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Abstract: To solve various reworking and repair problems caused by unqualified bearing product
quality inspections, this paper introduces a green re-entrant scheduling optimization method for
bearing production shops considering job reworking. By taking into account quality inspection
constraints, this paper establishes an integrated scheduling mathematical model based on the entire
processing–transportation–assembly process of bearing production shops with the goals for minimiz-
ing the makespan, total carbon emissions, and waste emissions. To solve these problems, the concepts
of the set of the longest common machine routes (SLCMR) and the set of the shortest recombina-
tion machine combinations (SSRMC) were used to propose the re-entrant scheduling optimization
method, based on system reconfiguration, to enhance the system stability and production scheduling
efficiency. Then, a multi-objective hybrid optimization algorithm, based on a neighborhood local
search (MOOA-LS), is proposed to improve the search scope and optimization ability by constructing
a multi-level neighborhood search structure. Finally, this paper takes a bearing production shop as an
example to carry out the case study and designs a series of experimental analyses and comparative
tests. The final results show that in the bearing production process, the proposed model and algorithm
can effectively realize green and energy-saving re-entrant manufacturing scheduling.

Keywords: re-entrant scheduling; system reconfiguration; reworking; bearing; carbon emissions

1. Introduction

With the promotion and application of emerging technologies, the manufacturing
industry is in the golden era of transformation and upgrading, and scheduling plays an
increasingly significant role in resource allocation decisions of manufacturing systems [1].
Modern manufacturing systems focus on not only improving production efficiency and
reducing resource consumption but also improving product quality [2]. However, various
reworking and repair phenomena, caused by product quality problems, are common in
the actual production process, especially in high-end manufacturing industries with high
precision, high performance, and high pollution [3]. As the core part of complex mechanical
products, high-performance bearings have the characteristics of cumbersome production
processes, harsh performance indices, and high resource consumption. Various reworking
and repair problems, caused by quality inspection, will severely affect the stability and
effectiveness of production plans, resulting in environmental pollution, resource conflicts,
and wasted raw materials. Therefore, it is of great significance to study the green re-entrant
scheduling problem of bearing production shops considering job reworking.

In recent years, scholars have paid more attention to the green shop scheduling prob-
lem (GSSP) and have conducted considerable research. Taking carbon emissions, noise,
and waste as indicators of the environmental pollution degree, Li et al. [4] studied a multi-
objective green flexible job shop scheduling problem (MGFJSP). Wang et al. [5] studied
the distributed green flexible job shop scheduling problem (FJSP), considering the trans-
portation time, and proposed a collaborative swarm intelligence algorithm to solve the
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problem. Fei et al. [6] studied the FJSP, considering energy savings, and proposed an
improved sparrow search algorithm to solve the problem. Gong et al. [7] studied the multi-
objective FJSP, considering workers’ flexibilities and green factors, and proposed a new
non-dominated set fitness ranking algorithm. Wang et al. [8] studied the ternary schedul-
ing problem of flow shops by introducing the ultra-low standby condition of machine
tools. To improve the problem of energy wasting in traditional heavy industry production
workshops, Liu et al. [9] studied a new flexible-job-shop- and crane-transport-integrated
green scheduling problem (IGSP-FJS&CT). Lv et al. [10] studied the steelmaking contin-
uous casting scheduling problem (GSCCSP_UPTHP), considering uncertain processing
times. Liu et al. [11] studied the GSSP under the constraint of finite variable parameters
in uncertain production environments. Considering weight attributes of jobs and energy
savings, Wu et al. [12] studied the FJSP, which is more suitable for the production field.

In the above literature, scholars have studied various types of green shop scheduling
problems by analyzing the multi-objective coupling characteristics of green indicators.
However, few scholars have considered the constraints of product quality inspections, and
research on green indicators needs to be in depth, which cannot reflect actual manufacturing
requirements and has certain limitations.

Reworking and repairing are uncertain factors in the production process, including the
reworking of parts, reworking of finished products, and reworking of products after sales,
all of which affect the stability and effectiveness of production scheduling plans. In recent
years, various types of job shop scheduling problems, considering job reworking, have
received increasing attention. Yan et al. [13] established an integrated optimization model
for engine rescheduling and work group reconstruction with reworking interruption and
proposed a heuristic algorithm to optimize the rescheduling process through local optimal
sorting and a new neighborhood structure search. Using the Markov method of cost and
success probability distribution, Mahmoud et al. [14] proposed an artificial-intelligence-
assisted method to optimize tolerance distributions and effectively reduce reworking costs.
Using the concept of delay times, Sinisterra et al. [15] established a mathematical model
integrating a series of recoverable operations and inspection strategies to optimize the
expected total cost, considering the impacts of product quality. Using the makespan crite-
rion, Rambod et al. [16] studied the non-correlated parallel machine scheduling problem,
considering the product quality and reworking process. Gonzalo et al. [17] proposed an
event-driven rescheduling method for interference caused by the reworking and repairing
of manufacturing systems. Foumani et al. [18,19] studied the stochastic scheduling of
two-machine robotic reworking cells, considering inspection scenarios and reworking parts,
and developed a framework for the in-line inspection of identical parts to solve common
problems in actual scenarios. Lee et al. [20] studied the scheduling problem of single-armed
cluster tools with different re-entrant wafer flows, considering the repeated processing
of wafers in semiconductor manufacturing. Narahari et al. [21] considered inspections at
various stages of processing, proposed re-entrant lines with probabilistic routing as models,
and verified the models by taking semiconductor wafer fabrication systems as an example.

In the above literature, scholars have studied various types of job shop scheduling
problems, considering job reworking; however, although the impacts of job reworking on
carbon emissions, raw materials, and pollutants are very obvious, further research must be
conducted on factors influencing the green index of job reworking. Moreover, few scholars
have applied the concept of a reconfigurable manufacturing system (RMS) to job shop
scheduling problems, considering job reworking. In the actual production environment, the
system resources involved in job reworking not only include the machine but also include
the tool, operator, and layout, and there are extreme limitations to optimize parts of system
resources.

Modern manufacturing systems emphasize the importance of product quality, while
the product quality inspection will result in the reciprocating processing of jobs and forming
of the re-entrant circulation flow. According to the research, the re-entrant job shop schedul-
ing problem is quite different from the traditional job shop scheduling problem in terms of
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constraints and solving methods. The initial research mainly focused on semiconductor
manufacturing; in recent years, the related research has gradually expanded to steel produc-
tion, automobile manufacturing, and even transportation and other fields and has achieved
important research results. Cho et al. [22] studied the multi-objective production planning
and scheduling problem of re-entrant hybrid flow shops and achieved good results in
case studies. Chamnanlor et al. [23] studied the re-entrant hybrid flow shop scheduling
problem (RHFSTW) with time window constraints and proposed the genetic algorithm
hybrid ant colony optimization solution. Dong et al. [24] studied the scheduling problem
of re-entrant hybrid flow shops, considering renewable energy. Zhang et al. [25] introduced
the double fuzzy theory to consider the re-entrants of re-manufacturing operations and
machine flexibility and the re-entrant flexible shop scheduling problem. Xuan et al. [26]
studied the multi-stage dynamic re-entrant mixed flow workshop problem, considering the
production and transportation times. Geng et al. [27] studied the multi-objective re-entrant
hybrid flow shop scheduling problem, considering the fuzzy processing time and delivery
time, to optimize the makespan and the average agreement index.

In the above literature, the research on re-entrant job shop scheduling is basically
aimed at machine processing, and the research on re-entrant shop scheduling, considering
transportation, storage, and assembly, is rarely involved. Moreover, in the research of the
re-entrant shop scheduling problem, the concept of green manufacturing is embedded in
the machine operation, auxiliary resource consumption, and raw material consumption;
the potential of the energy-saving optimization is very great, and the existing research has
certain limitations and needs to be studied in depth.

To sum up, most of the existing studies have considered green shop scheduling, job
reworking, re-entrant job shop scheduling, or some of their related combinations. Few
studies have considered these three concepts at the same time. In the study of the green
shop scheduling problem, the influences of job reworking and re-entrant manufacturing
on green shop scheduling are very complicated; unreasonable reworking strategies and
re-entrant production arrangements will lead to resource wasting, energy consumption
increases, and high costs. Based on the above analysis, this paper studies the green re-
entrant scheduling optimization method for bearing production shops considering job
reworking, aiming to realize the cooperative optimization of scheduling plans and system
resources by proposing a flexible and efficient re-entrant scheduling strategy through
analyzing the system resource allocation and bearing production characteristics.

The main contributions of this paper are as follows:

(1) Considering the constraints of shop quality inspections, this paper proposes the con-
cepts of the set of the longest common machine routes (SLCMR) and the set of the
shortest recombination machine combinations (SSRMC) by analyzing the information of
the bearing production process and reworking process to reorganize the system config-
uration (machines, tools, etc.) and formulate the flexible re-entrant reworking strategy;

(2) Taking the makespan, total carbon emissions, and waste emissions as the optimiza-
tion objectives, this paper establishes the green re-entrant scheduling mathematical
model of bearing production shops, considering the whole process of the processing,
transportation, and assembly of bearing production comprehensively;

(3) Designing the multi-objective hybrid optimization algorithm based on the neighbor-
hood local search (MOOA-LS) to solve the problem. Taking a bearing workshop as an
example, the proposed model and algorithm are verified through a case analysis and
an algorithm comparison.

The rest of this paper is organized as follows: Section 2 illustrates the problem descrip-
tion and mathematical model. In Section 3, the solution framework and algorithm flow are
proposed. Section 4 is case study, and the conclusion is drawn in Section 5.
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2. Problem Description and Mathematical Model
2.1. Overview of High-Performance Bearing Production Shop

The production process of high-performance bearings is complex: The job needs
grinding, finishing, flaw detection, and demagnetization steps; each step contains one
or more key processes, and each key process after completion needs to be in accordance
with the requirements of the quality inspection. Only when the quality inspection result
is qualified can the next process be entered; otherwise, the job needs to be reworked, and
each job goes through all the processes to complete the production. In addition, after the
product assembly is completed, the quality inspection needs to be carried out again, and
the unqualified products need to be reworked again; the reworking process is determined
by the quality inspection results. All the jobs loop through the above steps until the end.

Based on the above analysis, in bearing production shops, the job reworking caused
by quality inspections is mainly divided into two categories: part reworking and finished
product reworking. Part reworking refers to the process for reworking after the completion
of a certain process of the job because of unqualified quality inspections, and finished
product reworking refers to the process for reworking any process of finished products
because of the failure of the quality inspection after the completion of the product assembly.
Each job can be repeated several times in the same machine, and each reworking may
change information, such as machine parameters, tools, and substrates. In addition, because
of the high processing accuracy of bearings, too long production intervals between each
process will not only affect the product quality and production progress but also lead
to problems, such as product scrapping. Therefore, the production scheduling plan and
product quality inspection arrangement should be reasonably arranged to effectively ensure
the production efficiency and product quality.

At present, few studies refer to the re-entrant scheduling problem of bearing produc-
tion shops, considering the production green index, system reconfiguration, and trans-
portation planning in the presence of the job reworking interference. Therefore, combined
with the actual needs of bearing production shops, this paper studies the green re-entrant
scheduling optimization method of bearing production shops considering job reworking.

2.2. Problem Description

The problem can be described as follows: The layout of the bearing production shop
is known, and the machine position is fixed. The existing batch of bearing products to be
produced includes new bearing products and bearing maintenance products. Each product
consists of a variety of types of jobs; each type of job contains one or more processes, and
each process corresponds to one or more available machines. The powers of different
machines and the corresponding processing times are not necessarily the same. The jobs
are processed in turn according to the operation constraints, and the entire process is
transported by automated guided vehicles (AGVs) and finally assembled by the assembly
machine. All the jobs need to go through the three steps of processing, transportation, and
assembly until the last product is completed. In the production process, the jobs need to be
quality inspected, and the unqualified jobs need to be reworked. The reworking process
is random and can be re-entered. New products and maintenance products are produced
separately on corresponding production lines, each of which has one or more combinations
of machines. This paper takes the makespan, total carbon emissions, and waste emissions
as objective functions; considering the constraints of quality inspections, the multi-objective
green re-entrant scheduling model of bearing shops is established considering the whole
process of processing, transportation, and assembly. Based on the premise that the range of
the resource variation in the manufacturing system is as small as possible, this problem
focuses on the reconfiguration of the production line (including machines, tools, fixtures,
and base surfaces) by changing the physical and logical configurations of the production
system, constructing the new product production line and maintenance product production
line, formulating a flexible re-entrant reworking strategy and production scheduling plan
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for bearing production to meet the new production demand and process balance, and,
finally, realizing the green re-entrant scheduling optimization of bearing products.

For the ease of understanding, Figure 1 is taken as an example to illustrate the process.
As shown in Figure 1, the bearing production shop adopts a mixed U-shaped factory
layout and consists of 27 processing machines, 2 assembly machines, 2 quality inspection
machines, and 4 AGVs, which are divided into an inner ring production line M1–M9, an
outer ring production line M10–M18, a roller production line M19–M27, and assembly lines
M28 and M29. There are new jobs and maintenance jobs, including inner rings, outer rings,
and roller parts; each job has one or more operations, and each operation corresponds to an
optional set of machines. The whole process is transported by the AGV, and the product
assembly is completed by the assembly machine. Taking the new inner ring component (J1)
as an example, first, M1 is selected for processing. The quality inspection is carried out after
the completion. If the quality inspection of J1 fails, M1 is selected for reworking processing.
Then, M5–M7–M7–M9 are selected successively for processing and quality inspection, and
the assembly machine (M29) is used to assemble them. After the assembly is completed,
the quality inspection will be carried out again. If the quality inspection fails, M7 should
be selected for reworking processing again. After the processing is completed, the quality
inspection will be carried out for the next time, until all the production tasks are completed.
According to the transportation rules, AGV1–AGV2–AGV1–AGV1–AGV2–AGV2–AGV1 is
selected successively for transportation. Through the proper arrangement of the processing,
transportation, and assembly for all the tasks, an energy-efficient re-entrant manufacturing
process in the bearing production shop is achieved.
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2.3. Assumptions

(1) The shop layout, process parameters, machine parameters, and other information are
known;

(2) At time 0, all the jobs and machines are ready;
(3) Each machine can only process one job at a certain moment, and one job can only be

processed on one machine at a certain moment;
(4) Once the processing and transportation begin, interruption and preemption are not

allowed;
(5) There is no priority between different jobs;
(6) AGV transportation cannot exceed the maximum load; AGVs should be driven in

accordance with the specified area of the route; the AGVs’ initial positions are at the
initial machine, and the first process of the job does not involve any transportation;

(7) The constraints of the shop buffer zone, storage, and other links are not considered;
(8) The influence of interference factors, such as machine and AGV failures, are not

considered;
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(9) After the system reconfiguration, the operation times of the tool, fixture, and base
surface are fixed, and the system recovers after the completion;

(10) The incline lift time, quality inspection time, and other factors of the manufacturing
system are ignored, and the performance parameters of all the machines, AGVs, and
tools after the reconfiguration are unchanged.

2.4. Parameter Settings

According to the above information, relevant parameters and variable definitions are
shown in Table 1.

Table 1. Parameter information table.

Notation Description Notation Description

n The number of jobs tid
k The standby time of machine k

N Job assembly {i ∈ (1, 2, . . ., n)} Sijk The start time for Oij on machine k
m The number of machines Fijk The end time for Oij on machine k
M Machine assembly {k ∈ (1, 2, . . ., m)} tor

k The system restoration time of machine k
Oij The jth operation of job i tes

k The tool-empty-cutting time of machine k
h The number of AGVs tis

k The fixture replacement time of machine k

H AGV assembly {h ∈ (1, 2, . . ., H)} tlts
h

The start time of AGV h’s loaded
transportation

w The number of assembly machines tlt
h The AGV h’s load transportation time

W Assembly machine assembly {w ∈ (1, 2, . . ., W)} tlte
h The end time of AGV h’s loaded transportation

ept
k

The preheating power of machine k tets
h

The start time of AGV h’s unloaded
transportation

ect
k The cutting power of machine k tet

h The AGV h’s empty transportation time

eid
k The standby power of machine k tete

h
The end time of AGV h’s unloaded

transportation
eor

k The system restoration power of machine k taw
h The AGV h’s waiting time

eis
k The fixture replacement power of machine k thd

h The AGV h’s handling time
ees

k The tool-empty-cutting power of machine k tas
i The assembly time of job i

eltsv
h The load transportation power of AGV h tass

w The start time of assembly machine w
eetsv

h The unloaded transportation power of AGV h Ta
k The usage cycle of a single diamond pen

ewt
h The standby power of AGV h Ha The weight of a single diamond pen

eagvhi
h

The handling power of AGV h TF
k The usage cycle of the grinding fluid

eas
w The working power of assembly machine w NF

k The periodic usage of the grinding fluid
ea The auxiliary system power Fe The electricity’s carbon emission factor
tpt
k

The start of the preheating time of machine k Uh The AGV h’s maximum load capacity
tct
ijk The cutting time of operation Oij on machine k Ni Repair job i type

Xijk
Operation processing decision variables. If operation Oij selects machine k for processing, its value is 1;

otherwise, it is 0.

Yijh
Decision variables for job transportation. If operation Oij selects machine h for transportation, its value is 1;

otherwise, it is 0.

Ziw
Decision variables for job assembly. If job i is selected for assembly by assembly-machine w, its value is 1;

otherwise, it is 0.

2.5. Model Formulation
2.5.1. The Makespan Function

The makespan refers to the maximum value of the completion time for the last job to
complete the production, and the job needs to go through processing, transportation, and
other links before assembly, specifically, as follows:

The makespan function

Cmax = max
m

∑
k=1

w

∑
w=1

h

∑
h=1

n

∑
i=1

qi

∑
j=1

[
tct
ijk +

(
tlt
h + tet

h + taw
h

)
+ (tase

w − tass
w )

]
(1)
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2.5.2. Total Carbon Emission Function

Relevant studies have confirmed that in job shop scheduling problems, machines
are usually divided into four states: on–off, standby, working, and idle [28]. Therefore,
combined with the impacts of processing links and transportation links, and the constraints
of quality inspection links, some adjustments and optimizations are made to divide the total
carbon emission sources into eight links: Machine-preheating carbon emissions, job-cutting
and -assembly carbon emissions, machine standby carbon emissions, fixture replacement
(installation and disassembly) carbon emissions, system restoration carbon emissions, tool-
empty-cutting carbon emissions, auxiliary carbon emissions, and AGV transport carbon
emissions. The details are as follows:

(1) Machine-preheating carbon emissions

The machine needs to be preheated before starting to work so that it can better cut,
grind, and perform other operations; the machine will consume energy when preheating,
and the entire production process of the machine is only preheated once. The calculation is
as follows:

Ept =
m

∑
k=1

n

∑
i=1

qi

∑
j=1

(ept
k × tpt

k (Xijk)× Fe) (2)

(2) Job-cutting and -assembly carbon emissions

Job-cutting and -assembly are the main production processes of machine processing
and assembly. Once the machine starts working, it is not allowed to be interrupted. The
calculations of the job-cutting and -assembly carbon emissions are as follows:

Ect1 =
m

∑
k=1

n

∑
i=1

qi

∑
j=1

(ect
k × tct

k (Xijk)× Fe) (3)

Ect2 =
w

∑
w=1

n

∑
i=1

qi

∑
j=1

(eas
w × tas

w (Ziw)× Fe) (4)

Ect = Ect1 + Ect2 (5)

(3) Machine standby carbon emissions

The machine standby time is the interval for the machine to wait for subsequent tasks
after the current task is completed. The standby carbon emissions of the machine are
calculated as follows:

Eid =
m

∑
k=1

n

∑
i=1

(eid
k × tid

k × Fe) (6)

(4) Fixture replacement (installation and disassembly) carbon emissions

When the machine starts working, different types of jobs need to be installed and
corresponding fixtures disassembled, and the carbon emissions of the fixture replacement
are calculated as follows:

Eis =
m

∑
k=1

n

∑
i=1

qi

∑
j=1

(eis
k × tis

k (Xijk)× Fe) (7)

(5) System restoration carbon emissions

According to the concept of the reconfigurable manufacturing system (RMS), when
the manufacturing system is reconfigured, the system performance will have a certain
recovery time [29]. Combined with the characteristics and constraints of the proposed
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model, according to the information of jigs and tools required by the machine, the carbon
emissions generated by the manufacturing system restoration are calculated as follows:

Eor =
m

∑
k=1

n

∑
i=1

qi

∑
j=1

(eor
k × tor

k (Xijk)× Fe) (8)

(6) Tool-empty-cutting carbon emissions

At the beginning of the processing, the machine will have a period of tool-empty-
cutting time, and the carbon emissions generated by the tool empty cutting are calculated
as follows:

Ees =
m

∑
k=1

n

∑
i=1

qi

∑
j=1

(ees
k × tes

k (Xijk)× Fe) (9)

(7) Auxiliary carbon emissions

In the production process, auxiliary systems, such as lighting, ventilation, and air
conditioning, are needed, and the carbon emissions by these parts are calculated as follows:

Ea = ea × Cmax × Fe (10)

(8) AGV transport carbon emissions

AGV transportation carbon emissions mainly come from its transportation, waiting,
and other states, and the calculation is as follows:

Ets = Eets + Ewt + Eup

=
h
∑

h=1

n
∑

i=1

qi
∑

j=1

[
(eltsv

h × tlt
h + eetsv

h × tets
h )× Yijh × Fe + ewt

h × taw
h × Yijh × Fe + eagvhi

h × thd
h × Yijh × Fe

] (11)

Based on the above analysis, it is concluded that the total carbon emission function is
as follows:

Eto = Ept + Ect + Eid + Eis + Eor + Ees + Ea + Ets (12)

2.5.3. The Waste Emission Function

In the production process of high-performance bearings, auxiliary resources, such
as the grinding fluid, diamond pen, and lubrication fluid, need to be used, and certain
wastes will be generated in the using process. After the simplification and summary, the
grinding fluid and diamond pen are selected as waste discharge indicators in this problem.
According to the information, such as the service cycle, machine model, and service time,
the waste emission function is calculated as follows:

The grinding fluid

We =
m

∑
k=1

n

∑
i=1

qi

∑
j=1

(
tct
ijk

TF
k
× NF

k (Xijk)× Mk) (13)

The diamond pen

Wa =
m

∑
k=1

n

∑
i=1

qi

∑
j=1

(
tct
ijk

Ta
k
× Ha) (14)

2.5.4. The integrated Optimization Model

Based on the above analysis, with the makespan as the economic index and the total
carbon emissions and waste emissions as the green index, the mathematical model and
constraint conditions are established. The details are as follows:

The objective function
MinZ = CT + CE + CW (15)
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The makespan
CT = min(Ti) (16)

Total carbon emissions
CE = minEto (17)

The waste emissions
CW = min(We + Wa) (18)

Constraints:
m
∑

k=1
Xijk = 1 means that only one machine can be selected for one process at a time.

i
∑

n=1
Xijk = 1 means that each machine can only process one job at a time.

Fijk − Sijk = tct
ijk means that the job cannot be interrupted once it has started processing.

Sijk ≥ Fi(j−1)k represents the operation constraint of the new job.
NSijk ≥ NFi(j−1)k represents the operation constraint of the maintenance job.
m
∑

k=1
Xijk = 1.

h
∑

h=1
Yijh = 1.

w
∑

w=1
Ziw = 1 means that only one machine can be selected for

all the tasks at a time and belongs to the optional machine set.
m
∑

k=1
Xk

ij = 1 means the machine selection constraints for the reconstituted production

line.
t

∑
t=1

Xk
ij = 1 means that all the jobs must be processed and can be processed only once.

Sijk ≥ 0, Fijk ≥ 0, tct
ijk ≥ 0, tlte

h ≥ tlts
h means that the start time, end time, processing

time, and transportation time of any task are not less than 0.
n
∑

i=1

m
∑

j=1
Xijk ≤Uh means the constraint on the AGV load capacity.

h
∑

h=1
Yijh = 1 means that the transportation task of any job at a time is completed by a

maximum of one transport machine.
Fij + tlt

h ≤ Si(j+1) indicates that the start time of the transportation task must not be
earlier than the sum of the end time and processing time of the last process of the job.

i
∑

n=1
Ziw = 1 means that each assembly machine can only assemble one job at a time.

Fijk + tlt
h ≤ tass

w indicates that the assembly cannot begin until corresponding parts
have been transported.

3. Solution Framework and Algorithm Flow
3.1. Machine Restructuring Pretreatment

The processing of the job usually corresponds to different types of manufacturing
units, and each manufacturing unit of the manufacturing system usually includes more
than one machine. The selection and clustering of machine combinations according to the
machine selection flexibility of the machining process can effectively improve the efficiency
of the system reconfiguration and production scheduling [30]. Because of the complexity of
the process and the different system functions of manufacturing units, the parallel machine
selection of different jobs in the job family is also different. If all the selected machines
are arranged in the same manufacturing unit for the production, it will cause problems,
including staggered process routes, interrupted production lines, and unequal machine
loads. Based on the above analysis, the concepts of the set of the longest common machine
routes (SLCMR) and the set of the shortest recombination machine combinations (SSRMC)
are proposed in this paper.

SLCMR is the set of the longest machine selection sub-routes set between different
jobs with the same process or the same function. SSRMC is the machine selection set that
refers to taking SLCMR as the core by adding the corresponding machine combinations of
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non-similar processes between each job. SLCMR and SSRMC can effectively reflect the logic
and essence of the production line’s machine structure, so the analysis of the production
line’s machine recombination set can effectively improve the operation efficiency and avoid
production line interruptions, resource waste, and other problems.

To facilitate an understanding, an example to illustrate the meaning of the above
concepts is shown in Table 2. In Table 2, the job information is given. Taking jobs J1 and
J4 as examples, J1 has two operations, and each operation corresponds to two parallel
machines, so the job has a total of 2 × 2 = 4 machine selection route sets. J4 has three
operations, and each operation corresponds to two parallel machines, so the job has a total
of 2 × 2 × 2 = 8 machine selection route sets. The same method is used for the rest of the
jobs. Therefore, when adjusting the machine structure of the production line, according
to the definitions of the SLCMR and SSRMC, taking maintenance jobs J4, J5, and J6 as
examples, it can be concluded that for maintenance jobs, SLCMR = {1, 3}, {1, 4}, {2, 3}, or {2,
4}, and SSRMC = {1, 3, 5, 7}, {1, 3, 5, 8}, {1, 3, 6, 7}, {1, 3, 6, 8}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 6, 7},
{1, 4, 6, 8}, {2, 3, 5, 7}, {2, 3, 5, 8}, {2, 3, 6, 7}, {2, 3, 6, 8}, {2, 4, 5, 7}, {2, 4, 5, 8}, {2, 4, 6, 7}, or {2, 4,
6, 8}. The same method is true for corresponding new jobs J1, J2, and J3.

Table 2. Job information table to illustrate the concept of SLCMR and SSRMC.

Job Type Operation M1 M2 M3 M4 M5 M6 M7 M8

New job

J1
O11 2 2
O12 2 3

J2

O21 1 2
O22 3 4
O23 4 5

J3

O31 1 2
O32 2 3
O33 6 7

Maintenance job

J4

O41 1 2
O42 1 1
O43 1 2

J5
O51 2 3
O52 1 2

J6

O61 1 2
O62 2 3
O63 2 3

3.2. Algorithm Flow

In this paper, the proposed integrated optimization model involves multi-dimensional
and multi-variable optimizations, including machine selection flexibility, transportation
path selection flexibility, process flexibility, and system recombination flexibility. To solve
this multi-dimensional and multi-variable complex integrated optimization problem, a
multi-objective hybrid optimization algorithm, based on a neighborhood local search
(MOOA-LS), is proposed. The MOOA-LS algorithm combines the hybrid optimization
algorithm with the neighborhood search strategy and adopts the probability-based neigh-
borhood search strategy to ensure that the solution after the crossover operation meets the
taboo table rules to strengthen the algorithm’s ability to jump out of the local optimization,
expand the search scope of the understanding, and avoid the premature convergence of the
algorithm. The overall flow of the algorithm is shown in Figure 2.
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3.2.1. Encoding and Decoding

To improve the efficiency and reduce the difficulty of the calculation, the four-segment
encoding method is used in this section. The encoding consists of four parts: machine
assignment, operation sequencing based on the type of the job, machine selection, and
AGV selection. The information in Table 3 is taken as an example to illustrate this.

Table 3. Job information table to illustrate the algorithm flow.

Job Type Operation Machine/Time AGV

New job

J1

O11 M1/3, M2/4 AGV1, AGV2, AGV3
O12 M3/3, M4/5 AGV1, AGV2
O13 M5/7, M6/8, M7/7 AGV1, AGV2, AGV3

J2
O21 M1/5, M2/6 AGV1, AGV2
O22 M3/9, M4/8 AGV1, AGV2, AGV3

Maintenance job

J3
O31 M1/2, M2/3 AGV1, AGV2, AGV3
O32 M3/3, M4/4 AGV1, AGV2, AGV3

J4

O41 M1/1, M2/2 AGV1, AGV2
O42 M3/3, M4/4 AGV1, AGV2, AGV3
O43 M5/5, M6/6, M7/6 AGV1, AGV2

Figure 3 shows an example of the encoding scheme; as is shown, the first part of the
chromosome is the machine assignment to select the corresponding machine for all the
jobs and generate the corresponding production line’s machine combination. Each gene
is represented by a real number; the production line’s machine selection for new jobs is
set at 1, and the production line’s machine selection for maintenance jobs is set at 0. The
second part of the chromosome is the operation sequencing based on the type of the job
to generate the operation sequencing of all the jobs. Each gene is represented by a real
number; different job types are represented by different numbers, all the operations of
the jobs are randomly arranged, and the number of occurrences of different numbers is
equal to the total number of operations of the jobs. The third part of the chromosome is the
machine selection. First, judge the type of job, then select the corresponding machine for all
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the processes according to the corresponding production line’s machine combination and
operation sequencing. Each gene is represented by a real number, arranged in sequence
according to the sequence order of the operation, and each real number represents the
sequence number of the machine selected for the current operation in the optional machine
set. The fourth part of the chromosome is the AGV selection; each gene is represented by a
real number, arranged according to the operation sequence and machine selection. Each
real number represents the sequence number of the AGV selected by the current operation
in the optional AGV set.
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Based on the above encoding method, the decoding process of a specific chromosome
is implemented is as follows:

Step 1: Generate a certain number of chromosomes based on the above encoding steps;
Step 2: Select a chromosome randomly, scan each gene in the chromosome from top to

bottom, and select a process randomly. First, determine the corresponding job type and
production line. Then, determine the corresponding machine and AGV;

Step 3: Select all the chromosomes to obtain the job type, processing time, machine
selection, and AGV selection of all the operations;

Step 4: Repeat the above steps to complete the decoding.

3.2.2. Population Initialization

At the beginning of the algorithm, according to the updated job and machine state,
the initial population (P) is constructed by random initialization.

3.2.3. Fast Non-Dominated Sorting and Congestion Calculation

To ensure the survival of the fittest individual populations, the algorithm adopts the
method of the tournament selection for fast non-dominated sorting. First, the solutions
are sorted according to the fitness function of the individual, and the solutions with better
fitness are selected as the parent chromosome. Then, the crowding distance of the solutions
with the same fitness is calculated, and the choices are made successively to obtain the elite
parent chromosome.

3.2.4. Crossover Operation

In the four-part encoding, the machine assignment plays a decisive role in the subse-
quent operation. Therefore, this paper draws on the ideas of uniform crossover [31] and
single point crossover [32] to improve the crossover operation. As shown in Figure 4, the
specific steps are as follows: the parent chromosomes (P1 and P2) are randomly generated,
the machine assignment encoding parts of P1 and P2 are exchanged, and the operation
sequencing is unchanged. Then, according to the newly generated machine assignment,
the new machine selection and AGV selection are generated again to obtain two new
chromosomes (C1 and C2) and finally complete the crossover operation.
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3.2.5. Mutation Operation

According to the four parts of the encoding, in the process of the mutation operation,
it mainly focuses on the machine assignment and operation sequencing parts, and the
machine selection and AGV selection are subsequently changed, as shown in Figure 5.
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To ensure the effectiveness of the chromosome, an improved exchange mutation
method is adopted in the machine assignment’s mutation operation. First, randomly
select a gene segment of the same machine selection set in a parent chromosome. Then,
swap the machine numbers of the two positions to regenerate a new chromosome and
complete the machine-assigned variation. Then, the improved insertion mutation mode is
adopted in operation-sequencing mutation operations based on the premise for ensuring
the generation of feasible solutions. First, a gene fragment in the process sequence of the
parent chromosome is randomly selected. Then, under the premise for ensuring the process
sequence constraint of the job, another position of the chromosome is randomly inserted
to generate a new chromosome and complete the variation in the operation sequencing.
The AGV selection mutation is the same as the machine selection mutation. For example,
when carrying out machine selection mutations, because of the optional machine sets in
each process, a position on the chromosome is first randomly selected. Then, one machine
is selected from the optional machine set of the process to replace the original machine and
complete the machine selection mutation.
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3.2.6. Taboos and Amnesty Rules

The taboo table is designed to control the population search’s precision after crossover
operations, including the taboo table’s length and amnesty criteria. First, the length of
the taboo table is set at 20, and the obtained chromosomes are placed in the taboo table
when the chromosomes are crossed over. If the chromosomes match, they are regarded as
daughter chromosomes; if not, they are removed. When the taboo table is full, the first-in
first-out principle is followed to remove the taboo fitness difference solutions and release
space for new solutions. Then, by comparing the fitness values of the current solution and
the taboo table, the solutions with good fitness are amnestied, and the solutions that meet
the amnesty criteria are added to the taboo table. Finally, the taboo table is updated to
obtain a new progeny chromosome population, which is convenient for the subsequent
local neighborhood optimization.

3.2.7. Neighborhood Search Strategy

Because the job has operational flexibility, there are optional machine sets during
processing, and the difference in machine selection will lead to changes, such as the AGV
waiting time, transportation time, and transportation path, that, in turn, affect the job
operation sequence. Therefore, after the machine combination of the production line
is determined, under the premise for satisfying the machine allocation constraints, the
new domain search strategy can be proposed to optimize the process ordering, machine
selection, and AGV allocation to improve the whole production process. As shown in
Figure 6, the specific steps are as follows:
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Figure 6. Neighborhood search strategy.

Step 1: After completing the crossover operation, select the generated offspring chro-
mosome as the new parent chromosome;

Step 2: Randomly intercept a part of the operation sequencing chromosome, and
under the premise for meeting the process constraints, reorder the fragment to generate
a new offspring chromosome, and transform the machine selection and AGV selection
chromosomes;

Step 3: The probability Pa determines whether to accept the individual as a result of
the neighborhood search. If yes, accept. If no, return to step 2;

Step 4: Repeat the above steps to update the taboo table’s status.
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4. Case Study

To verify the effectiveness of the proposed model and algorithm, experimental design
and analysis are carried out for a bearing production shop. The experimental design and
analysis consist of three parts in this section: (1) a case analysis of a bearing production
shop, (2) a comparative analysis with other algorithms, and (3) data testing at different
data scales.

4.1. Case Background

The bearing production shop mainly produces high-performance military-series pre-
cision bearings with high product quality standards and harsh performance indicators,
and there are often various reworking and repair problems caused by unqualified product
quality inspections in the production process. The bearing production shop consists of
an inner ring production area, an outer ring production area, a roller production area, an
assembly area, and a quality inspection area and mainly produces inner rings, outer rings,
and roller parts. All the parts are assembled after processing, and the AGV is responsible
for transportation. All the jobs need to go through processing, transportation, assembly,
and quality inspection steps until the last product is completed. To facilitate this study, it is
stipulated that the re-entrant process is randomly generated, the maximum number of re-
entrant times is 3 times, and the information is scientifically and reasonably supplemented
and adjusted, including the process flow, machine parameters, and workshop layout.

The experiment takes five types of bearings as examples, namely, 313XC, 315XC,
322XC, 350X, and 352X types of bearings. The machine parameter information is shown
in Table 4, including the machine groups’ names, rated powers, and idle powers. Table 5
gives the AGV information, including the rated power, idle power, and load power. The
processing of bearings mainly includes grinding two ends, sharpening the outside diameter
of the flange, end grinding large flanges, and the superfine grinding of the inner raceway
and large flanges. The processing time mainly includes the fixture installation time, cutting
time, and fixture disassembly time. The cutting processing is completed by M1–M42; for
space reasons, only the bearing processing information of 313XC and 350X is given, as
shown in Tables 6 and 7, respectively. The assembly of the bearings is completed by
M43–M45, and the value of the assembly time (t) ranges from 0.2 to 0.25 h. In the calculation
of carbon emissions, the carbon emissions generated by electric energy need to be converted
by the carbon emission factor, and the value is 0.6747 kg-CO2/kw·h. In this experiment,
waste emissions are mainly generated by the grinding fluid and diamond pen. The value
of the grinding fluid’s cycle usage (w) ranges from 0.25 to 0.5 kg, the service cycle is 1 h, the
weight of a single diamond pen is 0.3 kg, and the value of a single service time (t) ranges
from 15 to 20 h. In addition, the power of auxiliary systems, such as lighting and ventilation,
is set at 50 kw. The layout of the production shop is shown in Figure 7, including machine
locations and the prescribed route.

Table 4. Machine information sheet.

Machine Group
Number Machine Group Name Rated

Power/kw
Idle

Power/kw
Preparation

Time/h

System
Restoration

Time/h

M1, M2, M15, M16 Double end grinding machine 88 8 0.2 0.05

M3, M4, M11, M12,
M23, M24, M25

Internal grinder 36 5 0.2 0.05

M5, M6 Inner ring track grinding machine 12 2 0.2 0.05

M7, M8 Internal track grinding machine 76 7 0.2 0.05

M9, M10 Inner ring edge grinding machine 76 7 0.2 0.05

M13, M14
Nc-tapered roller bearing inner ring

superfinishing machine 45 5 0.2 0.05
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Table 4. Cont.

Machine Group
Number Machine Group Name Rated

Power/kw
Idle

Power/kw
Preparation

Time/h

System
Restoration

Time/h

M17, M18, M21,
M22

External cylindrical grinding machine 45 5 0.2 0.05

M19, M20
Outer ring double track grinding

machine 50 5 0.2 0.05

M26, M27, M28
Nc-tapered roller bearing outer ring

superfinishing machine 45 5 0.2 0.05

M29, M30, M31 Surface centerless grinding machine 78 7 0.2 0.05

M34, M35
Roller ball base superfinishing

machine 45 5 0.2 0.05

M32, M33, M36,
M37

Conical roller centerless grinding
machine 36 5 0.2 0.05

M38, M39
Centerless outside diameter grinding

machine 45 5 0.2 0.05

M40, M41, M42 Superfinishing machine 22 3 0.2 0.05

M43, M44, M45 Assembling machine 100 10 0.2 0.05

Table 5. AGV information sheet.

AGV Type Rated
Power/kw Idle Power/kw Load Power/kw Unload

Power/kw Speed (km/h) Single Transport
Time/min

AGV1 20 2.1 20 15 3.6 3
AGV2 25 2.3 25 20 5.4 3
AGV3 30 2.5 30 25 7.2 3

Table 6. New job information sheet.

Job Operation Job Process Machine Cutting Time/h
Fixture Installation

Time/Fixture
Disassembly Time (h)

313XC
inner ring 1

O11 Grinding two ends M1, M2 0.18, 0.2 0.01/0.01

O12
Initial grinding of the inner raceway,

large flange, and inner diameter M3, M4 0.3, 0.35 0.01/0.01

O13
Sharpening the outside diameter of

the flange M5, M6 0.08, 0.06 0.01/0.01

O14 Final grinding of the inner raceway M7, M8 0.12, 0.1 0.01/0.01

O15 End grinding of the large flange M9, M10 0.16, 0.15 0.01/0.01

O16 Final grinding of the inside diameter M11, M12 0.15, 0.12 0.01/0.01

O17 Superfine inner raceway, large flange M13, M14 0.1, 0.12 0.01/0.01

313XC
inner ring 2

O21 Grinding two ends M1, M2 0.2, 0.22 0.01/0.01

O22
Initial grinding of the inner raceway,

large flange, and inner diameter M3, M4 0.28, 0.3 0.01/0.01

O23
Sharpening of the outside diameter of

the flange M5, M6 0.1, 0.08 0.01/0.01

O24 Final grinding of the inner raceway M7, M8 0.15, 0.12 0.01/0.01

O25 End grinding of the large flange M9, M10 0.18, 0.15 0.01/0.01

O26 Final grinding of the inside diameter M11, M12 0.16, 0.15 0.01/0.01

O27 Superfine inner raceway, large flange M13, M14 0.15, 0.18 0.01/0.01
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Table 6. Cont.

Job Operation Job Process Machine Cutting Time/h
Fixture Installation

Time/Fixture
Disassembly Time (h)

313XC
outer ring

O31 Grinding two ends M15, M16 0.1, 0.13 0.01/0.01

O32
Initial grinding of the outside

diameter M17, M18 0.08, 0.06 0.01/0.01

O33
Initial grinding of the outside

raceway M19, M20 0.13, 0.12 0.01/0.01

O34
Final grinding of the outside

diameter M21, M22 0.15, 0.18 0.01/0.01

O35 Final grinding of two outer raceways M23, M24,
M25

0.16, 0.18, 0.2 0.01/0.01

O36 Superfine outer raceway M26, M27,
M28

0.2, 0.22, 0.25 0.01/0.01

313XC
roller

O41 Rough face grinding M29, M30,
M31

0.2, 0.24, 0.25 0.01/0.01

O42 Rough grinding rolling surface M32, M33 0.1, 0.12 0.01/0.01

O43 Grinding the ball base M34, M35 0.1, 0.13 0.01/0.01

O44 Finely grinding the rolling surface M36, M37 0.1, 0.12 0.01/0.01

O45 Final grinding of the rolling surface M38, M39 0.06, 0.08 0.01/0.01

O46 Superfine rolling surface M40, M41,
M42

0.08, 0.1, 0.11 0.01/0.01

Table 7. Maintenance job information sheet.

Job Operation Job Process Machine Cutting Time/h
Fixture Installation

Time/Fixture
Disassembly Time (h)

350X inner
ring 1

O11 Grinding two ends M1, M2 0.12, 0.13 0.01/0.01

O13
Sharpening the outside diameter of

the flange M5, M6 0.08, 0.1 0.01/0.01

O16 Final grinding of the inside diameter M11, M12 0.1, 0.12 0.01/0.01

350X inner
ring 2

O21 Grinding two ends M1, M2 0.1, 0.12 0.01/0.01

O23
Sharpening the outside diameter of

the flange M5, M6 0.06, 0.08 0.01/0.01

O25 End grinding of the large flange M9, M10 0.08, 0.1 0.01/0.01

350X outer
ring

O31 Grinding two ends M15, M16 0.1, 0.12 0.01/0.01

O35 Final grinding of two outer raceways M23, M24,
M25

0.12, 0.15, 0.16 0.01/0.01

O36 Superfine outer raceway M26, M27,
M28

0.18, 0.2, 0.22 0.01/0.01

350X roller

O41 Rough face grinding M29, M30,
M31

0.16, 0.18, 0.2 0.01/0.01

O45 Final grinding of the rolling surface M38, M39 0.1, 0.12 0.01/0.01

O46 Superfine rolling surface M40, M41,
M42

0.08, 0.1, 0.11 0.01/0.01
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Figure 7. Layout of the bearing production shop (mixed U-shaped factory layout). 

  

Figure 7. Layout of the bearing production shop (mixed U-shaped factory layout).

4.2. Case Analysis of a Bearing Production Shop

According to the above information, the number of bearing batches for each type is set
at 1, the number of AGVs for each type is set at 2, the remaining information is unchanged,
and a group of feasible Pareto front solution sets is obtained, as shown in Figure 8. Some
selected objective function values are shown in Table 8 (10 qualified values are numbered
from top to bottom, with two decimal points reserved). For space reasons, the solution
with the minimum makespan (serial number 5) is selected from the Pareto front solution
sets, and the corresponding scheduling’s Gantt chart is generated by decoding, as shown
in Figure 9. The numbers at the front of the Gantt chart represent the job, the numbers at
the back represent the process, and different colors represent different types of jobs. The
re-entrant information is shown in Table 9. The machine combination information of the
production line is shown in Figure 10.
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Table 8. Pareto objective function values.

Serial Number CT/h CE/kg-CO2 CW/kg

1 5.10 1742.38 7.73
2 5.18 1749.24 7.73
3 5.02 1731.93 7.75
4 4.98 1731.42 7.77
5 5.44 1695.54 7.68
6 5.54 1703.70 7.66
7 5.19 1702.66 7.80
8 5.19 1702.02 7.81
9 5.20 1703.30 7.80
10 5.23 1710.12 7.78
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Figure 9. The Gantt chart with the minimum makespan. 

Table 9. Re-entrant information table. 

Job Re-entry Operation and Number of Re-Entries 

313XC O14, O15(2), O16, O17, O25, O26, O27, O32, O33, O42, O43 

315XC O13, O16(2), O22, O23, O26, O33, O34, O43, O45(2) 

322XC O13, O16, O26, O27, O32, O33, O43, O46, Assemble 

350X O13, O16(2), O23, O36, O46 

352X O15, O25(2), O34, O46 
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Figure 10. Production line’s machine combination layout. 

In the Pareto frontier’s solution set, serial number 4, serial number 5, and serial 

number 6 are the solutions with the minimum makespan, minimum total carbon 

emissions, and minimum waste emissions, respectively. It can be seen that the three 

objective functions conflict with each other, and it is difficult to reach the optimum at the 

same time. For example, in the solution with the minimum makespan (serial number 4), 

its makespan, total carbon emissions, and waste emissions are 4.98 h, 1731.42 kg-CO2, and 

7.77 kg, respectively. The solution with serial number 4 has the best makespan, but its 

total carbon emissions and waste emissions are inferior, which is because in this scheme, 

to complete the task as quickly as possible, the job is preferentially allocated to the short-

time high-power machines and AGVs, resulting in increases in the total carbon emissions 

and waste emissions. Compared with the solution with the minimum waste emissions 

Figure 9. The Gantt chart with the minimum makespan.

Table 9. Re-entrant information table.

Job Re-entry Operation and Number of Re-Entries

313XC O14, O15(2), O16, O17, O25, O26, O27, O32, O33, O42, O43
315XC O13, O16(2), O22, O23, O26, O33, O34, O43, O45(2)
322XC O13, O16, O26, O27, O32, O33, O43, O46, Assemble
350X O13, O16(2), O23, O36, O46
352X O15, O25(2), O34, O46
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Figure 9. The Gantt chart with the minimum makespan. 

Table 9. Re-entrant information table. 

Job Re-entry Operation and Number of Re-Entries 

313XC O14, O15(2), O16, O17, O25, O26, O27, O32, O33, O42, O43 

315XC O13, O16(2), O22, O23, O26, O33, O34, O43, O45(2) 
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Figure 10. Production line’s machine combination layout. 

In the Pareto frontier’s solution set, serial number 4, serial number 5, and serial 

number 6 are the solutions with the minimum makespan, minimum total carbon 

emissions, and minimum waste emissions, respectively. It can be seen that the three 

objective functions conflict with each other, and it is difficult to reach the optimum at the 

same time. For example, in the solution with the minimum makespan (serial number 4), 

its makespan, total carbon emissions, and waste emissions are 4.98 h, 1731.42 kg-CO2, and 

7.77 kg, respectively. The solution with serial number 4 has the best makespan, but its 

total carbon emissions and waste emissions are inferior, which is because in this scheme, 

to complete the task as quickly as possible, the job is preferentially allocated to the short-

time high-power machines and AGVs, resulting in increases in the total carbon emissions 

and waste emissions. Compared with the solution with the minimum waste emissions 
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In the Pareto frontier’s solution set, serial number 4, serial number 5, and serial number
6 are the solutions with the minimum makespan, minimum total carbon emissions, and
minimum waste emissions, respectively. It can be seen that the three objective functions
conflict with each other, and it is difficult to reach the optimum at the same time. For
example, in the solution with the minimum makespan (serial number 4), its makespan, total
carbon emissions, and waste emissions are 4.98 h, 1731.42 kg-CO2, and 7.77 kg, respectively.
The solution with serial number 4 has the best makespan, but its total carbon emissions and
waste emissions are inferior, which is because in this scheme, to complete the task as quickly
as possible, the job is preferentially allocated to the short-time high-power machines and
AGVs, resulting in increases in the total carbon emissions and waste emissions. Compared
with the solution with the minimum waste emissions (serial number 6), its makespan, total
carbon emissions, and waste emissions are 5.54 h, 1703.70 kg-CO2, and 7.66 kg, respectively.
The solution with serial number 6 has the best waste emissions and better total carbon
emissions, but its makespan is the worst, which is because in this scheme, to reduce the
total carbon emissions and waste emissions as much as possible, the job is preferentially
allocated to the low-power long-time machines, which causes the waiting, processing, and
transportation times to be too long, resulting in an increase in the makespan. In the actual
production process, to achieve a certain conflict balance between the various objective
functions, the decision maker can choose the appropriate scheme according to the actual
demand. For example, the solutions corresponding to serial number 7, serial number 8,
and serial number 9 not only meet the production efficiency but also reduce the production
energy consumption to a certain extent and achieve a good balance among the makespan,
total carbon emissions, and waste emissions, which have very important reference values.

In the production planning scheme obtained in this experiment, the load distribution of
each machine is relatively balanced, the AGV distribution and path planning are also rela-
tively reasonable, and the re-entrant process is within a reasonable range. When any process
needs to be re-entered, using the proposed model and algorithm can adjust the production
plan in time, and the machine and AGV can be reasonably allocated to reduce the negative ef-
fects of production line stagnation and for planning interruptions caused by process re-entry,
all of which can effectively ensure the smooth progress of the production plan.

In addition, it can also be seen, when generating production line machine combina-
tions, that the proposed model and algorithm can make reasonable use of the process,
layout, and machine information and reasonably allocate system resources under the
premise for minimizing the variation range of manufacturing system resources to meet
the production needs of new and maintenance jobs to the greatest extent and realize the
collaborative optimization of production balance and system resources.

4.3. Comparative Analysis with Other Algorithms

This section sets up an algorithmic comparison. Based on the case data and some
modifications, the proposed algorithm is compared with the non-dominated sorting genetic
algorithm-II (NSGA-II), particle swarm optimization (PSO), and taboo search algorithm
(TS). The data of the above cases are substituted into the solution, and the Pareto front
comparison is shown in Figure 11. The comparison of the optimization results is shown in
Table 10 (two decimal points are retained).

Through analysis, it can be seen that in most cases, the Pareto front solution sets
obtained by the NSGA-II, PSO, and TS algorithms are dominated by the Pareto front
of the MOOA-LS algorithm, and the distribution, uniformity, and convergence of the
Pareto front obtained by the MOOA-LS algorithm are superior to those obtained by the
comparison algorithms. It shows that the MOOA-LS algorithm can reasonably optimize
the machine selection and transportation planning of the process and reduce the idle time
to improve the production efficiency. Therefore, it can be concluded that the proposed
MOOA-LS algorithm has a better solving performance than other algorithms and can
effectively solve the green re-entrant scheduling problem under the reworking interference
of bearing products.



Machines 2024, 12, 281 21 of 24

Machines 2024, 12, x FOR PEER REVIEW 21 of 25 
 

 

(serial number 6), its makespan, total carbon emissions, and waste emissions are 5.54 h, 

1703.70 kg-CO2, and 7.66 kg, respectively. The solution with serial number 6 has the best 

waste emissions and better total carbon emissions, but its makespan is the worst, which is 

because in this scheme, to reduce the total carbon emissions and waste emissions as much 

as possible, the job is preferentially allocated to the low-power long-time machines, which 

causes the waiting, processing, and transportation times to be too long, resulting in an 

increase in the makespan. In the actual production process, to achieve a certain conflict 

balance between the various objective functions, the decision maker can choose the 

appropriate scheme according to the actual demand. For example, the solutions 

corresponding to serial number 7, serial number 8, and serial number 9 not only meet the 

production efficiency but also reduce the production energy consumption to a certain 

extent and achieve a good balance among the makespan, total carbon emissions, and 

waste emissions, which have very important reference values. 

In the production planning scheme obtained in this experiment, the load distribution 

of each machine is relatively balanced, the AGV distribution and path planning are also 

relatively reasonable, and the re-entrant process is within a reasonable range. When any 

process needs to be re-entered, using the proposed model and algorithm can adjust the 

production plan in time, and the machine and AGV can be reasonably allocated to reduce 

the negative effects of production line stagnation and for planning interruptions caused 

by process re-entry, all of which can effectively ensure the smooth progress of the 

production plan. 

In addition, it can also be seen, when generating production line machine 

combinations, that the proposed model and algorithm can make reasonable use of the 

process, layout, and machine information and reasonably allocate system resources under 

the premise for minimizing the variation range of manufacturing system resources to meet 

the production needs of new and maintenance jobs to the greatest extent and realize the 

collaborative optimization of production balance and system resources. 

4.3. Comparative Analysis with Other Algorithms 

This section sets up an algorithmic comparison. Based on the case data and some 

modifications, the proposed algorithm is compared with the non-dominated sorting 

genetic algorithm-II (NSGA-II), particle swarm optimization (PSO), and taboo search 

algorithm (TS). The data of the above cases are substituted into the solution, and the Pareto 

front comparison is shown in Figure 11. The comparison of the optimization results is 

shown in Table 10 (two decimal points are retained). 

 

Figure 11. Pareto front based on the different algorithms. Figure 11. Pareto front based on the different algorithms.

Table 10. Comparison table of optimization results.

Algorithm Objective Function CT/h CE/kg-CO2 CW/kg

MOOA-LS
CT 4.98 1731.42 7.77
CE 5.44 1695.54 7.68
CW 5.54 1703.70 7.66

NSGA-II
CT 4.99 1684.96 7.71
CE 5.00 1684.64 7.70
CW 7.13 1789.98 7.68

PSO
CT 5.62 1719.34 7.89
CE 5.98 1714.79 7.68
CW 5.98 1715.57 7.68

TS
CT 5.65 1762.06 7.87
CE 6.06 1727.67 7.82
CW 6.02 1753.70 7.68

4.4. Data Testing at Different Data Scales

Because of the variety of bearing products and large production batches, small-scale
data experiments have limitations and cannot reflect the re-entrant production charac-
teristics of bearing products. Therefore, to further verify the feasibility of the proposed
model and algorithm in engineering applications, this section conducts data testing at
different data scales. Based on the case information, the following conditions are added:
Based on the uniform distribution theory, the number of bearing batches for each type is
set at N ≈ [1, 10], and the number of AGVs for each type is set at H ≈ [1, 6]; six groups
of calculation examples (numbered N01–N06) are randomly generated to carry out data
testing at different data scales.

To facilitate this study, some constraints, such as the AGV fault, buffer size, and storage,
are not considered; the remaining information remains unchanged. The comparison of
the obtained Pareto fronts is shown in Figure 12, and the comparison of the experimental
results is shown in Table 11 (taking the solution value of the minimum makespan as an
example, two decimal points are retained).
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Table 11. Comparison table of optimization results at different data scales.

Algorithm Objective Function N01 N02 N03 N04 N05 N06

MOOA-LS CT
CT/h 7.42 9.10 11.84 15.84 18.73 21.28

CE/kg-CO2 2435.11 3096.54 4092.81 5578.92 6933.85 8397.06
CW/kg 11.40 14.63 19.90 27.82 34.40 41.30

NSGA-II CT
CT/h 7.40 8.94 12.13 16.24 19.14 21.86

CE/kg-CO2 2481.85 3092.34 4057.64 5628.57 6835.16 8328.77
CW/kg 11.68 14.57 19.70 27.50 34.53 41.61

PSO CT
CT/h 7.32 9.22 12.49 16.16 19.58 21.60

CE/kg-CO2 2442.06 3112.55 4125.92 5685.05 7009.96 8442.57
CW/kg 11.62 14.92 20.19 27.74 34.69 41.67

TS CT
CT/h 7.84 9.68 12.41 17.38 19.65 20.77

CE/kg-CO2 2486.48 3072.13 4063.46 5644.15 7062.49 8269.09
CW/kg 11.68 14.61 19.70 27.49 34.22 41.46

The analysis shows that with the expansion of the data scale, in most examples, the
solution quality of the MOOA-LS algorithm is superior to those of the other algorithms in
terms of the objective function values and Pareto dominance relationships and convergence.
Therefore, it can be further verified that the proposed algorithm is a very competitive
algorithm to solve such problems. In practical applications, using the proposed algorithm
can effectively improve the production efficiency, reduce environmental pollution, and
improve production quality, which are of great significance to realize flexible and efficient
bearing re-entrant manufacturing systems.

5. Conclusions

This paper focuses on the green re-entrant scheduling problem of bearing production
shops considering job reworking. An integrated scheduling mathematical model, based on
the entire processing–transportation–assembly process of bearings, is established consider-
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ing job reworking interference and quality inspection constraints of bearing production
processes. Then, the concepts of the SLCMR and SSRMC and the re-entrant scheduling op-
timization method, based on system reconfigurations, are proposed to reconfigure system
configurations involving machines and tools and optimize the overall system reconfigura-
tion and production scheduling for stability and efficiency. To solve these problems, this
paper proposes the MOOA-LS algorithm by integrating a multi-level neighborhood search
and adopting a probability-based neighborhood search strategy to strengthen the ability
of the algorithm to jump out of the local optimization. Finally, a bearing production shop
was taken as an example for the case study. Through the case analysis and algorithmic
comparison, the results show that the MOOA-LS algorithm can obtain higher-quality Pareto
solution sets compared with those obtained using the conventional algorithm and that
the proposed model and algorithm can guide the re-entrant scheduling process under job
reworking interference, reduce energy consumption, and achieve green manufacturing.

In this paper, some constraints, such as the tool lifespan and worker learning effect and
forgetting effect, have not been considered; therefore, a study considering more constraint
factors will be the focus of future research [33]. In addition, the storage, buffer zone, and
other links can be considered to improve the level of integration of manufacturing systems
and the engineering application value of the research [34]. Moreover, indicators, such as
the hypervolume, inverted generational distance, and generational distance, will be further
studied to evaluate the superiority and robustness of the proposed algorithm [35].
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