Ho is the speed sensor gain. Here, the squared outer natural frequency
is ω2

no = (KIo Ho)/(HiBpτo), which is used to obtain the fixed-gain parameter KIo of the
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controller after considering ωno = ωni
15 [51,53]. The term depending on the outer natural

frequency ωno and the outer damping coefficient ξo is 2ξoωno = (HiBp + KPo Ho)/(HiBpτo),
and it is used to compute the fixed-gain parameter KPo of the controller.

Remark 3. Please observe that PIC adjustment depends on the knowledge of the plant parameter
values. Here, the resistances vary with the motor temperature, for instance. Therefore, using an
adaptive controller would assure robustness regarding parameter variations.

The following section describes the CMRAC basis this manuscript considers when
proposing CAPBC.

2.3. CMRAC Basis to Be Expanded for CAPBC

The CMRAC applies to scalar LDS, with relative degree 1 of the following form:

ẏ(t) = ay(t) + bu(t). (6)

Here, the plant parameters a and b ∈ R are constant and unknown, with known
sign(b). The LDS´s input and output are u(t) and y(t) ∈ R, respectively.

The CMRAC is associated with the following equations [41]:

ẏr(t) = −kcyr(t) + bry∗(t), Reference model (7)
˙̂y(t) = −kiei + θ̂i

Tωi, Identification model (8)

u(t) = θ̂c
Tωc, Control law (9)

˙̂θ1(t) = sign(b)(ec(t)y(t) + ε1(t)),
˙̂θ2(t) = sign(b)(ec(t)yr(t) + ε2(t)),

}
Control adaptive law (10)

ε1(t) = −(â + kc) + b̂(t)θ̂1(t),
ε2(t) = −br + b̂(t)θ̂2(t),

}
Closed-loop estimation error (11)

˙̂a(t) = −(ei(t)y(t)− ε1(t)),
˙̂b(t) = −

(
ei(t)u(t)− ε1(t)θ̂1(t)− ε2(t)θ̂2(t)

)
.

}
Identification adaptive law (12)

Here, the variable yr(t) ∈ R is the reference model output and ŷ(t) ∈ R is the
identification model output. The bounded reference trajectory is y∗(t) ∈ R. Furthermore,
ec = (yr(t)− y(t)) ∈ R and ei(t) = (ŷ(t)− y(t)) ∈ R are the control and identification
errors. The adaptive parameters for control are θ̂c(t), and for identification, θ̂i(t)∈ R2.
The designer chooses the model parameters br, kc ∈ R+, and ki ∈ R, and ωc, ωi ∈ R2

are the control and identification vector information. The estimated controller parameter
θ̂T

c =
[
θ̂1 θ̂2

]
, and the estimated plant parameter θ̂T

i =
[
â b̂

]
. Finally, the ideal controller

parameters θ1, θ2 ∈ R fulfill the following condition:

−(a + kc) + bθ1 = 0 and − br + bθ2 = 0. (13)

Once this CMRAC is applied to system (6) and it is assumed that b = |b|sign(b), the
obtained closed-loop autonomous system ensures that ec(t), ei(t), ε1(t), and ε2(t) tend
asymptotically to zero.

Figure 2 shows the CMRAC control diagram for LDS dynamical systems.



Machines 2024, 12, 272 7 of 24

Identification 
Model

ሶො𝑦 = −𝑘𝑖𝑒𝑖 + 𝜃𝑖
𝑇𝜔𝑖

𝑦

Reference 
Model

ሶ𝑦𝑟 = −𝑘𝑐𝑦𝑟 + 𝑏𝑟𝑦
∗

𝑒𝑐

𝑒𝑖

𝜃𝑐
𝑇𝜔𝑐

𝜃𝑐

𝜃𝑖

𝑦∗

𝑒𝑖

ො𝑦

𝑦𝑟

𝑢𝜔𝑐

𝜔𝑖

𝑦

𝑢

𝑦𝑟

Closed−loop
estimation

error

𝜀

𝜃𝑐

𝜃𝑖

𝜀

𝑦

LDS

𝜃𝑐

𝜔𝑐

𝜔𝑖 𝜃𝑖

𝜀
+
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Figure 2. CMRAC diagram based on [41].

Remark 4. The C approach enhances the D and I approaches by taking into account the closed-
loop estimation error. However, it does not apply to NLDS with disturbances and unmodeled
dynamics. Furthermore, CMRAC has had tuning issues for Kc and Ki, which have recently been
resolved [27].

Based on the previous background and as a solution to the described issues, the
following section proposes a robust CAPBC for MIMO NLDS.

3. Proposed CAPBC

This section outlines the proposed CAPBC, which combines the D and I approaches,
considering the closed-loop estimation error of the adaptive parameters based on the
CMRAC ideas [41–43] described in Section 2.3. Additionally, the proposal is adaptive and
does not rely on explicit knowledge of the plant parameters, as in the case of PIC described
in Section 2.2. However, this CAPBC has specific tuning formulas similar to the PIC, but
depending on the known plant operational expansion the DAPBC [27], and applies to both
LDS and NLDS with disturbances and unmodeled dynamics. Consequently, the proposal
solves the issues described in Remark 4 of CMRAC.

Figure 3 illustrates the proposed CAPBC diagram, which is then applied to the inner
and outer control loops of the IFOC diagram described in Section 2.1 for IMs.

The proposed CAPBC shown in Figure 3 lacks of a reference model [41] and applies to
MIMO dynamical systems of the following form:

ẏ(t) = AT f (y) + BT g(y)Tu + δT∆ + ζ. (14)

Here, the output y(t) ∈ Rn and the input u(t) ∈ Rn are accessible. The functions
g(y) ∈ Rnxn, and f (y) ∈ Rm are known, like the disturbance portion ∆ ∈ Rn. The
unmodeled dynamics ζ ∈ Rn are unknown, as well as the plant parameters AT ∈ Rnxm,
BT , δT ∈ Rnxn.
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Figure 3. Proposed CAPBC diagram for MIMO NLDS; the differences are marked in red.

The following theorem details the proposal for the class of NLDS (14):

Theorem 1. The following CAPBC assures the output y(t) ∈ Rn of NLDS (14) tracks the reference
y∗(t) ∈ Rn while observing it via ŷ(t) ∈ Rn:

˙̂y(t) = −Ki▽Vei (t)
T + θ̂T

i ωi, Identification model (15)

u(t) = g(y)−1θ̂T
c ωc, Control law (16)

˙̂θT
c =

(
ST▽Vec ωT

c − STεTΓ−1
ε + σc θ̂T

c

)
Γc, Control adaptive law (17)

ε =

ε1
ε2
ε3

 =

B̂T θ̂T
1 + ÂT

B̂T θ̂T
2 − In

B̂T θ̂T
3 + δ̂T

, Closed-loop estimation error (18)

˙̂θT
i =

(
ωT

i ▽Vei − εTΓ−1
ε (PT

1 + θ̂cPT
2 ) + σi θ̂

T
i

)
Γi, Identification adaptive law (19)

Here, ▽Vec ∈ R1xn and ▽Vei ∈ R1xn are the gradients of the design Lyapunov-type en-
ergy functions Vec and Vei . The control and identification errors are ec(t) = y∗(t) − y(t) and
ei(t) = y(t) − ŷ(t), with ec(t), ei(t) ∈ Rn. The adaptive controller and identification param-
eters are θ̂T

c and θ̂T
i (t) ∈ Rnx(2n+m), depending on the control and identification adaptive law

modifications σc and σi ∈ Rnxn, which are positive-definite. The information vectors for control
and identification are ωc and ωi ∈ R(2n+m)x1, where ωT

c =
[

f (y)T (Kcec + ẏ∗)T ∆T]T and

ωT
i =

[
f (y)T (g(y)Tu)T ∆T]T . The auxiliary known parameters P1 =

Im 0 0
0 0n 0
0 0 In

 and

P2 =
[
0m In 0n

]
, where Im and In are identity matrices of order m and n, respectively. More-

over, 0n and 0m are null matrices of order n and m, respectively. The estimated plant parameter
θ̂T

i =
[
ÂT B̂T δ̂T] (19) finds Â ∈ Rnxm, B̂, and δ̂ ∈ Rnxn. The estimated controller parameter

θ̂T
c =

[
θ̂T

1 θ̂T
2 θ̂T

3
]

(17), computes θ̂1 ∈ Rnxm, θ̂2, and θ̂3 ∈ Rnxn. Later, these results allow
implementing the closed-loop estimation error (18).

The designer adjusts the control and identification gains Γc, Γi, and Γε ∈ R(2n+m)x(2n+m),

where Γc = Γε =
(

µc
1+ωT

cnωcn

)
, Γi =

(
µi

1+ωT
inωin

)
, where ωcn and ωin are the vectors containing

the upper operational range of each element of ωc and ωi. Also, it adjusts the forgetting factors
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µc ∈ R+ and µi ∈ R+ [54]—(Section 4.3.6) and (Remark 4.3.7). Furthermore, the designer
adjusts controller parameters Kc and Ki ∈ Rnxn. The ideal control and identification parameters
are θT

c and θT
i ∈ Rnx(2n+m), which are defined as follows:

θT
i =

[
AT BT δT] (20)

BTθT
1 + AT = 0 , BTθT

2 − In = 0 and BTθT
3 + δT = 0. (21)

The error of the parameters are ΦT
c = θT

c − θ̂T
c and ΦT

i = θT
i − θ̂T

i ∈ Rnx(2n+m).
Appendix C describes the CAPBC stability proof. ♢

The proposed CAPBC is utilized in an IFOC scheme for IMs, as depicted in Figure 4.
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Figure 4. IFOC diagram for IMs with the proposed CAPBCs.

The design considers the simplified IM d-q model (3) and divides it into the elec-
trical and mechanical subsystems to be controlled in cascade. The first two equations
of (3) represent the inner-loop electrical subsystem, with an inner output yi of the form

yi =
[
Isq Isd

]T and an inner control input ui of the form ui =
[
V∗

sq V∗
sd

]T
. On the other

hand, the last equation of (3) represents the outer-loop mechanical subsystem, with an
outer output yo of the form yo = ωr and an outer control input uo of the form uo = I∗sq.

The design of the outer loop controller CAPBCo considers the known disturbance
portion ∆ to be equal to the nominal torque Tn, and there is no disturbance for the inner
loop. The function g(y) is equal to 1, and f (y) is equal to −ωr. Moreover. the design of the
inner controller CAPBCi assumes there is no disturbance and that there are unmodelled
dynamics of the inverter. The function g(y) is equal to the identity matrix of order two I2,
and f (y) is equal to

[
−Isq ωe Isq −Isd −ωe Isd

p
2 ωr Isd

]T .
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The design Lyapunov-type energy functions are Veco = e2
oc/2 and Veio = e2

io/2 for
the outer loop, and Veci = eT

cieci/2 and Veii = eT
ii eii/2 for the inner loop. Therefore, their

respective gradients are ▽Veco = eoc, ▽Veio = eio, ▽Veci = eT
ci, and ▽Veii = eT

ii .
The following section discusses the obtained comparative experimental results.

4. Experimental Results

Figure 5 shows the pictures of the test bench used to validate the proposal, joined with
its control diagram.

FPGA
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Matlab

RT-Lab

Host PC OPAL-RT
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6ch
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2A
AI

2B
AO

UTP 
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+
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ENCONDER
ROP520

1024 ppr
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CURRENT PROBE
SL-261 (10 mV/A)

Load

𝜔𝑟 Calculus

OPAL-RT

Inverter

Variac

Oscilloscope

IM+Encoder Load

Host PC

Vab

Figure 5. Test bench pictures and control diagram.

It has a real-time simulator controller OPAL-RT 4510 v2 from OPAL-RT Technologies,
Montréal, QC, Canada that inherently uses a bipolar pulse width modulation (PWM),
switching at 8 kHz. It commands a two-level voltage source inverter that feeds an IM-load
assembly, sending the trip pulses via fiber optic (FO) cables. Simulink version 10.4 of
Matlab R2021b (9.11.0.1769968) for Win64 running on a Host PC allows building the IFOC
scheme of Figure 1 using PIC, DAPBC, and the proposed CAPBC and downloading them
to the control platform using the software RT-LAB v2020.2.2.82. The motor data plate
has 7500 kW, 380 V, 50 Hz, 1455 rpm, f p = 0.85, and two pairs of poles p = 2. A rotor
time constant of τr = 0.221 was used to implement FOC (2), which is taken from previous
measurements ([16], Tables IV, Motor II).

The following controllers were programmed into the IFOC scheme:

1. PIC (4) and (5). These controllers were adjusted as described in Section 2.2 and using
the motor load parameter values from [16] (Tables III, IM 2) that followed the IEEE
standard 112A, including DC injection, locked rotor, and free load [13] (Section 5.9).

2. DAPBC [27] (Theorem 1) It uses both a SISO controller I∗sq = θ̂ocωoc and a MIMO

controller
[

Vsq∗

Vsd∗

]
= θ̂icωic, as in [27] (Equation (4)). The motor load parameter does

not need to be known to adjust DAPBC.
3. Proposed CAPBC from Theorem 1. It also uses both a SISO controller I∗sq = θ̂ocωoc

and a MIMO controller
[

Vsq∗

Vsd∗

]
= θ̂icωic, as in Figure 4.

The same 10 s duration test applies to the PIC, DAPBC, and proposed CAPBC strate-
gies. It considers that the IM starts with a 66% torque load and applies a step speed
command of 25 rad/s, 60 rad/s, 85 rad/s, 120, and 152.36 rad/s, at times 2 s, 2.5 s, 3 s, 3.5 s,
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and 4 s, respectively. Later, the load decreases to 40% at 5 s and increases again to 66% at
6 s. Finally, the field disorientation is considered by adjusting the value of α from IFOC (2)
to α = 0.8 at 7.5 s and increases again to α = 1.1 at 9 s, simulating step changes for the rotor
time constant.

Figure 6 exhibits the controller’s comparative rotor angular speed response. It can
be seen that adaptive controllers are more robust against different variations, including
load torque and IFOC-impacting parameter variations. All controllers track the reference
speed. However, adaptive controllers exhibit lower maximum overshoot (MO) and faster
response than PIC in all scenarios. Here, the proposed CAPBC has the lowest MO and the
fastest response. The effectiveness of the proposed CAPBC is superior for the different step
changes in the reference speed occurring every 2.5 s until 4 s, as well as for the torque and
IFOC variations. The CAPBC enhanced the transient response of the PIC and the DAPBC,
as expected.

Figure 6. Comparative rotor angular speed.

Table 1 shows comparative performance indexes with more detail than Figure 6.
The CMRAC exhibits the best performance in all scenarios despite having similar

steady-state errors (Ess) across the different controllers. The proposal demonstrates the
lowest control effort (please see the ISI index) and better transient behavior with the lowest
MO and IAE indexes. The performance of the PIC deteriorates significantly when field
disorientation occurs at seven and nine seconds with α equal to 0.8 and 1.1, respectively.
The proposed CAPBC and DAPBC for the inner loop ensure robustness under this situation
due to their MIMO, adaptive natures, and NLDS designs.

Figures 7–9 show the consumed and reference q-axis current for torque production
for the PIC, DPABC, and CAPBC, respectively. All controllers track the reference current
I∗sq that produces torque, with CMRAC and DAPBC having a faster response than PIC.
The PIC has difficulties tracking the reference after nine seconds when field disorientation
occurs, as seen in the center-right side of Figure 7. This provokes the tracking difficulties
shown in the upper-right side of Figure 6 for the slower speed control outer loop.
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Table 1. Comparative performance indexes for the rotor speed controllers.

Performance Index

Tests

Time [s] 2.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 9.0

α 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.80 1.10

Tl [% Tn] 66.0 66.0 66.0 66.0 66.0 40.0 66.0 66.0 66.0

Speed [rad/s] 25.0 60.0 85.0 120 152.36 150 152.36 152.36 152.36

Ess [%] (Ending)
(ω∗

r −ωr)
ω∗

r
100

PI 0.1299 0.1212 0.1237 0.1189 0.0180 0.0307 0.0254 0.0243 0.0851

DAPBC 0.0850 0.0302 0.0804 0.0100 0.0063 0.0079 0.0195 0.0227 0.0468

CAPBC 0.0512 0.0269 0.0659 0.0066 0.0029 0.0068 0.0190 0.0139 0.0171

MO [%] (Starting)
(ω∗

r −ωr)
ω∗

r
100

PI 5.5983 10.6929 7.1124 5.3479 4.3302 4.1276 0.2338 2.7979 3.5007

DAPBC 3.5168 1.7019 1.1308 0.8651 0.7095 0.3595 0.2139 0.1751 0.3143

CAPBC 3.4904 1.4038 0.8367 0.5941 0.4640 0.2938 0.1923 0.1663 0.1667

IAE [cm.s]∫
|eωr | dτ

PI 0.6491 0.6494 0.6501 0.6519 0.6541 0.6544 1.043 1.52 2.2654

DAPBC 0.0152 0.0198 0.0359 0.0368 0.0378 0.0529 0.0663 0.0694 0.1507

CAPBC 0.0099 0.0059 0.0072 0.0102 0.0223 0.0356 0.0437 0.0452 0.1425

ISI [×103]∫
I∗2
sq dτ

PI 0.2785 0.2649 0.2656 0.2664 0.2672 0.3915 0.8797 1.1001 3.3045

DAPBC 0.2616 0.2619 0.2623 0.2625 0.2632 0.3907 0.8752 0.9837 3.3018

CAPBC 0.2592 0.2594 0.2610 0.2624 0.2634 0.3900 0.8689 0.9729 3.3016

Figure 7. Consumed and reference q-axis current torque producing for PIC.
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Figure 8. Consumed and reference q-axis current torque producing for DAPBC.

Figure 9. Consumed and reference q-axis current torque producing for the proposed CAPBC.

It can be seen in Figures 7–9 that the faster speed responses of adaptive controllers
are achieved with a higher reference and consumed q-axis current torque producing, as
expected. Moreover, the line voltages have the typical PWM wayform, with the 50 Hz fre-
quency corresponding to the nominal rotor angular speed, as can be seen in Figures 10–12.

Finally, Figures 10–12 show the oscilloscope line voltage a-b around 6.5 s for the PIC,
DPABC, and CAPBC, respectively. In all cases, results show the typical two-level voltage
source inverter commended by a bipolar PWM.
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Figure 10. Line voltage a-b around second 6.5 for PIC.

Figure 11. Line voltage a-b around second 6.5 for DAPBC.
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Figure 12. Line voltage a-b around second 6.5 for the proposed CAPBC.

5. Conclusions

This paper introduced a novel CAPBC tailored for a class of nonlinear systems encom-
passing the IMs under an IFOC scheme, including perturbances and unmodeled dynamics.
It expands the DAPBC technique [27] based on the combined approach previously pro-
posed for MRAC [41–43]. The theoretical underpinnings of the proposed CAPBC are
detailed in Theorem 1, and the stability proof is exhibited in Appendix C.

Later, the proposal implemented a SISO CAPBC angular speed control for the outer
loop of an IFOC for IMs in cascade with the inner-loop MIMO CAPBC d-q axis current
control. This paper presents comparative experimental results between the proposed
CAPBC, the DAPBC, and PIC techniques in an IFOC scheme for an IM of 7.5 kW. The
results demonstrate that the proposed technique is effective and outperforms DAPBC and
PIC techniques. Unlike traditional PICs, the CAPBC does not need knowledge of the motor
load parameters.
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IMs Induction motors
DC Direct current
AC Alternating current
D Direct approach
I Indirect approach
C Combined approach
VSDs Variable speed drives
FOC Field-oriented control
VSDs Variable speed drives
DTC Direct torque control
IFOC Indirect field-oriented control
LDS Linear dynamical systems
NLDS Nonlinear dynamical systems
PIC Proportional and integral controller
MRAC Model reference adaptive control
DMRAC Direct model reference adaptive control
CMRAC Combined model reference adaptive control
APBC Adaptive passivity-based control
DAPBC Direct adaptive passivity-based control
SMC Sliding mode control
ANN Artificial neural network
PSO Particle swarm optimization technique
SISO Single-input and single-output
MIMO Multiple-input and multiple-output
KCD Known control direction
PWM Pulse width modulation
Ess [%] Steady-state error computed as (ω∗

r −ωr)
ω∗

r
100 at the response ending

MO [%] Maximum overshoot calculated as (ω∗
r −ωr)
ω∗

r
100 at the response starting

IAE [cm.s] Integral absolute value Error of the output
∫
|eωr | dτ

ISI [×103] Integral squared output
∫

I∗2
sq dτ

Mathematical Operators
ẋ Continuous first-time derivative of x.
x̂ Estimated variable or parameter x.
y∗ Set-point or required output variable y.
e,m Referred to electrical e and mechanical m.
i,o Inner and outer variable.
yT Transpose vector variable y.
f (y), and g(y) Functions of the variable y.
Main Notation
The following main notations are used in this manuscript:
ωr, ωe Rotor and electrical angular speed
θr Rotor position
us Stator voltage
is Stator current
Te, Tl , and Tn Electromagnetic, load, and nominal torque.
p Number of poles
Rs and Rr Stator and rotor resistance
L′

s and L′
r Stator and rotor leakage inductance

Ls, Lr, and Lm Stator, rotor, and magnetizing inductance
σ Leakage or coupling coefficient, given by σ = 1 − L2

m/(Lr Ls)

R′
s Stator transient resistance, with R′

s = Rs +
L2

m Rr
L2

r

τσ Stator transient time constant. Given by τσ = σLs/R′
s

τr Rotor time constant τr = Lr/Rr
τi, and τo Electrical and mechanical time constant
Bp Mechanical friction factor
J Moment of inertia
Isd, and Isq Direct and quadrature stator current amplitudes
Vsd, and Vsq Direct and quadrature stator voltage amplitudes
eIsq , and eIsd Direct and quadrature stator current errors
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eωr Rotor angular speed error
Ψrd, and Ψrq Direct and quadrature rotor flux amplitudes
KTe Constant KTe =

3
2

p
2

L2
m

Lr
Isd

KP and KI PICs proportional and integral parameters
Hi, and Ho Inverter and speed sensor gain
ξ Damping coefficient
ωn Natural frequency
y, and yr Plant and reference model output
a, b, A, B, and δ Plant parameters
br, kc, ki, Kc, and Ki Model parameters
ec, and ei Control and identification errors
θ̂c, and θ̂i Adaptive parameters for control and for identification
ωc, and ωi Control and identification vector information
ωcn, and ωin Vectors containing the upper operational range of each element of ωc and ωi
ε Closed-loop estimation error
∆ Disturbance portion
ζ Unmodeled dynamics
▽Vec , and ▽Vei Gradients of the design Lyapunov-type energy functions
σc, and σi Positive-definite constants
P1, and P2 Auxiliary known parameters
Im, and In Identity matrix of order m and n
0m, and 0n Null matrix of order m and n
Γc, Γi and Γε Control, identification, and closed-loop estimation error gains
µc, and µi Forgetting factors

Appendix A. IFOC Method Basis

The basic IFOC method [55] imposes an electrical angular frequency equal to

ωe =
p
2

ωr +
L̂m

τ̂r

Isq

Ψ̂rd
. (A1)

Here, substituting (A1) into the first derivatives of the direct and quadrature rotor flux
Ψ̇rd and Ψ̇rq of Equation (1), these rotor fluxes dynamical equations from (1) take the form

Ψ̇rd = − 1
τr

Ψrd +
L̂m

τ̂r

Isq

Ψ̂rq
Ψrq +

Lm

τr
Isd,

Ψ̇rq = − 1
τr

Ψrq +
Lm

τr

(
1 − τr L̂m

Lmτ̂r

Ψrd

Ψ̂rd

)
Isq.

(A2)

Then, if the term τr L̂m
Lm τ̂r

Ψrd
Ψ̂rd

= 1 in this last equation with accurate estimations, the
dynamical equation of the quadrature rotor flux component Ψry has an exponential behavior
tending to zero over time Ψrq → 0, reaching over the 99% of this final value after five
times the rotor-time constant τr [9]. Later, Ψrd → Lm Isd and the electromagnetic torque

Te → 3
2

p
2

L2
m

Lr
Isd Isq, obtaining the simplified d − q model (3).

However, using Equation (A1) to achieve IFOC needs a flux estimator to obtain Ψ̂rd,
which is the reason why it is not used in this paper. Therefore, the alternative and more
practical method using the electrical angular frequency of Equation (2) is performed in this
paper [49,56].

The authors have not found explicit proof of this method in the literature. Thus, we
describe it herein. After considering the definition of the rotor time constant τr =

Lr
Rr

and
substituting Equation (2) into the third and fourth equations of (1), the rotor flux dynamical
equations from (1) take the form
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[
Ψ̇rd
Ψ̇rq

]
= A

[
Ψrd
Ψrq

]
+ Lm

[
Isd
Isq

]
, whit A =

 −1 − τr
τ̂r

I∗sq
I∗sd

τr
τ̂r

I∗sq
I∗sd

−1

. (A3)

After applying the Laplace transform [56] to this last equation, considering constant[
Isd Isq

]T and the initial condition
[
Ψsd(0) Ψsq(0)

]T , we obtain[
Ψrd
Ψrq

]
= (τrs − A)−1Lms−1

[
Isd
Isq

]
+ (τrs − A)−1

[
Ψrd(0)
Ψrq(0)

]
. (A4)

Applying the final value theorem [56], where limt→∞ f (t) = lims→0 sF(s), we have

limt→∞
[
Ψsd(t) Ψsq(t)

]T
= LmA−1[Isd Isq

]T. As a result,
[

Ψrd
Ψrq

]
→ Lm

 1 − τr
τ̂r

I∗sq
I∗sd

τr
τ̂r

I∗sq
I∗sd

1

[Isd
Isq

]
.

Then,
[

Ψrd
Ψrq

]
→ Lm(

1+(
τr I∗sq
τ̂r I∗sd

)2
)
Isd

(
1+

τr I∗sq Isq
τ̂r I∗sd Isd

)
Isq

(
1− τr I∗sq Isd

τ̂r I∗sd Isq

)
. Here, if

τr I∗sq Isd
τ̂r I∗sd Isq

= 1, we obtain
[

Ψrd
Ψrq

]
→

Lm

[
Isd
0

]
, achieving field orientation. This could be obtained under the presence of accurate

parameters estimation, similar to the basic IFOC method, thus τr
τ̂r

= 1; and even if Isd ̸= I∗sd

and Isq ̸= I∗sq, but
I∗sq
I∗sd

Isd
Isq

= 1, which is a valid case not considered in [56].

Appendix B. PIC Adjustment

The adjustment of the PI controllers starts from the simplified IM d-q model (3) and
the IFOC block diagram of Figure 1. These are re-expressed as the transfer function
block diagram [53] of Figure A1 in Laplace domain after considering all the motor load
parameters and the operating point constant is known.

The inner loop is first adjusted after neglecting the nonlinear terms
(

σLsωe Isq +
Rr L2

m
L2

r
Isd

)
and −

(
σLsωe Isd +

L2
m

Lr
ωr Isd

)
. Moreover, it considers the closed-loop transfer functions

property of FT = G
1+GH with H = Hi and G = Ho(KPi +

KIi
s )( 1/R′

s
τis+1 ) [53], obtaining the

transfer function shown in Figure A1, of the form FTi =
ω2

nKPi(s+a)/KIi Hi
s2+2ξiωnis+ω2

ni
. Here, the squared

inner natural frequency ω2
ni =

HoKIi Hi
R′

sτi
is used to obtain the fixed-gain parameter KIi of the

controller. The term depending on the inner natural frequency ωni and the inner damping
coefficient ξi is 2ξiωni =

R′
s+HoKPi Hi

R′
sτi

; and it is used to compute the fixed-gain parameter KPi

of the controller. The inner PICs adjustment results in Equation (4).
Later, it is assumed that the inner loop is stabilized. Therefore, applying the final value

theorem [56], where limt→∞ f (t) = lims→0 sF(s), we have that FTi → H−1
i and the block

diagram of Figure A1 is achieved.
In a similar way to the inner loop, after considering the load torque term 1

J Tc as a
disturbance that is neglected, and considering the closed-loop transfer functions property,

the transfer function FTo = ω2
nKPo(s+a)/KIo Hi
s2+2ξoωnos+ω2

no
is obtained [51,53]. Here, the squared outer

natural frequency is ω2
no =

KIo Ho
Hi Bpτo

, and it is used to obtain the fixed-gain parameter KIo of

the controller. The term 2ξoωno =
Hi Bp+KPo Ho

Hi Bpτo
, depending on the outer natural frequency

and the outer damping coefficient, is used to compute the fixed-gain parameter KPo of the
controller. Finally, the outer PIC is adjusted as in Equation (5).
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Figure A1. Transfer function block diagram of Basic IFOC for IM.
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Figure A2. Transfer function block diagram of basic IFOC for IM once the inner loop is stabilized.

Appendix C. CAPBC Stability Proof

Obtaining the Error Dynamical Equations
Subtracting Equations (14) from (15) and regrouping terms, the following identification

error is obtained:

ėi = −Kiei + ΦT
i ωi + ζ, (A5)

It considers the previously given definitions of ei = y − ŷ, θi, ωi. Moreover, the
identification parameter error ΦT

i ∈ Rnx(2n+m) is defined as Φi = θi − θ̂i.
Multiplying both sides of the model plant (14) by −1, adding and subtracting the

term Kcec + ẏ∗, regrouping and considering previous definitions of ec = y∗ − y, θc, ωc , the
control error is

ėc = −Kcec + BTϕT
c ωc − ζ, (A6)

where ΦT
c ∈ Rnx(2n+m).

In contrast to D and I approaches, the C technique considers B̂T θ̂T
1 + ÂT ̸= 0, B̂T θ̂T

2 −
In ̸= 0 and B̂T θ̂T

3 + δ̂T ̸= 0, obtaining the closed-loop estimation error (18).
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Subtracting (18) from (21) (since (21) being equal to zero does not change the equation),
to the right side, respectively, and regrouping terms, we obtainε1

ε2
ε3

 =

−(BT − B̂T)θ̂T
1 − (AT − ÂT)− BT(θT

1 − θ̂T
1 )

−(BT − B̂T)θ̂T
2 − BT(θT

2 − θ̂T
2 )

−(BT − B̂T)θ̂T
3 − (δT − δ̂T)− BT(θT

3 − θ̂T
3 )

 =

−ΦT
B θ̂T

1 − ΦT
A − BTΦT

1
−ΦT

B θ̂T
2 − BTΦT

2
−ΦT

B θ̂T
3 − ΦT

δ − BTΦT
3

.

This result equals

ε = −ΦT
i P1 − ΦT

i P2θT − BTΦT
c . (A7)

Finally, as Φi = θi − θ̂i and Φc = θc − θ̂c, and the identification and control ideal
parameters θi and θc are constant, we have that Φ̇i = − ˙̂θi and Φ̇c = − ˙̂θc. Therefore, from
(17) and (19), we have

ϕ̇c
T
= −

(
ST▽Vec ωT

c − STεTΓ−1
ε + σc θ̂T

c

)
Γc, (A8)

ϕ̇i
T
= −

(
ωT

i ▽Vei − εTΓ−1
ε (PT

1 + θ̂cPT
2 ) + σiθ

T
i

)
Γi. (A9)

Stability Proof of the Error Dynamical Equations
The system composed by the errors dynamical Equations (A5), (A6), (A8) and (A9)

has an associated Lyapunov function, which is positive and depends on the design energy
function Ve.

V(ec, Φc, ei, Φi) = Vec +
1
2

Trace(|B|ΦT
c Γ−1

c Φc) + Vei +
1
2

Trace(ΦT
i Γ−1

i Φi). (A10)

The first time derivative of (A10) gives

V̇(ec, Φc, ei, Φi) = ▽VT
ec ėc + Trace(|B|Φ̇T

c Γ−1
c Φc) +▽VT

ei
ėi + Trace(Φ̇T

i Γ−1
i Φi). (A11)

Substituting (A5) and (A6) into (A11), we obtain:

V̇(ec, Φc, ei, Φi) = ▽VT
ec (−Kcec + BTϕT

c ωc − ζ) + Trace(|B|Φ̇T
c Γ−1

c Φc)

+▽VT
ei
(−Kiei + ΦT

i ωi + ζ) + Trace(Φ̇T
i Γ−1

i Φi).

Regrouping terms, it gives:

V̇(ec, Φc, ei, Φi) = −▽VT
ec Kcec +▽VT

ec BTϕT
c ωc −▽VT

ec ζ + Trace(|B|Φ̇T
c Γ−1

c Φc)

−▽VT
ei

Kiei +▽VT
ei

ΦT
i ωi +▽VT

ei
ζ + Trace(Φ̇T

i Γ−1
i Φi).

Substituting (A8) and (A9) into the last equation gives

V̇(ec, Φc, ei, Φi) =−▽VT
ec Kcec −▽VT

ei
Kiei +▽VT

ec BTϕT
c ωc +▽VT

ei
ΦT

i ωi −▽VT
ec ζ +▽VT

ei
ζ

− Trace
((

|B|ST▽Vec ωT
c − |B|STεTΓε + |B|σc θ̂T

c

)
ΓcΓ−1

c Φc

)
− Trace

((
ωT

i ▽Vei − εTΓ−1
ε (PT

1 + θ̂cPT
2 ) + σi θ̂

T
i

)
ΓiΓ−1

i Φi

)
.

Now, considering |B|ST = B, ΓcΓ−1
c = 1 and ΓiΓ−1

i = 1, and regrouping terms, it
follows that

V̇(ec, Φc, ei, Φi) =−▽VT
ec Kcec −▽VT

ei
Kiei +▽VT

ec BTϕT
c ωc +▽VT

ei
ΦT

i ωi −▽VT
ec ζ +▽VT

ei
ζ

− Trace
(

B▽Vec ωT
c Φc − BεTΓ−1

ε Φc + |B|σcθT
c Φc

)
− Trace

(
ωT

i ▽Vei Φi − εTΓ−1
ε (PT

1 Φi + θ̂cPT
2 Φi) + σi θ̂

T
i Φi

)
.
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Moreover, the authors consider the two vectors’ properties, where aTb = Trace(abT),
to write the terms ▽VT

ec BTϕT
c ωc and ▽VT

ei
ΦT

i ωi into the trace as follows:

V̇(ec, Φc, ei, Φi) =−▽VT
ec Kcec −▽VT

ei
Kiei

− Trace
(
−B▽Vec ωT

c Φc + B▽Vec ωT
c Φc − BεTΓ−1

ε Φc + |B|σcθT
c Φc + ζT▽Vec

)
− Trace

(
−ωT

i ▽Vei Φi + ωT
i ▽Vei Φi − εTΓ−1

ε (PT
1 Φi + θ̂cPT

2 Φi) + σi θ̂
T
i Φi − ζT▽Vei

)
.

Simplifying the last equation, after canceling identical terms with opposite signs and
regrouping the terms with εTΓ−1

ε conveniently to obtain Equation (A7), gives

V̇(ec, Φc, ei, Φi) =−▽VT
ec Kcec −▽VT

ei
Kiei − Trace

(
εTΓ−1

ε ε
)

− Trace
(
|B|σcθT

c Φc

)
− Trace

(
ζT▽Vec

)
− Trace

(
σi θ̂

T
i Φi

)
+ Trace

(
ζT▽Vei

)
.

(A12)

In this scenario, we assume that all parameters involved, Kc, Ki, |B|, σc, σi, and Γε, are
strictly positive. Additionally, we know that the parameters characterizing the plant, along
with their first derivatives with respect to time, remain within certain bounds.

However, upon inspection of Equation (A12), it becomes evident that while the first
terms indicate negativity, the signs of the subsequent four terms are not immediately dis-
cernible. To address this ambiguity, we aim to reformulate Equation (A12) using modulus
and norm properties, as demonstrated in [38].

Using properties of the Frobenius norm and the Cauchy–Schwarz inequality where
Trace(ABC) ≤ ||A||F||B||F||C||F, the terms become −Trace

(
|B|σcθ̂

T
c Φc

)
≤ |||B|σc||F||θ̂T

c ||F||Φc||F,
−Trace

(
σiθ̂

T
i Φi)

)
≤ ||σi||F||θ̂T

i ||F||Φi||F, Trace
(
ζT▽Vec

)
≤ ||ζT ||F||▽Vec ||F and

Trace
(
ζT▽Vei

)
≤ ||ζT ||F||▽Vei ||F. Using the property 2ab ≤ a2 + b2, we have

−Trace
(
|B|σcθ̂

T
c Φc

)
≤ 1

2 |||B|σc||F
(
||θ̂T

c ||2F + ||Φc||2F
)
, −Trace

(
σiθ̂

T
i Φi)

)
≤ 1

2 ||σi||F
(
||θ̂T

i ||2F + ||Φi||2F
)
,

Trace
(
ζT▽Vec

)
≤ 1

2
(
||ζT||2F + ||▽Vec||2F

)
and Trace

(
ζT▽Vei

)
≤ 1

2
(
||ζT||2F||▽Vei ||2F

)
.

As a result, Equation (A12) becomes

V̇(ec, Φc, ei, Φi) ≤ −▽VT
ec Kcec −▽VT

ei
Kiei − Trace(εTΓ−1

ε ε)

− 1
2
|||B|σc||F

(
||θ̂T

c ||2F + ||Φc||2F
)
− 1

2

(
||ζT ||2F + ||▽Vec ||2F

)
− 1

2
||σi||F

(
||θ̂T

i ||2F + ||Φi||2F
)
+

1
2

(
||ζT ||2F + ||▽Vei ||

2
F

)
.

which equals a hyperelliptic paraboloid of parameter r:

V̇(ec, Φc, ei, Φi) = −▽VT
ec Kcec −▽VT

ei
Kiei − Trace(εTΓ−1

ε ε) + r2

− 1
2
|||B|σc||F

(
||θ̂T

c ||2F + ||Φc||2F
)
− 1

2

(
||ζT ||2F + ||▽Vec ||2F

)
− 1

2
||σi||F

(
||θ̂T

i ||2F + ||Φi||2F
)
+

1
2

(
||ζT ||2F + ||▽Vei ||

2
F

)
.

Therefore, V̇ ≤ 0 only outside the region Ω, which is the following instability hyperel-
liptic paraboloid that is compact, closed, and includes the following origin:

Ω =
1
2
|||B|σc||F

(
||θ̂T

c ||2F + ||Φc||2F
)
+

1
2

(
||ζT ||2F + ||▽Vec ||2F

)
1
2
||σi||F

(
||θ̂T

i ||2F + ||Φi||2F
)
− 1

2

(
||ζT ||2F + ||▽Vei ||

2
F

)
≤ r2.

Hence, using Lyapunov’s second method, it can be concluded that the variables of the
closed-loop dynamical Equations (A5), (A6), (A8) and (A9) are bounded outside Ω. In case
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the errors take small enough values that result in V̇ ≤ 0 (inside the instability compact and
closed region Ω, including the origin); these will be pushed back to a stable boundary. In
practice, the values of σc, σi, Γc, Γi, and Γε are chosen so that the permanent errors are as a
small as possible, as can be seen in the following section.

Thus, ec(t), ei(t), Φc(t), and Φi(t) are bounded outside Ω, i.e., ec(t), ei(t), Φc(t), and
Φi(t) ∈ L∞ outside Ω. Since ec = y∗ − y and ei = y − ŷ are bounded, it implies that y, ŷ
and are bounded as y∗ is a bounded reference. As Φc(t) and Φi(t) are bounded, and we
have bounded plant parameters, then the adaptive parameters θc and θi are bounded, since
θ̂i = θi − Φi and θ̂c = θc − Φc. Having all these bounded signals outside Ω, and that V,
ec(t), ei(t), Φc(t) and Φi(t) ∈ L∞, from (A5), (A6), (A8) and (A9), we have that ėc(t), ėi(t),
Φ̇c(t) and Φ̇i(t) ∈ L∞.

Integrating both sides of V̇(ec, Φc, ei, Φi) in the interval (0, ∞) gives

V(∞)− V(0) =
∫ ∞

0
(−▽VT

ec Kcec −▽VT
ei

Kiei − Trace(εTΓ−1
ε ε) + r2

− 1
2
|||B|σc||F

(
||θ̂T

c ||2F + ||Φc||2F
)
− 1

2

(
||ζT ||2F + ||▽Vec ||2F

)
− 1

2
||σi||F

(
||θ̂T

i ||2F + ||Φi||2F
)
+

1
2

(
||ζT ||2F + ||▽Vei ||

2
F

)
)dτ

as V is bounded outside Ω, from the right-hand side of this last equation, we have ec(t)
and ei(t) ∈ L2 outside Ω.

Furthermore, as ec(t), ėc(t) ∈ L∞ and ec(t) ∈ L2, and ei(t), ėi(t) ∈ L∞ and ei(t) ∈ L2,
all outside Ω, using Barbalat´s Lemma [30] (Section 4.5.2) we have that ec(t) and ei(t), both
tend asymptotically to zero outside Ω. Hence, y(t) → y∗ and ŷ(t) → y(t) outside ΩC. We
do not ensure parameter convergence. This concludes the proof. ♢
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