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Abstract: In recent years, there has been considerable interest in the study of feedback 
systems containing processes whose dynamics are best described by fractional order 
derivatives. Various situations have been cited for describing heat flow and aspects of 
bioengineering, where such models are believed to be superior. In many situations these 
feedback systems are not linear and information on their stability and the possibility of the 
existence of limit cycles is required. This paper presents new results for determining limit 
cycles using the approximate describing function method and an exact method when the 
nonlinearity is a relay characteristic. 
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1. Introduction 

In recent years, there has been considerable interest in the study of feedback systems containing 
processes whose dynamics are best described by fractional order derivatives. A physical system 
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represented by a differential equation where the orders of derivatives can take any real number and not 
necessarily an integer number can be called a fractional order system. The idea of non-integer order (or 
fractional order) differentiation/integration emerged in 1695 [1]. At the beginning, mathematicians 
studied it only as a theoretical subject due to its complexity and therefore other science disciplines 
could not use it effectively owing to the absence of exact solution methods of non-integer order 
differential equations [2]. However, in recent years, facilitated by today’s computational facilities, 
considerable attention has been given to fractional order systems, including fractional order control 
systems. 

Interest in fractional calculus has made a significant impact on the field of control engineering and 
as a result of this there have been many studies dealing with the analysis and design of control systems. 
It has been seen that the frequency domain approaches of classical control, where the Laplace complex 
variable of a transfer function is replaced by jω, such as Bode, Nyquist and Nichols diagrams can be 
applied to a fractional order plant without any modification. However, for time domain analysis integer 
approximations of fractional powers of s, such as given in [3–6], which are not exact have to be used. 
On the design side, fractional order versions of classical controllers, such as fractional order PID, have 
been designed [7] and applied [8–11] and various results have been obtained for stability analysis [12,13]. 
However, the field of fractional order control systems still needs further research on many important 
problems. One of these situations is when nonlinearity occurs in a control system. It is well known that 
all practical systems are nonlinear and linear models of many engineering systems are always 
approximate [14]. It is apparent, since as mentioned above the frequency domain representation of a 
fractional order plant is exact, that frequency domain methods can play an important role in analysis 
and design. 

The aim of this paper is to study the problem of the stability of an autonomous nonlinear feedback 
system with a fractional order plant. The stability of a nonlinear control system can often be 
demonstrated by showing that there is no possibility of the existence of sustained oscillations, known 
as limit cycles. The most powerful, although approximate, method for such investigations is the 
Describing Function (DF) method [15, 16]. The frequency at the intersection point, when one exists, of 
the Nyquist plot of the system and the complex plot of the negative inverse of the DF is used in limit 
cycle analysis. A review of the classical DF method is given and application to a control system with a 
fractional order plant is demonstrated. Tsypkin [17] presented a frequency domain method for the 
exact analysis of limit cycles in relay feedback systems and the problem is formulated in terms of A 
loci [14], which are frequency dependent loci and more general than the Tsypkin loci. A program is 
developed in MATLAB for computation of limit cycles by the Tsypkin method in a feedback loop 
with an on–off relay, relay with hysteresis or relay with dead zone and a fractional order plant. 

The rest of the paper is organized as follows: A review of fractional order dynamics is given in 
Section 2. Section 3 studies stability and limit cycles in nonlinear systems with FOTF. The DF analysis 
for nonlinear fractional order control systems is given. Computation of the A locus of a fractional order 
plant and some examples are presented for limit cycles in relay systems. Section 4 gives some 
concluding remarks. 
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2. Fractional Order Dynamics 

Many real systems are known to display fractional order dynamics. For example, it is known that 
the semi-infinite lossy (RC) transmission line demonstrates fractional behavior since the current into 
the line is equal to the half derivative of the applied voltage that is V(s) = (1/√𝑠)I(s) [18]. Thus, the 
significance of fractional order representation is that fractional order differential equations are more 
adequate to describe some real world systems than those of integer order models [19,20]. Many 
physical systems such as viscoelastic materials [21,22], electromechanical processes [23], long 
transmission lines [24], dielectric polarisations [25], colored noise [26], cardiac behavior [27], 
problems in bioengineering [28], and chaos [29] can be described using fractional order differential 
equations. Thus, fractional calculus has been an important tool to be used in engineering, chemistry, 
physical, mechanical and other sciences. Extensive results on fractional order systems and control can 
be found in the book by Monje et al. [30]. 

Fractional order calculus is a generalization of the ordinary differentiations by non-integer 
derivatives. Many mathematicians like Liouville and Riemann contributed to the field of fractional 
calculus. There are different definitions of fractional order operators such as Grünwald-Letnikov, 
Riemann-Lioville and Caputo [31]. The Caputo definition can be stated as [32], 

𝐿{𝐷𝛼𝑦(𝑡)} = 𝑠𝛼𝐿{𝑦(𝑡)} − � 𝑠𝛼−𝑖−1
[𝛼]−1

𝑖=0

𝑑𝑖𝑦
𝑑𝑡𝑖

(0) (1) 

where Dαy(t) = dαy(t)/dtα indicates the Caputo derivative of y(t), α ∈ R+ is the rational number, [α] is 
the integer part of 𝛼 and L denotes the Laplace transform.  

A fractional order control system with input r(t) and output y(t) can be described by a fractional 
differential equation of the form [33], 

𝑎𝑛𝐷𝛼𝑛𝑦(𝑡) + 𝑎𝑛−1𝐷𝛼𝑛−1𝑦(𝑡) + ⋯+ 𝑎0𝐷𝛼0𝑦(𝑡) 
= 𝑏𝑚𝐷𝛽𝑚𝑟(𝑡) + 𝑏𝑚−1𝐷𝛽𝑚−1𝑟(𝑡) + ⋯+ 𝑏0𝐷𝛽0𝑟(𝑡) 

(2) 

or by a fractional order transfer function of the form, 

𝐺(𝑠) =
𝑌(𝑠)
𝑅(𝑠)

=
𝑏𝑚𝑠𝛽𝑚 + 𝑏𝑚−1𝑠𝛽𝑚−1 + ⋯+ 𝑏0𝑠𝛽0
𝑎𝑛𝑠𝛼𝑛 + 𝑎𝑛−1𝑠𝛼𝑛−1 + ⋯+ 𝑎0𝑠𝛼0

 (3) 

where 𝑎𝑖 , 𝑏𝑗  ( 𝑖 = 0,1,2, … ,𝑛  and 𝑗 = 0,1,2, … ,𝑚 ) are real parameters and 𝛼𝑖 , 𝛽𝑗  are real positive 
numbers and 𝛼0 < 𝛼1 < ⋯ < 𝛼𝑛  and 𝛽0 < 𝛽1 < ⋯ < 𝛽𝑚 . Thus, a transfer function including 
fractional powered s terms can be called a fractional order transfer function, FOTF. For example, with 
the FOTF 𝐺(𝑠) = 1 (𝑠2.3 + 2𝑠0.7 + 1)⁄  replacing s by 𝑗𝜔  and using (𝑗𝜔)𝛼 = 𝜔𝛼(𝑐𝑜𝑠 𝛼𝜋 2⁄ +
𝑗𝑠𝑖𝑛 𝛼𝜋 2)⁄ , one obtains 

𝐺(𝑗𝜔) =
1

(1 + 0.9080𝜔0.7 − 0.8910𝜔2.3) + 𝑗(1.7820𝜔0.7 − 0.4540𝜔2.3)
 (4) 

Bode and Nyquist diagrams of this equation can then be obtained as shown in Figures 1 and 2. This 
example is given to show that the frequency response computation of FOTF can be obtained similar to 
integer order transfer functions. However, for time domain computation, there is not a general 
analytical method for determining the output of a control system with an FOTF. There have been many 
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studies over the years [34–36], some of them are based on integer approximation models and others 
based on numerical approximation of the non-integer order operator. The methods developing integer 
order approximations can be used for time domain analysis of fractional order control systems similar 
to classical control approaches. Some of the well known methods for evaluating rational 
approximations are the Continued Fractional Expansion (CFE) method, Oustaloup’s method, Carlson’s 
method, Matsuda’s method, Chareff’s method, least square methods and others [18, 37–41]. 

Figure 1. Bode plots of Equation (4). 

 

Figure 2. Nyquist plot of Equation (4). 
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In this paper, the CFE method given in [35,42] is used for time domain simulation of nonlinear 
control systems with FOTF. This method finds approximations from 

(1 + 𝑥)𝛼 =
1

1 −
 
𝛼𝑥
1 +

 
(1 + 𝛼)𝑥

2 +
 
(1 − 𝛼)𝑥

3 +
 
(2 + 𝛼)𝑥

2 +
 
(2 − 𝛼)𝑥

5 + ⋯
 (5) 

where 𝑥 = 𝑠 − 1. Thus, first, second, third and fourth integer order approximations of 𝑠𝛼 can be found 
from the following equations 

𝑠𝛼 ≅
(1 + 𝛼)𝑠 + (1 − 𝛼)
(1 − 𝛼)𝑠 + (1 + 𝛼)

 (6) 

𝑠𝛼 ≅
(𝛼2 + 3𝛼 + 2)𝑠2 + (−2𝛼2 + 8)𝑠 + (𝛼2 − 3𝛼 + 2)
(𝛼2 − 3𝛼 + 2)𝑠2 + (−2𝛼2 + 8)𝑠 + (𝛼2 + 3𝛼 + 2)

 (7) 

𝑠𝛼 ≅

(𝛼3 + 6𝛼2 + 11𝛼 + 6)𝑠3 + (−3𝛼3 − 6𝛼2 + 27𝛼 + 54)𝑠2 +
(3𝛼3 − 6𝛼2 − 27𝛼 + 54)𝑠 + (−𝛼3 + 6𝛼2 − 11𝛼 + 6)

(−𝛼3 + 6𝛼2 − 11𝛼 + 6)𝑠3 + (3𝛼3 − 6𝛼2 − 27𝛼 + 54)𝑠2 +
(−3𝛼3 − 6𝛼2 + 27𝛼 + 54)𝑠 + (𝛼3 + 6𝛼2 + 11𝛼 + 6)

 (8) 

𝑠𝛼 ≅

(𝛼4 + 10𝛼3 + 35𝛼2 + 50𝛼 + 24)𝑠4 +
(−4𝛼4 − 20𝛼3 + 40𝛼2 + 320𝛼 + 384)𝑠3 +

(6𝛼4 − 150𝛼2 + 864)𝑠2 + (−4𝛼4 + 20𝛼3 + 40𝛼2 − 320𝛼 + 384)𝑠
+(𝛼4 − 10𝛼3 + 35𝛼2 − 50𝛼 + 24)

(𝛼4 − 10𝛼3 + 35𝛼2 − 50𝛼 + 24)𝑠4 +
(−4𝛼4 + 20𝛼3 + 40𝛼2 − 320𝛼 + 384)𝑠3 +

(6𝛼4 − 150𝛼2 + 864)𝑠2 + (−4𝛼4 − 20𝛼3 + 40𝛼2 + 320𝛼 + 384)𝑠
+(𝛼4 + 10𝛼3 + 35𝛼2 + 50𝛼 + 24)

 (9) 

The fourth order approximation has been used for the simulations reported in this paper. The 
following examples show that the fourth order approximations given in Equation (9) give good results.  

The Bode plots of first, second, third, fourth order approximations of 𝐺(𝑠) = 𝑠0.5  and its exact 
Bode plots are shown in Figure 3 where it can be seen that the fourth order Bode plots fit with the 
exact Bode plots for the frequencies approximately from 0.04 rad/s to 20 rad/s. The step responses for 
𝐺(𝑠) = 1/(𝑠1.5 + 1) using first, second, third and fourth order approximations for 𝑠0.5 are given in 
Figure 4. The third and fourth order approximations match almost exactly. One of the most well-known 
approximation techniques is Oustaloup’s method [37]. Oustaloup’s method gives 1,3,5,7,… order 
integer approximations. A comparison between approximations given in Equation (9) and Oustaloup’s 
method for 𝐺(𝑠) = 1/(𝑠1.5 + 1) is given in Figure 5. The comparison is done between the seventh 
order Oustaloup’s approximation and the fourth order approximation given in Equation (9). The seventh 
order Oustaloup’s approximation for 𝑠0.5 is 

𝑠0.5 ≅
10𝑠7 + 509.4𝑠6 + 5487𝑠5 + 14990𝑠4 + 10790𝑠3 + 2045𝑠2 + 98.34𝑠 + 1
𝑠7 + 98.34𝑠6 + 2045𝑠5 + 10790𝑠4 + 14990𝑠3 + 5487𝑠2 + 509.4𝑠 + 10

 (10) 
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Figure 5 shows that two step responses agree very closely. However, we prefer to use the fourth 
order approximation given in Equation (9) since Oustaloup’s approximation is seventh order. Also in 
[35] it has been shown that the approximations given in Equations (6)–(9) provide very good results. 

Figure 3. Exact Bode plots of 𝑠0.5 and first, second, third, fourth order approximations. 

 

Figure 4. Step responses for 𝐺(𝑠) = 1/(𝑠1.5 + 1)  using first, second, third and fourth 
order approximations given in Equations (6)–(9). 
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Figure 5. Step responses using the fourth order approximation given in Equation (9) and 
seventh order Oustaloup approximation. 

 

3. Determination of Stability and Limit Cycles in Nonlinear Systems 

3.1. Describing Function Method 

The DF, 𝑁(𝑎), of a nonlinear element is defined as the ratio of the fundamental output to the 
magnitude of an applied sinusoidal input [43]. Considering a nonlinear element n(x) with input 
𝑥 = 𝑎𝑠𝑖𝑛𝜃 and corresponding output 𝑦(𝜃), then if n(x) has odd symmetry, the fundamental component 
in 𝑦(𝜃), namely 𝑏1𝑠𝑖𝑛𝜃 + 𝑎1𝑐𝑜𝑠𝜃, has 

𝑏1 =
2
𝜋
� 𝑦(𝜃)𝑠𝑖𝑛𝜃𝑑𝜃
𝜋

0
 (11) 

𝑎1 =
2
𝜋
� 𝑦(𝜃)𝑐𝑜𝑠𝜃𝑑𝜃
𝜋

0
 (12) 

The describing function 𝑁(𝑎) is then given by 

𝑁(𝑎) = (𝑏1 + 𝑗𝑎1)/𝑎 (13) 

which will be real, that is, 𝑎1 = 0, if the nonlinearity is single valued. To investigate the possibility of 
a limit cycle in the system of Figure 6 the characteristic equation 

1 + 𝑁(𝑎)𝐺�(𝑠)|𝑠=𝑗𝜔 = 0 (14) 

is then examined. Typically, this is done using a Nyquist diagram where the loci 𝐺(𝑗𝜔)  and  
𝐶(𝑎) = −1 𝑁(𝑎)⁄  are plotted, and any intersection of the loci gives the amplitude and frequency of a 
possible limit cycle. Fortunately, the frequency domain analysis of a FOCS (Fractional Order Control 
System) can be conducted in a similar way to that of an integer order one. Therefore, the frequency 
domain expression can be easily obtained by substituting 𝑠 = 𝑗𝜔  in the Laplace transform of the 
transfer function. Since the describing function method is a frequency domain approach, it can be 
applied to the FOCS to analyze some aspects of the effect of nonlinearity on its performance.  
  

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(sec)

S
te

p 
re

sp
on

se

 

 
Oustaloup 7th order
CFE 4th order



Machines 2014, 2 183 
 

 

Figure 6. A simple nonlinear feedback system. 

 

When the nonlinearity in the negative unity feedback control system of Figure 6 is an ideal relay or 
relay with hysteresis as shown in Figures 7 and 8 nonlinearity then their DFs are respectively: 

𝑁(𝑎) =
4ℎ
𝜋𝑎

      and    𝑁(𝑎) =
4ℎ(𝑎2 − ∆2)1/2

𝑎2𝜋
− 𝑗

4ℎ∆
𝑎2𝜋

 (15) 

The possibility of a limit cycle can then be investigated as shown in the following example. 

Example 1: Consider the control system of Figure 6 with the following fractional order plant  

𝐺1(𝑠) =
4

𝑠0.7(𝑠 + 1)2
=

4
𝑠2.7 + 2𝑠1.7 + 𝑠0.7 (16) 

Figure 7. The diagram of the ideal relay.  
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Figure 8. The diagram of the relay with hysteresis. 
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Figure 9 presents the Nyquist plot of the plant 𝐺(𝑠) and the negative inverse of the describing function 
in Equation (15). 

From Figure 9, a limit cycle of frequency 𝜔 = 1.632  rad/s is predicted for the fractional order 
system. Since 𝑁(𝑎) = 4ℎ 𝜋𝑎⁄  for the ideal relay nonlinearity, for ℎ = 1, the approximate amplitude of 
the limit cycle can be calculated from the intersection point of 𝐺(𝑗𝜔) and 𝐶(𝑎) as, 

𝐺(𝑗𝜔) = −
1

𝑁(𝑎) = 𝐶(𝑎) 

−0.774 = −
𝜋𝑎
4
→ 𝑎 = 0.985 

(17) 
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This amplitude, according to DF theory, is an approximation for the amplitude of the fundamental, 
although it is often assumed for convenience to be the amplitude of the distorted limit cycle. The 
period of the oscillation is given by; 

𝜔 = 2𝜋
1
𝑇

; 1.632 =
2𝜋
𝑇
→ 𝑇 = 3.84 𝑠 (18) 

Figure 9. Nyquist diagram of 𝐺1(𝑗𝜔) and plot of 𝐶(𝑎). 

 

The simulation results for the nonlinear control system with the relay nonlinearity are given in 
Figure 10. The simulation results, for which the measured peak amplitude and period were  
1.025 and 3.93 s respectively, agree well with the DF analysis method although both are approximate. 
As the limit cycle is near to sinusoidal, the DF result may be expected to be quite accurate. 

Figure 10. Time responses of closed loop system in Figure 6 with 𝐺1(𝑗𝜔) and ideal relay. 
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3.2. Tsypkin’s Method 

The analysis of the relay feedback problem can be studied using the frequency domain approach of 
the Tsypkin method and the A Loci approach [14]. For a feedback loop containing a relay and a 
transfer function 𝐺(𝑠), limit cycles can be found using the A loci of 𝐺(𝑠) where 

𝐴𝐺(𝜃,𝜔) = 𝑅𝑒𝐴𝐺(𝜃,𝜔) + 𝑗𝐼𝑚𝐴𝐺(𝜃,𝜔) (19) 

with 

𝑅𝑒𝐴𝐺(𝜃,𝜔) = �𝑉𝐺(𝑛𝜔)𝑠𝑖𝑛𝑛𝜃 + 𝑈𝐺(𝑛𝜔)𝑐𝑜𝑠𝑛𝜃
∞

𝑛=1

 (20) 

and 

𝐼𝑚𝐴𝐺(𝜃,𝜔) = �(1 𝑛⁄ )[𝑉𝐺(𝑛𝜔)𝑐𝑜𝑠𝑛𝜃 − 𝑈𝐺(𝑛𝜔)𝑠𝑖𝑛𝑛𝜃
∞

𝑛=1

] (21) 

where 𝐺(𝑗𝑛𝜔) = 𝑈𝐺(𝑛𝜔) + 𝑗𝑉𝐺(𝑛𝜔). 𝐴𝐺(𝜃,𝜔) is a generalized summed frequency locus with its real 
and imaginary values at a particular frequency, 𝜔, depending on weighted values, according to the 
choice of, 𝜃, of the real and imaginary values of 𝐺(𝑗𝜔) at the frequencies 𝑛𝜔 for 𝑛 = 1,2, … ,∞. In 
particular, for 𝜃 = 0 the real (imaginary) part of 𝐴𝐺(𝜃,𝜔) depends only upon the real (imaginary) part 
of 𝐺(𝑗𝜔) at frequencies 𝑛𝜔. It is possible to evaluate 𝑅𝑒𝐴𝐺(𝜃,𝜔) and 𝐼𝑚𝐴𝐺(𝜃,𝜔) by computationally 
summing to a finite number, M, of terms. For integer transfer functions, closed form solutions have 
been found for the infinite series but this remains an open problem for fractional order transfer 
functions (FOTFs). When the limit cycle is odd symmetrical only odd values of n are required in the 
series and the corresponding A locus is denoted by 𝐴𝑜. Some properties of the A loci are: 

𝑑 𝐼𝑚[𝐴𝐺(𝜃,𝜔)]
𝑑𝜃

= −𝑅𝑒𝐴𝐺(𝜃,𝜔) (22) 

The 𝐴𝑜 locus for 𝜃 = 0 is identical with the Tsypkin locus [17], Λ(𝜔), if lim𝑠→∞ 𝑠𝐺(𝑠) = 0, apart 
from a constant factor. The relationship is 

Λ(𝜔) = (4ℎ 𝜋)𝐴𝑜(0,𝜔)⁄  (23) 

The 𝐴𝑜  locus can thus be regarded as a generalized Tsypkin locus. The A locus satisfies the 
superposition property, that is if the linear plant 𝐺(𝑠) = 𝐺1(𝑠) + 𝐺2(𝑠), then  

𝐴𝐺(𝜃,𝜔) = 𝐴𝐺1(𝜃,𝜔) + 𝐴𝐺2(𝜃,𝜔) (24) 

If 𝐺1(𝑠) = 𝐺(𝑠)𝑒−𝑠𝜏, then 

𝐴𝐺1(𝜃,𝜔) = 𝐴𝐺(𝜃 + 𝜔𝜏,𝜔) (25) 

The loci are periodic in 𝜃, with period 2𝜋, that is 

𝐴𝐺(𝜃,𝜔) = 𝐴𝐺(𝜃 + 2𝜋,𝜔) (26) 

For 𝐴𝑜 the periodicity is odd, that is 

𝐴𝐺𝑜 (𝜃,𝜔) = −𝐴𝐺𝑜 (−𝜃,𝜔) (27) 
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Since any integer plant transfer function can be written in terms of a summation of transfer 
functions having a real or complex pair of poles, use of Equation (24) allows A loci for most integer 
transfer functions to be obtained in terms of the A loci of a few basic transfer functions. 

For a relay with no dead zone, the simplest assumption for the periodic output is a square wave with 
1:1 mark space ratio. By taking the Fourier series for the square wave and calculating the 
corresponding series for the output of 𝐺 it can be shown that the output and the derivative of the output 
of the linear transfer function 𝐺 can be expressed in terms of the A loci [14]. This also applies to the 
situation where the relay has dead zone, where unlike the situation for the relay without dead zone, 
finite values of 𝜃 are required. Taking the input to the relay, 𝑥(𝑡) = −𝑐(𝑡), where c(t) is the output of 
G(s), and assuming the relay to have a hysteresis of ±∆, that is it switches from −h to +h for an input 
of ∆ at time zero and from +h to −h for an input of −∆, the switching condition 

𝑥(0) = ∆   and   �̇�(0) > 0 (28) 

yields the result 

𝐼𝑚𝐴𝐺𝑜 (0,𝜔) = −𝜋Δ 4ℎ   and   𝑅𝑒⁄ 𝐴𝐺𝑜 (0,𝜔) < 0 (29) 

provided lim𝑠→∞ 𝑠𝐺(𝑠) = 0. When the latter is not the case, discontinuities in the relay input or its 
derivative may occur at the switching instants and known corrections need to be applied to the equations.  

For a relay with dead zone the solution is obtained from  

𝐼𝑚𝐴𝐺𝑜 (0,𝜔) − 𝐼𝑚𝐴𝐺𝑜 (𝜔Δ𝑡,𝜔) = −(𝜋 2ℎ)(𝛿 + Δ)⁄  (30) 

𝑅𝑒𝐴𝐺𝑜 (0,𝜔) − 𝑅𝑒𝐴𝐺𝑜 (𝜔Δ𝑡,𝜔) < 0 (31) 

and 

𝐼𝑚𝐴𝐺𝑜 (0,𝜔) − 𝐼𝑚𝐴𝐺𝑜 (−𝜔Δ𝑡,𝜔) = (𝜋 2ℎ)(𝛿 − Δ)⁄  (32) 

𝑅𝑒𝐴𝐺𝑜 (0,𝜔) − 𝑅𝑒𝐴𝐺𝑜 (−𝜔Δ𝑡,𝜔) < 0 (33) 

Here, there are two equations as there are two unknowns the pulse width, Δ𝑡, and the limit cycle 
frequency, 𝜔. Note the expressions involving the real parts need not normally be checked but it is 
easily done if the solutions are obtained graphically by plotting for the relay with no dead zone 
𝐴𝐺𝑜 (0,𝜔)  and for the relay with dead zone 𝐴𝐺𝑜 (0,𝜔) − 𝐴𝐺𝑜 (𝜔Δ𝑡,𝜔)  and 𝐴𝐺𝑜 (0,𝜔) − 𝐴𝐺𝑜 (−𝜔Δ𝑡,𝜔) . 
Consider the transfer function 𝐺(𝑠) = 1 𝑠(𝑠 + 1)(𝑠 + 2)⁄  in a feedback loop having a relay with 
hysteresis. For this transfer function  

𝐺(𝑗𝜔) =
1

𝑗𝜔(1 + 𝑗𝜔)(2 + 𝑗𝜔)
=

−3𝜔2

(−3𝜔2)2 + (2𝜔 − 𝜔3)2
−

𝑗(2𝜔 −𝜔3)
(−3𝜔2)2 + (2𝜔 − 𝜔3)2

 (34) 

thus for an odd symmetrical limit cycle 

𝐴𝐺0 (0,𝜔) = � 𝑈𝐺(𝑛𝜔) + 𝑗[𝑉𝐺(𝑛𝜔) 𝑛⁄ ]
∞

𝑛=1(2)

= 

�
−3𝑛2𝜔2

(−3𝑛2𝜔2)2 + (2𝑛𝜔 − 𝑛3𝜔3)2

∞

𝑛=1(2)

−
𝑗(2𝑛𝜔 − 𝑛3𝜔3)

𝑛[(−3𝑛2𝜔2)2 + (2𝑛𝜔 − 𝑛3𝜔3)2]
 

(35) 
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The limit cycle solution frequency is given where the above locus meets the line −𝜋Δ 4ℎ⁄  parallel 
to the negative real axis on a Nyquist plot. The DF solution is given where 𝐺(𝑗𝜔) meets this line, so 
when a program is written where 𝑛 can be input then the DF solution can be obtained for 𝑛 = 1 and 
convergence can be seen by taking larger and larger values of 𝑛. Thus, plotting 𝐴𝐺𝑜 (0,𝜔) and 𝐺(𝑗𝜔) 
provides a good graphical approach for obtaining the limit cycle solution. Another option, to obtain the 
limit cycle frequency, is to solve  

�
2𝑛𝜔 − 𝑛3𝜔3

𝑛[(−3𝑛2𝜔2)2 + (2𝑛𝜔 − 𝑛3𝜔3)2]

∞

𝑛=1(2)

=
𝜋Δ
4ℎ

 (36) 

for 𝜔. Strictly speaking, one should also check that the real part of the locus is negative but this is 
obviously the case for this simple example. Cases where it is not typically involve “unusual” transfer 
functions, and the DF solution may then also be a problem. For the relay with dead zone, two sets of 
loci must be plotted for the graphical approach because the two loci must be plotted for different 
values of 𝜔𝛥𝑡 = 𝜃 say, and the solution is obtained when the given lines are intersected with the same 
𝜔 and 𝜃 on the loci. Figure 11 shows A Loci of Equation (34) for different values of n. Table 1 shows 
the solution of Equation (36) for the relay with hysteresis for different values of n. Convergence is fast 
because the transfer function is a good low pass filter. 

Figure 11. A Loci for different values of n for Equation (34) where ℎ Δ = 2⁄ . 

 

Table 1. Limit cycle frequencies for different values of n for Equation (34) where ℎ Δ = 2⁄ . 

n 𝝎 (rad/s) n 𝝎 (rad/s) 
1 0.6450 9 0.6359 
3 0.6392 11 0.6357 
5 0.6370 13 0.6356 
7 0.6362 15 0.6356 
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Example 2: Consider the nonlinear system of Figure 6 with the integer order transfer function  

𝐺2(𝑠) =
2 − 𝑠

(𝑠 + 2)2
 (37) 

and an ideal relay. This transfer function is not a good filter so there is some distance between the A 
locus and Nyquist plots as seen in Figure 12. The frequency of the limit cycle using the A locus plot, as 
seen from Figure 12 is 𝜔 = 2.8985 rad/s for n=101 and 𝜔 = 3.4641 rad/s from the Nyquist plot. The 
limit cycle is shown in Figure 13, which can be seen to be quite distorted, hence the quite large 
difference in the two frequencies. 

Figure 12. A Loci and Nyquist diagram of 𝐺2(𝑗𝜔) and plot of 𝐶(𝑎). 

 

Figure 13. Time responses of closed loop system in Figure 6 with 𝐺2(𝑗𝜔) and ideal relay  
(𝜔 = 2.88 rad/s). 
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Solving the equation corresponding to Equation (36) for this example, for different values of n, gives 
Table 2. This shows, as expected, that larger values of n must be used to get the limit cycle frequency 
accurately. A Loci for different values of n are shown in Figure 14. 

Table 2. Limit cycle frequencies for different values of n for Equation (37) where 𝑁(𝑎) is 
an ideal relay. 

n 𝝎 (rad/s) n 𝝎 (rad/s) 
1 3.4641 17 2.9578 
3 3.2003 23 2.9398 
5 3.0995 35 2.9218 
7 3.0471 51 2.9107 
9 3.0152 71 2.9038 

11 2.9938 91 2.8998 
13 2.9784 101 2.8985 

Figure 14. A  Loci for different values of n for Equation (37) where 𝑁(𝑎) is an ideal relay. 

 

Example 3: In this example, the Typskin loci for two plants, one is fractional order, with time delay 
are studied. These are: 

𝐺3𝑖(𝑠) =
3

(𝑠 + 1)2
𝑒−𝑠 (38) 

and 

𝐺3𝑓(𝑠) =
3

𝑠2.1 + 2𝑠1.5 + 1
𝑒−𝑠 (39) 

The A Locus and Nyquist plots for 𝐺3𝑖(𝑠) and 𝐺3𝑓(𝑠) are shown in Figures 15 and 16, respectively.  
From the figures, the exact limit cycle frequencies are 1.27 rads/s and 0.86 rads/s, respectively, for 

the integer order and fractional order plants. 
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Figure 15. A Loci and Nyquist diagram of 𝐺3𝑖(𝑗𝜔). 

 

Figure 16. A Loci and Nyquist diagram of 𝐺3𝑓(𝑗𝜔). 

 

Example 4: Consider Figure 6 with the fractional order plant 

𝐺4(𝑠) =
2

𝑠3.6 + 3𝑠2.4 + 3𝑠1.2 + 1
 (40) 

Assume that the nonlinear system includes a relay with no dead zone. The A Locus, and the 𝐶(𝑎) 
loci for the ideal relay and relay with hysteresis, having ℎ Δ = 2⁄ , are shown in Figure 17. 
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Figure 17. A Loci of 𝐺4(𝑗𝜔) and plot of 𝐶(𝑎) 

 

Figure 18 shows the time responses for the ideal relay and relay with hysteresis. The limit cycle 
frequencies are 𝜔 = 1.1321 rad/s and 𝜔 = 0.9681 rad/s, respectively. 

It can be shown using the approximate DF theory that a necessary but not sufficient criterion  
for stability of a limit cycle is that the intersection between 𝐺(𝑗𝜔) and 𝐶(𝑎) should be as shown in 
Figure 15. That is, if one moves along 𝐺(𝑗𝜔) in the direction of increasing frequency then at the point 
of intersection increasing amplitude on the 𝐶(𝑎) locus will lie to the left. 

Figure 18. Time responses of closed loop system in Figure 6 with 𝐺4(𝑗𝜔) (a) ideal relay 
(b) relay with hysteresis. 
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Example 5: Let us consider the transfer function  

𝐺5(𝑠) =
𝐾

𝑠1.2(𝑠 + 1)2
 (41) 

in a feedback loop having a relay with dead zone as shown in Figure 19.  
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Figure 19. A nonlinear feedback system having relay with dead zone. 

 

The DF for a relay with dead zone only, that is for 𝑎 > 𝛿, Δ = 0 is 

𝑁(𝑎) =
4ℎ(𝑎2 − 𝛿2)1 2⁄

𝑎2𝜋
 (42) 

and its input and output waveforms are shown in Figure 20. 

Figure 20. The diagram of the relay with dead zone. 

 

The graph of 𝑁(𝑎) is shown in Figure 21 where 𝛿 = 1 and it can easily be shown by differentiation 
that it has a maximum of 2ℎ 𝜋𝛿⁄  for 𝑎 = 𝛿√2. For the transfer function of Equation (41), one can write 

𝐺5(𝑗𝜔) =
𝐾

(𝑗𝜔)1.2(1 + 𝑗𝜔)2
 (43) 

Figure 21. Graphical illustration of Describing Function(DF) (relay with dead zone) 
against 𝑎 𝛿⁄  with ℎ = 𝜋. 
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The real and imaginary parts of the denominator of 𝐺5(𝑗𝜔) are −0.309ω1.2 – 1.902ω2.2 + 0.309ω3.2 
and 0.9510ω1.2 – 0.6180ω2.2 – 0.9510ω3.2, respectively. Thus, Equation (14), which is 1 + N(a)G(jω) = 0 
gives 

−0.309𝜔1.2 − 1.902𝜔2.2 + 0.309𝜔3.2 +
4ℎ𝐾(𝑎2 − 𝛿2)1 2⁄

𝑎2𝜋
+ 𝑗(0.9510𝜔1.2 − 0.6180𝜔2.2

− 0.9510𝜔3.2) = 0 
(44) 

Figure 22 shows a plot of 𝐺(𝑗𝜔) and 𝐶(𝑎) from which it is seen that the latter travels along the 
negative real axis from minus infinity as a increases to a maximum of −𝜋𝛿 2ℎ⁄  and then returns. Thus, 
there are two intersections with 𝐺(𝑗𝜔) and according to the above criterion only the larger amplitude 
one corresponds to a stable limit cycle. 

Figure 22. Nyquist plot of 𝐺(𝑗𝜔) and 𝐶(𝑎) (relay with dead zone). 

 

3.2.1. Analysis of Limit Cycle Existence According to Compensator Gain 

The above transfer function for K = 1 crosses the negative real axis at a frequency of 0.7265 rad/s 
and its magnitude is given by: 

1
(𝑗𝜔)1.2(𝑗𝜔 + 1)2

= � 1
𝜔1.2(1 + 𝜔2)

�
∠𝐺(𝑗𝜔)=−180𝑜

𝜔=0.7265

= 0.959 (45) 

An intersection with 𝐶(𝑎) will thus only occur if 

0.959𝐾𝑁(𝑎)𝑚𝑎𝑥 > 1 (46) 

Taking 𝛿 = 1, ℎ = 𝜋 for the relay gives 𝑁(𝑎)𝑚𝑎𝑥 = 2, so that for stability K < 0.521. Figure 23 
shows simulation results for K = 0.49 and 0.55. The former is seen to be stable and a limit cycle exists 
for the latter. In the simulation, a limit cycle developed for K just greater than 0.49. Thus, although 
both results are approximate, there is good agreement. 
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Figure 23. Time responses of closed loop system in Figure 19 with Equation (43) and relay 
with dead zone for K = 0.49 and 0.55  

 

3.2.2. Analysis of Limit Cycle Existence According to Fractional Order Dynamics 

In this example, the effect of the change in order of a fractional integrator on the feedback loop 
stability is investigated. 

Example 6: Consider the control system of Figure 19 with the fractional order plant 

𝐺𝛼(𝑠) =
2

𝑠𝛼(𝑠 + 1)2
 (47) 

where 𝛼 is the fractional order of the integrator 1 𝑠𝛼⁄ . The relay is again taken to have 𝛿 = 1, ℎ = 𝜋. 
The 𝐺(𝑗𝜔) loci for 𝛼 = 1.2 and 𝛼 = 0.779, which passes through −0.5, are shown in Figure 24. 

Figure 24. The 𝐺𝛼(𝑗𝜔) loci for 𝛼 = 1.2 and 𝛼 = 0.779. 
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Two values of amplitude can be found from the chosen value of alpha and the corresponding limit 
cycle frequency from the equation 

2
𝜔𝛼(1 + 𝜔2)

=
−𝑎2

4(𝑎2 − 1)1 2⁄  (48) 

For example, for 𝛼 = 1.2  then 𝜔 = 0.7265  rad/s from arg[𝐺(𝑗𝜔)] = −𝜋 , and the two values  
of amplitude are found from 𝑎4 − 58.878𝑎2 + 58.878 = 0  giving 𝑎1 = 1.008  and 𝑎2 = 7.616 .  
Also shown in Figure 25 and Table 3 are the frequencies and corresponding amplitudes at 
 arg[𝐺(𝑗𝜔)] = −𝜋  as a function of 𝛼. 

Figure 25. Nyquist plots for different values of 𝛼 for Equation (47) where 𝑁(𝑎) is a relay 
with dead zone. 

 

Table 3. The frequencies and corresponding amplitudes at arg[𝐺(𝑗𝜔)] = −180𝑜  as a 
function of 𝛼. 

𝜶 
(Fractional Order) 

𝝎 rad/s 
(The Frequency at  
𝐚𝐫𝐠[𝑮(𝒋𝝎)] = −𝝅 ) 

a 

(The Amplitude at 
𝐚𝐫𝐠[𝑮(𝒋𝝎)] = −𝝅) 

0.779 1.4252 a1 = 1.141, a2 = 1.141 
1.1 0.8541 a1 = 1.0176, a2 = 5.407 
1.2 0.7265 a1 = 1.008, a2 = 7.616 
1.3 0.6128 a1 = 1.004, a2 = 10.946 
1.4 0.5095 a1 = 1.001, a2 = 16.294 

Example 7: Here, example 5 shown in Figure 19 is again considered to illustrate the Tsypkin 
method. The relay parameters were again taken as 𝛿 = 1, ℎ = 𝜋 to allow comparison of the results 
with those obtained using the DF method and initially K was taken equal to 1. The required A loci 
plots 𝐴𝐺𝑜 (0,𝜔) − 𝐴𝐺𝑜 (𝜔Δ𝑡,𝜔) and 𝐴𝐺𝑜 (0,𝜔) − 𝐴𝐺𝑜 (−𝜔Δ𝑡,𝜔) were plotted for a selection of values 
of ∆𝑡 as shown in Figure 26, and the values of 𝜔 and 𝛥𝑡 were recorded where they met the lines 
−𝜋𝛿 2ℎ⁄  and 𝜋𝛿 2ℎ⁄ , respectively. Table 4 shows recorded values of 𝜔 and 𝛥𝑡 for K = 1. 
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Figure 26. A loci for graphical solution for K = 1. 

 

Table 4. Recorded values of 𝜔 and 𝛥𝑡 for K = 1.  

𝜟𝒕 
 

𝝎 rad/s 
(Solution from  

𝑨𝑮𝒐(𝟎,𝝎) − 𝑨𝑮𝟎(𝝎𝚫𝒕,𝝎) = −𝝅𝜹 𝟐𝒉⁄ ) 

𝝎 rad/s 
(Solution from 

𝑨𝑮𝒐(𝟎,𝝎) − 𝑨𝑮𝟎(−𝝎𝚫𝒕,𝝎) = 𝝅𝜹 𝟐𝒉⁄ ) 
0.4 0.222 0.216 
0.6 0.577 0.61 
0.8 0.736 0.835 
1 0.818 0.983 

1.2 0.861 1.083 
1.4 0.881 1.146 
1.6 0.886 1.177 
1.8 0.881 1.181 
2.0 0.871 1.165 
2.2 0.856 1.132 
2.4 0.838 1.088 
2.6 0.82 1.037 
2.8 0.8 0.98 

3.14 0.767 0.878 
3.2 0.761 0.859 
3.4 0.741 0.797 
3.6 0.723 0.735 
3.8 0.704 0.673 
4 0.687 0.612 

The values of 𝜔 and 𝛥𝑡 which satisfy both relationships 𝐴𝐺𝑜 (0,𝜔) − 𝐴𝐺𝑜 (𝜔Δ𝑡,𝜔) = −𝜋𝛿 2ℎ⁄  and 
𝐴𝐺𝑜 (0,𝜔) − 𝐴𝐺𝑜 (−𝜔Δ𝑡,𝜔) = 𝜋𝛿 2ℎ⁄  can then be found by plotting the values given in Table 4 in 
(𝛥𝑡,𝜔) plane as shown in Figure 27. From Figure 27, it was found that there are two solutions one is 
(𝛥𝑡,𝜔) = (3.656 𝑠, 0.7177 rad s⁄ ) and the other is (𝛥𝑡,𝜔) = (0.4308 𝑠, 0.2766 rad s⁄ ). 
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Figure 27. Plots of recorded values given in Table 4. 

 

The procedure was repeated for decreasing values of K and the results are given in Table 5 which 
shows the frequency and pulse width of the stable and unstable limit cycles. There are two frequency 
values for each K and larger one corresponds to a stable limit cycle. 

Table 5. The frequency and pulse width of the stable and unstable limit cycles for different 
values of K. 

K 𝝎 𝜟𝒕 𝜽 = 𝝎𝜟𝒕 

1 
0.7177 3.656 2.623 
0.2766 0.4308 0.119 

0.6 
0.7142 3.055 2.181 
0.5712 1.044 0.596 

0.55 
0.7204 2.664 1.919 
0.6103 1.246 0.760 

0.52 
0.7152 2.438 1.7437 
0.6411 1.444 0.9257 

0.49 No solution. System is stable 

The value of K for which no solution was possible, and thus the system was stable, was 0.49. The 
results obtained from simulation, DF and A locus methods for comparison are given in Table 6 where 
it can be seen that the system is stable for 𝐾 ≤ 0.52 according to DF method and it is stable for 
𝐾 ≤ 0.49 according to simulation and A locus methods. 

Time domain simulation using Figure 19 is shown in Figure 28 which is the stable limit cycle 
obtained from a simulation with K = 1. Limit cycle frequency and pulse width are computed as 
𝜔 = 0.7173  rad/s and 𝛥𝑡 = 3.65, respectively. 
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Table 6. Results from simulation, DF and A Locus methods. 

K Method 𝝎 𝜟𝒕 𝜽 = 𝝎𝜟𝒕 

1 

Simulation 
0.7173 3.65 2.618 

- - - 

DF 
0.7265 3.57 2.59 

- - - 

A  Locus 
0.7177 3.656 2.623 
0.2766 0.4308 0.119 

0.6 

Simulation 
0.7306 2.9 2.118 

- - - 

DF 
0.7265 2.88 2.09 

- - - 

A  Locus 
0.7142 3.055 2.181 
0.5712 1.044 0.596 

0.55 

Simulation 
0.7222 2.7 1.949 

- - - 

DF 
0.7265 2.61 1.896 

- - - 

A Locus 
0.7204 2.664 1.919 
0.6103 1.246 0.760 

0.52 

Simulation 
0.7140 2.4 1.713 

- - - 
DF No solution. System is stable. 

A  Locus 
0.7152 2.438 1.743 
0.6411 1.444 0.9257 

0.49 
Simulation No limit cycle. System is stable. 

DF No solution. System is stable. 
A  Locus No solution. System is stable. 

Figure 28. Time responses of closed loop system in Figure 19 for K = 1 with 𝐺5(𝑗𝜔) and 
relay with dead zone. 

 
75 80 85 90 95 100

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

 

 

X: 79.96
Y: 3.764

Time (sec)

y(
t),

c(
t)

X: 88.72
Y: 3.764

y(t)
c(t)

ω=0.7173 rad/sec
∆t=3.65



Machines 2014, 2 199 
 

 

4. Conclusions 

In this paper, after a brief review of the DF method the computation of the A locus for a fractional 
order plant has been studied. The A locus method is important as it allows calculation of the exact limit 
cycle frequency in a relay control system. For the fractional order plant, the A locus has to be 
computed by summing terms of a series and taking one term only is the equivalent of the DF method. 
Several examples have been given showing applications of the DF and A loci methods to the 
computation of limit cycles in fractional order plants and the results compared. It is known that the 
calculations to find the limit cycles in feedback systems containing relay type characteristics can be 
done using either time domain or frequency domain methods. Therefore, the problem of the calculation 
of limit cycles in a system with a relay with dead zone and a fractional order transfer function using 
time domain approach can be considered as future work and comparing the exact frequency domain 
approach with the approximate time domain solution can provide useful results. 
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