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Abstract: In order to improve the availability of wind turbines, thus improving their
efficiency, it is important to detect and isolate faults in their earlier occurrence. The main
problem of model-based fault diagnosis applied to wind turbines is represented by the
system complexity, as well as the reliability of the available measurements. In this work, a
data-driven strategy relying on fuzzy models is presented, in order to build a fault diagnosis
system. Fuzzy theory jointly with the Frisch identification scheme for errors-in-variable
models is exploited here, since it allows one to approximate unknown models and manage
uncertain data. Moreover, the use of fuzzy models, which are directly identified from the
wind turbine measurements, allows the design of the fault detection and isolation module.
It is worth noting that, sometimes, the nonlinearity of a wind turbine system could lead to
quite complex analytic solutions. However, IF-THEN fuzzy rules provide a simpler solution,
important when on-line implementations have to be considered. The wind turbine benchmark
is used to validate the achieved performances of the suggested fault detection and isolation
scheme. Finally, comparisons of the proposed methodology with respect to different fault
diagnosis methods serve to highlight the features of the suggested solution.

Keywords: data-driven approach; fuzzy modeling and identification; fault detection and
isolation; reliability and safety; wind turbine benchmark
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1. Introduction

Wind turbines of the megawatt size are expensive, and hence, their overall availability must be high
to optimize the energy generation, thus reducing the cost of energy. In the same way, wind turbine
downtime must be minimized. This key feature can be achieved by introducing fault detection and
isolation (FDI) systems. In the related state-of-the-art, the fault detection schemes for industrial wind
turbines can be quite conservative. For example, turbines are simply turned off after minimal faults to
wait for service. Consequently, there is a need for an effective FDI for improving wind turbine working
conditions, even though it might lead to limited power production in the case of faults. In the last few
years, some works have been proposed on wind turbine FDI.

As an example [1], presented a Kalman filter-based diagnosis system for detecting faults in the blade
root bending moment sensors. An unknown input observer was designed for the detection of sensor
faults around the wind turbine drive train in [2]. On the other hand, in [3], active and passive fault
tolerant control schemes are considered. More attention has been drawn on wind turbine electrical
conversion systems. Some relevant examples can be found in [4], where observer-based solutions for
sensor fault detection are presented. In [5], a fault detection and reconfiguration scheme for a doubly-fed
wind turbine converter is shown.

Comparisons of the considered fault diagnosis schemes for wind turbine applications are beneficial
to find the most effective methodology. In [6], a wind turbine benchmark was presented, which was
proposed for both FDI and FTCsolution comparisons. This benchmark model described a realistic
three-blade horizontal variable speed wind turbine with a full-scale converter coupling, and it will be
considered in the present study. Several FDI strategies were proposed in the recent literature for this
specific benchmark [6]. In particular, the most effective FDI approaches were based on support vector
machines with a Gaussian kernel [7], banks of estimators [8], up-down counters for a redundant residual
decision [9], combined observer/Kalman filters [10] and automatically generated fault models [11].

This paper proposes a data-driven FDI approach, based on identified fuzzy residual generators, which
is applied to the benchmark proposed in [6]. To this aim, the key contributions of the presented study
are remarked in as follows. First, the system complexity may not require the design of a sophisticated
analytical model of the residual generators. In fact, as shown in this work, a method relying on fuzzy
models is proposed, thus obviating the derivation of purely nonlinear mathematical models of the residual
functions. Note that the advantages of model-based approaches with respect to data-driven solutions
depend on the features of the model under diagnosis, as described, e.g., in [12,13]. For the first time,
the suggested methodology is applied to the wind turbine benchmark. Secondly, residual generators in
the form of fuzzy models are considered instead of purely nonlinear observer or filter functions. Again,
for the first time, the authors have proposed here the design of these residual generators with application
to the wind turbine benchmark. Third, by exploiting the failure mode and effect analysis described in
the following, both the fuzzy identification and the fault isolation tasks are enhanced, without using
complicated unknown input or disturbance decoupling approaches, as addressed, e.g., in [12,13].

This paper suggests the use of fuzzy logic, since it seems the natural tool for handling complicated
and uncertain conditions [14,15] that, in general, are not available to the designer. The additional benefits
of fuzzy logic in connection with errors-in-variable (EIV) identification techniques include its simplicity
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and its flexibility [16,17]. Fuzzy logic can model nonlinear functions with arbitrary complexity. Fuzzy
models, called fuzzy inference systems (FIS), consist of a number of conditional “IF-THEN” rules. For
the designer, these rules are easy to build, and as many rules as necessary can be supplied to describe
the system adequately with arbitrary accuracy (although typically, only a moderate number of rules are
needed). In fuzzy logic, unlike standard conditional logic, the truth of any statement is a matter of degree.
FIS relies on membership functions to explain how to calculate the correct value between zero and one.
The degree to which any fuzzy statement is true is denoted by a value between zero and one. Not only do
the rule-based approach and flexible membership function scheme make fuzzy systems straightforward
to create, but they also simplify the design of systems and ensure that you can easily update and maintain
the system over time [15].

As described in the following, the paper suggests the use of the Takagi–Sugeno (TS) model [18],
whose parameters are obtained via the identification procedure proposed in [16,17]. This procedure is
based on the EIV identification strategy relying on the Frisch scheme, which assumes that the input
and output data are affected by noise, thus providing an unbiased parameter estimation. The diagnosis
approach being evaluated has also an important implication on the use of on-line diagnosis tools once
the wind turbine is under customer operation. Therefore, the further contribution of the study regards
the robustness and reliability analysis of the proposed FDI scheme. The effectiveness of the proposed
strategy is verified using data sequences acquired from the wind turbine benchmark. Realistic conditions
and comparisons with different fault diagnosis approaches have been considered to validate the proposed
methodology. Note that the wind turbine simulator exploited in this study was modified by the authors,
and the working conditions can be different from the ones shown in [6], since it was oriented toward the
assessment of the robustness and the reliability of the considered FDI schemes. Moreover, with respect
to previous works by the same authors, this paper aims at describing the comprehensive data-driven
approach to wind turbine FDI and its extended comparisons with different FDI strategies applied to the
same case study.

Finally, the paper has the following structure. Section 2 briefly recalls the wind turbine benchmark.
Section 3 addresses the strategy using the EIV identification approach exploited for obtaining the fuzzy
models, which are used as residual generators for the design of the FDI strategy. The proposed FDI
methodology is presented in Section 4. The results achieved, which are summarized in Section 5,
show the performances of the fault diagnosis scheme, validated on the data directly acquired from the
benchmark, and compared also with different methods. Section 6 ends the paper by highlighting the
main achievements of the work, providing suggestions for further studies.

2. Wind Turbine Benchmark Description

The three-blade horizontal axis turbine considered in this paper works according to the principle that
the wind is acting on the blades and moves the rotor shaft. In order to up-scale the rotational speed to
the generator, a gear box is introduced. A more accurate description of the benchmark model can be
found in [6].

The rotational speed, and consequently, the generated power, is regulated by means of two controlled
inputs: the converter torque τg(t) and the pitch angle βr(t) of the turbine blades. From the wind turbine
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system, a number of measurements can be acquired. ωr(t) is the rotor speed, ωg(t) the generator speed
and τg(t) the torque of the generator controlled by the converter, which is provided with the torque
reference, τr(t). The estimated aerodynamic torque is defined as τaero(t). This estimate clearly depends
on the wind speed, which is not a very accurate measurement.

The wind turbine model in the continuous-time domain is briefly recalled in this section. In particular,
the aerodynamic model is defined as in Equation (1):

τaero(t) =
ρACp (βr(t), λ(t)) v3(t)

2ωr(t)
(1)

where ρ is the density of the air, A is the area covered by the turbine blades in its rotation, v(t)

is the wind speed, whilst λ(t) is the tip-speed ratio of the blade. Cp represents the power coefficient,
here described by means of a two-dimensional map (look-up table). Equation (1) is used to compute
the aerodynamic torque τaero(t) that depends on v(t), the measured pitch angle βr(t) and rotor speed
ωr(t). Due to the uncertainty of the wind speed, the estimate of τaero(t) is considered affected by an
unknown measurement error, which motivates the approach described in Section 3. Moreover, also the
nonlinearity represented by Equation (1) is thus taken into account.

A first order model is used to represent the wind turbine rotor and generator dynamics [6]. Thus, the
generator torque τg(t) and the reference τr(t) are transformed to the low speed side of the drive-train
(rotor side), whilst pgen is the generator power coefficient. The hydraulic pitch model is described as
a closed-loop transfer function of the hydraulic pitch system, whilst the drive-train is modeled using
the two-mass description [6]. Moreover, the converter dynamics are modeled by a first-order transfer
function, and Pg(t) represents the power produced by the generator, depending on its efficiency. The
measurement sensors are modeled by adding the actual variable values with stochastic noise processes.
These noise signals are described as Gaussian processes with fixed mean and standard deviation values,
depending on the considered measurement sensors [6].

With these assumptions, the complete continuous-time description of the wind turbine benchmark has
the form of Equation (2): 

ẋc(t) = fc (xc(t), u(t))

y(t) = xc(t)

(2)

where u(t) = [β1mi
(t), β2mi

(t), β3mi
(t), τg(t)]

T and y(t) = xc(t) = [Pg(t), ωgmi
(t), ωrmi

(t)]T are
the control inputs and the monitored output measurements, respectively, measured by the i-th redundant
sensor, with i = 1, 2. fc (·) represents the continuous-time nonlinear function describing the behavior of
the wind turbine benchmark. These measurements will be sampled for obtaining N input-output data,
u(k) and y(k), with k = 1, 2, . . . N . Regarding the input and output signals, ωgmi

is the i-th generator
speed measurement, ωgmi

the i-th rotor speed measurement, Pg(t) the generator power measurement
and βj mi

(t) the i-th pitch measurement of the j-th blade. Finally, the model parameters and the map
Cp (β, λ) are chosen to represent a realistic wind turbine installation [6].
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2.1. Simulated Fault Conditions

The benchmark model implements a number of realistic faults, which are summarized in Table 1.

Table 1. Benchmark fault cases.

Fault Description

1 Fixed value on Pitch 1, Position Sensor 1
2 Scaling error on Pitch 2, Position Sensor 2
3 Fixed value on Pitch 3, Position Sensor 1
4 Fixed value on Rotor Speed Sensor 1
5 Scaling error on Rotor Speed Sensor 2 and Generator

Speed Sensor 2
6 Changed pitch system response, Pitch Actuator 2: high

air content in oil
7 Changed pitch system response, Pitch Actuator 3: low

pressure
8 Offset in converter torque control
9 Changed dynamics drive train

A more detailed description of these faults, which is beyond the scope of this paper, can be
found in [6].

The remainder of this section describes the relations among the fault cases described above and the
monitored measurements acquired from the wind turbine process. In this way, it will be shown that both
the system identification and the fault isolation tasks can be easily solved. In fact, Table 2 highlights how
a single fault affects the measured inputs u(k) and outputs y(k). Moreover, the mismatch between each
fault-free and faulty measurement is measured by the relative mean squared error (RMSE), computed
for the different fault cases of Table 1.

Table 2. Wind turbine failure mode and effect analysis (FMEA) results.

Measurement β1m1(t) β2m2(t) β3m1(t) ωrm1 ωrm1 β2m1(t) β3m2(t) τgm ωgm1

Fault 1 2 3 4 5 6 7 8 9
RMSE 11.29 0.98 2.48 1.44 1.45 0.80 0.73 0.84 0.77

Note that in Table 2, the variable βimj
(t) indicates the i-th blade pitch (i = 1, 2, 3) measured by

the j-th redundant sensor j = 1, 2. In the same way, the rotor speed is measured by two redundant
sensors ωrmj

(t), with j = 1, 2. On the other hand, only one sensor provides the generator torque
measurement τgm.

Table 2 was obtained by performing a fault sensitivity analysis, in particular the so-called failure mode
and effect analysis (FMEA), as explained in [19]. Table 2 is thus obtained by selecting the most sensitive
measurement with respect to the simulated fault conditions. In practice, the monitored fault signals have
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been injected in the wind turbine simulator described in Section 2. After each fault signal has been
added to the corresponding measurement, the relative absolute errors between the fault-free and faulty
measured signals have been computed. The measured signal showing the biggest error corresponds also
to the most sensitive measurement to the considered fault.

Finally, the analysis summarized in Table 2 enhances the design of the bank of fuzzy estimators that
are used for the fault isolation task, as described in Section 4. Moreover, it was assumed that only a single
fault may occur in the considered plant. However, on the basis of the fault effect analysis, faults occurring
at the same time can be distinguished by analyzing their effects on the monitored measurements.

3. Fuzzy Modeling and Identification

This section describes the design of the estimation and the diagnosis schemes applied to the wind
turbine simulator. In particular, the identification method, which is recalled in Section 3.1, leads to the
proposed FDI strategy of Section 4.

3.1. Fuzzy Modeling from Data Clustering

In the considered TS model, the rule consequents are crisp functions of the inputs:

Ri : IF x is Ai THEN yi = fi
(
x
)

(3)

with i = 1, 2, . . . , K. x represents the input (antecedent) variable, and yi is the output (consequent)
variable. Ri denotes the i-th rule, and K is the number of rules (or clusters) in the rule base. Ai is the
antecedent fuzzy set of the i-th rule, defined by a (multivariate) membership function [20,21].

The consequent fi are chosen as a suitable parameterized function, whose structure remains equal in
all of the rules and only the parameters vary. The parametrization exploited here is the affine form:

yi = aTi x+ bi, (4)

where ai is a parameter vector and bi is a scalar offset. This model is referred to as the affine TS model.
The antecedent of each rule defines a (fuzzy) validity region for the corresponding affine consequent
model. These TS models are considered here due to their interesting approximation properties [22].

It is worth noting that the data selection for the fuzzy modeling represents an important topic, since
representative data should be selected. Under this consideration, a simple and effective method for
selecting the most significant input and output variables for building a fuzzy model is proposed and
analyzed in Section 2. As already remarked, the FMEA procedure applied to the wind turbine is able
to enhance both the system identification and the fault isolation tasks. On the other hand, the optimal
number of fuzzy rulesK is determined by a proper integration of existing clustering-based methods with
the identification approach proposed in [17]. This approach exploits the fuzzy clustering and validates the
data partition on the basis of sub-clusters created according to the system identification scheme recalled
in Section 3.2. In this way, the most important input variables that independently and significantly
influence the model output can be validated. Moreover, the optimal number of fuzzy rules K can be
determined separately via the identification approach modified by the authors and proposed for nonlinear



Machines 2014, 2 281

system modeling [17]. The simulation results of Section 5 will show that the proposed method can
provide also good model structures for the fuzzy modeling oriented toward wind turbine fault diagnosis.

Before the output can be inferred, the degree of fulfillment of the antecedent denoted by λi(x) must
be computed. For rules with multivariate antecedent fuzzy sets given by Equation (3) the degree of
fulfillment is simply equal to the membership degree of the given input x, i.e., λi = µAi

(x). When
logical connectives are used, the degree of fulfillment of the antecedent is computed as a combination of
the membership degrees of the individual propositions using fuzzy logic operators.

In the TS model, the inference is reduced to a simple algebraic expression, via, e.g., the fuzzy-mean
defuzzification formula:

y =

∑K
i=1 λi(x) yi∑K
i=1 λi(x)

(5)

where the membership degrees λi are modeled as exponential functions.
In order to introduce dynamics into the model of Equation (3), the consequents are linear ARXmodels,

where n is the order of the dynamic system, x(k) = [y(k−1), · · · , y(k−n), u(k−1), · · · , u(k−n)]T

and ai = [α
(i)
1 , · · · , α

(i)
n , δ

(i)
1 , · · · , δ

(i)
n ].

Finally, with reference to the structure of Equation (5), a procedure proposed in [16,17] for the
estimation of both parameters ai, bi and the order n will be summarized in the following. Moreover,
the estimation of the membership degrees λi of Equation (5) used for the aggregation of the local affine
submodels of Equation (4) has been obtained via a data clustering method available in the literature [15].

Many clustering algorithms have been proposed; see, e.g., [20,21]. In particular, the clustering
algorithm exploited in this work is based on optimization of the basic c-means objective function and
known as the fuzzy c-means clustering algorithm [23]. Note that the clustering method is not the key
issue of the study, since the identification scheme described in [16] requires only that the clustered data
are compatible with linear prototypes. However, the clustering algorithm recalled above was proposed
here, since it can be easily integrated with the identification approach developed in [16] and already
provided as a ready-to-use software program [15].

Finally, it is worth observing that, when considering fuzzy identification via data clustering, an
important point concerns the determination of the optimal number of clusters. When clustering real data
without any a priori information about the data structure, one usually has to make assumptions about the
number of underlying subgroups (clusters) K in the data. The chosen clustering algorithm then searches
for K clusters, regardless of whether they are really present in the data or not. The optimization issue
was investigated in [16,17].

3.2. Affine Model Identification from Data

This section recalls the method for the construction of the TS models and the procedure for estimating
the consequent parameters.

Regarding the antecedent membership functions Ai, they are obtained by computing the membership
degrees directly in the product space of the antecedent variables. As shown in Section 5, exponential
membership functions proved to be suitable for the accurate representation of the cluster shapes. These
functions are derived by considering multi-dimensional antecedent membership relations, which are
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represented analytically by computing an inverse of the distance from the cluster prototypes. The
membership degree is computed directly for the entire input vector (without the decomposition). The
antecedents of the TS rules in the expression of Equation (3) are expressed as λi(x) = µAi

(x).
On the other hand, in general, there are several methods for estimating the consequent parameters ai

and bi in Equation (4). By assuming that errors are present in both the regressor and the regressand, the
set of optimal parameters are estimated by using the procedure recalled in the following. This approach
can be seen as the minimization of the prediction errors of the individual local models, solved as a set
of K independent problems, as proposed in [16,17]. This scheme, which is usually preferred when
the TS model should serve as a predictor, computes the consequent parameters by the so-called Frisch
scheme [17].

In order to enhance the readability of the remainder of this section, the meaning of the symbols and
variables is briefly summarized in Table 3.

Table 3. Nomenclature.

Variable Description

X
(i)
n Matrix of the data from the i-th cluster and n regressors

xn(h) Vector of the input-output data sequences generated from n regressors
ũ(k), ỹ(k) Additive input-output noise
u∗(k), y∗(k) Noise-free input-output data (unmeasurable)
u(k), y(k) Measured input-output data sequences
Σ

(i)
n Sample covariance matrix from the data in the matrix X(i)

n

¯̃Σn Sample covariance matrix of the actual noise affecting the data
Σ

∗(i)
n Sample covariance matrix of the (unmeasurable) noise-free data in the i-th cluster

Σ̃n Unknown noise sample covariance matrix (estimated by the proposed procedure)
¯̃σu, ¯̃σy Actual noise variances
σ̃u, σ̃y Unknown noise variances (to be identified)
Γ
(i)
n = 0 2-dimensional function in the unknowns (σ̃u, σ̃y)

¯̃σ
(i)
u , ¯̃σ

(i)
y Identified noise values in the i-th cluster

Thus, in order to identify the structure of the TS model of Equation (5) in the i-th cluster with
i = 1, · · · , K and K clusters, the following matrices are defined:

X(i)
n =


y(k) xTn (k) 1

y(k + 1) xTn (k + 1) 1
...

...
y(k +Ni − 1) xTn (k +Ni − 1) 1

 (6)

where the subscript n represents the order of the considered local ARX dynamic model (number of
regressors), i.e., xn(h) = [y(h− 1), · · · , y(h− n), u(h− 1), · · · , u(h− n)]T . Therefore:

Σ(i)
n =

(
X(i)

n

)T
X(i)

n . (7)
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In order to solve the so-called noise-rejection problem [16,17] in a mathematical framework, it
is necessary to follow the assumptions that the noise variables ũ(k) and ỹ(k) are additive on the
input-output data u∗(k) and y∗(k) and region independent (k = 1, 2, · · · , N ). Under this hypothesis, a
positive-definite matrix Σ

(i)
n associated with the sequences belonging to the i-th cluster is expressed as

the sum of two terms, i.e., Σ
(i)
n = Σ

∗(i)
n + ¯̃Σn, where:

¯̃Σn = diag[¯̃σyIn+1, ¯̃σuIn, 0] ≥ 0. (8)

The solution of the above identification problem requires the computation of the unknown noise
variances ¯̃σu and ¯̃σy, which can be obtained by solving Equation (9):

Σ∗(i)
n = Σ(i)

n − Σ̃n ≥ 0. (9)

in the variables σ̃u, σ̃y, where Σ̃n = diag[σ̃yIn+1, σ̃uIn, 0]. It is worth noting that all surfaces Γ
(i)
n = 0

determined by the locus of the points satisfying Equation (9) have necessarily at least one common point,
i.e., the point (¯̃σu, ¯̃σy) corresponding to the true variances of the noise affecting the input and the output
data [16,17].

The search for a solution for the Frisch scheme identification problem can therefore start from the
determination of this point in the noise space, if the noise characteristics are common to all of the
clusters and all assumptions regarding the Frisch scheme are satisfied [16,17].

However, in real cases, these assumptions have to be relaxed, as no common point can be determined
among surfaces Γ

(i)
n = 0 in the noise plane. A unique solution to the identification problem cannot

be obtained. In this situation, the local model identification is performed by finding the point
(σ̃u, σ̃y) ∈ Γ

(i)
n+1 = 0 that makes Σ

∗(i)
n+1 closer to the double-singular condition. This leads to determining

the nearest point of all of the surfaces, even when the assumptions of the Frisch scheme are violated.
Moreover, for each i-th cluster, different noise values (¯̃σ

(i)
u , ¯̃σ

(i)
y ) are considered, and the following

relations should be derived:

Σ∗(i)
n = Σ(i)

n − Σ̃(i)
n ≥ 0 (10)

where Σ̃
(i)
n = diag[¯̃σ

(i)
u In+1, ¯̃σ

(i)
y In, 0], whilst (¯̃σ

(i)
u , ¯̃σ

(i)
y ) represent the variances of input and output

additive noises in the i-th cluster. The considered identification scheme normally assumes that [16,24]:{
u(k) = u∗(k) + ũ(k)

y(k) = y∗(k) + ỹ(k)
(11)

where u∗(k) and y∗(k) are the noise-free data, noise terms ũ(k) and ỹ(k) are independent of every other
term and only u(k) and y(k) are known.

Finally, the matrices Σ̃
(i)
n can therefore be built and the parameter of the model in each cluster

determined by means of the relations:(
Σ(i)

n − Σ̃(i)
n

)
a(i) = 0 for i = 1, . . . , K (12)

for a number of K clusters.
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4. Fault Diagnosis Scheme Design

It is assumed that the monitored system is described as represented in Figure 1. The prediction
(or estimation error) y(k) − ŷ(k) in fault-free conditions represents the model-reality mismatch, which
accounts for process noise, parameter variations, disturbance and uncertainty.

Figure 1. The monitored system.

The relations of Equation (11) describe the realistic situation where the variables u∗(k) and y∗(k) are
measured by means of sensors affected by both measurement noise and faults.

Neglecting the sensor dynamics, faults acting on the measured input and output signals u(k) and y(k)

are modeled as: {
u(k) = u∗(k) + fu(k)

y(k) = y∗(k) + fy(k)
(13)

where fu(k) and fy(k) represent additive signals assuming values different from zero only in the presence
of faults.

There are different approaches to generate the residuals for fault diagnosis; see, e.g., [12]. In this
work, the TS models are used as residual generators for the wind turbine system. Figure 2 shows that
the residuals are generated by the comparison of the measured y(k) and the estimated outputs: ŷ(k):

r(k) = ŷ(k)− y(k) (14)

Figure 2. The residual generation scheme.

The symptom evaluation refers to a logic device that processes the redundant signals generated by
the first block, in order to detect when a fault occurs and to univocally identify the unreliable actuator
or sensor.
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The fault detection task is performed here by using a simple thresholding logic, even if different
strategies are available; see e.g., [12]. It is worth noting that the faults described in Section 2.1 may
not be immediately detected, since the delay in the corresponding alarm normally depends on the fault
mode. This situation is shown in Figure 3, where suitable fault detection thresholds are fixed according
to Equation (15): 

r̄ − δ σr ≤ r(k) ≤ r̄ + δ σr

if fault-free

r(k) < r̄ − δ σr or r(k) > r̄ + δ σr

if faulty

(15)

In practice, the residual signal is represented by the random variable r(k), whose sample mean value and
variance values are estimated as follows:

r̄ = 1
N

∑N
k=1 r(k)

σ2
r = 1

N

∑N
k=1 [r(k)− r̄]2

(16)

r̄ and σ2
r are the values for the sample mean and variance of the fault-free residual, respectively. N is the

number of samples of r(k). The values of r̄ and σ2
r depend on the signal r(k) statistics, usually unknown.

In order to separate normal from faulty behavior, the tolerance parameter δ (normally δ ≥ 2) is
selected and properly tuned. Hence, the proper choice of this parameter δ leads to a good trade-off
between the maximization of the fault detection probability and the minimization of the false alarm rate.
This parameter δ could be fixed with empirical rules or, once the values of r̄ and σ2

r are estimated from
the r(k) signal, using the three-sigma rule. On the other hand, less conservative results are obtained with
a procedure that determines via extensive simulations the optimal δ minimizing the false alarm rate and
maximizing the detection/isolation probability. This issue will be addressed in Section 5.

Figure 3. Detection thresholds and fault detection and isolation (FDI) delay for incipient
faults.



Machines 2014, 2 286

Moreover, as shown in Figure 3, if a detection delay is tolerable, which depends on the fault severity,
the amplitude of the detectable/isolable fault is lower.

Finally, regarding the fault isolation problem, a generalized observer scheme (GOS) is exploited [12].
In particular, as shown in Section 2.1, since different faults fu(k) or fy(k) can affect the input or output
measurements, to uniquely isolate a fault fu(k) concerning one of the inputs, under the assumption that
the outputs are fault-free, a bank of estimators in the form of Equation (5) is used, as shown in Figure 4.

Figure 4. Fuzzy estimator scheme for actuator fault isolation.

The number of these estimators is equal to the number of the faults fu(t) that have to be diagnosed.
The i-th fuzzy estimator is driven by all but the i-th input (or even more inputs, if required) and all
outputs of the system and generates a residual function, which is sensitive to all but the i-th input fault
fu(k) (or even more inputs, if necessary). The derivation of these fuzzy estimators follows the procedure
described in Section 3. In particular, when the fuzzy estimator insensitive to the i-th input has to be
designed, the output y(k) and all but the i-th inputs ui(k) are exploited for the identification process.

On the other hand, to uniquely isolate a fault fy(t) concerning one of the system outputs, under the
hypothesis that inputs are fault-free, a bank of estimators is used again, according to Figure 5.

This observer configuration represents the dedicated observer scheme (DOS) described in [12]. The
number of these estimators is equal to the number of faults fy(t) that have to be diagnosed, and each
device is driven by a single output and all of the inputs of the system. In this case, a fault on the i-th
output affects only the residual function of the output observer or filter driven by the i-th output.

In order to summarize the isolation capabilities of the schemes presented, Table 4 shows the ‘fault
signatures’ for the case of single fault occurrence. Note that in Table 4, the residual rIi (i = 1, . . . , r)
coincides with the signal ri of Figure 4. On the other hand, rOj

(j = 1, . . . , m) represents the residual
ri of Figure 5 for output fault isolation.
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Figure 5. Fuzzy estimators for sensor fault isolation.

Table 4. Fault signatures.

u1 u2 . . . ur y1 y2 . . . ym

rI1 0 1 . . . 1 1 1 . . . 1
rI2 1 0 . . . 1 1 1 . . . 1
...

...
...

...
...

...
...

...
...

rIr 1 1 . . . 0 1 1 . . . 1

rO1 1 1 . . . 1 1 0 . . . 0
rO2 1 1 . . . 1 0 1 . . . 0

...
...

...
...

...
...

...
...

...
rOm 1 1 . . . 1 0 0 . . . 1

The residuals affected by input and output faults are described by an entry ‘1’ in the
corresponding table entry, while an entry ‘0’ means that the input or output fault does not affect the
corresponding residual.

Note how multiple output faults can be isolated, since a fault on the i-th output signal affects only the
residual function rOi

of the output estimator driven by the i-th output, but all of the residual functions
rIj . On the other hand, multiple faults on the inputs cannot be isolated, since, in general, all residual
functions are sensitive to faults regarding different inputs.

Finally, in order to summarize the complete procedure, the different design phases are summarized in
Figure 6.

Once the data have been collected and sampled from the wind turbine (Step 1), the FMEA recalled
in Section 2.1 is applied. This procedure suggests how to select the measured signals ui(k) and yj(k)

(Step 2) in order to build the fuzzy estimator banks (Step 5) described in Figures 4 and 5. The different
fuzzy estimator models have the form of Equation (5) derived using the fuzzy clustering (Step 3) recalled
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in Section 3.1, followed by the structure identification (Step 4) in Section 3.2. In this way, by means of
the threshold test logic of Equation (15), the fault diagnosis is achieved (Step 6).

Figure 6. Sketch of the complete design procedure.
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5. Simulation Results

The proposed FDI methodology was applied to a sequence of N = 440× 103 data samples u(k) and
y(k) acquired with a sampling rate of 100 Hz. from the wind turbine benchmark.

According to Sections 3 and 4, the Gustafson–Kessel (GK) clustering method with K = 4 clusters
and a number of shifts n = 3 was used for the identification of the fuzzy estimator banks of Section 4.
These optimal parameters K = 4 and n = 3 were obtained as described in [16,17]. After clustering, the
parameters ai and bi, with i = 1, · · · , K, were estimated using the identification method presented in
Section 3. Moreover, the membership degrees λi required by the fuzzy estimators of Equation (5) have
been modeled as Gaussian functions.

As shown in Figures 4 and 5, the reconstructed output ŷi(k) for the FDI task has been generated by a
bank of five multiple-input single-output (MISO) predictors of Equation (5). According to Table 2 and
Figure 4, this scheme allows the diagnosis of Fault1, Fault2, Fault3, Fault4 and Fault5. On the other hand,
with reference again to Table 2 and Figure 5, a bank of four output fuzzy estimators for ŷi(k) allows the
diagnosis of Fault6, Fault7, Fault8 and Fault9.

For each fault case, by following the FMEA procedure described in Section 2.1 and Table 2, the input
and output measurements used for the design of the estimator banks were reported in Table 5.

The approximation capabilities of the fuzzy residual generators can be expressed in fault-free
conditions in terms of the so-called variance accounted for (VAF) index [15]. In particular, the VAF
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values for all identified MISO estimators were always bigger than 99%. Hence, the multiple model
scheme seems to approximate the process outputs quite accurately. Note, in fact, that, as described
in [16,17], with the choice of parameters K = 4 and n = 3, the fuzzy predictors led to the minimization
of the reconstruction errors, i.e., the difference between the measured and predicted outputs.

Table 5. Inputs and outputs for the fuzzy residual generator design.

Fault Inputs Output

1 [β1m1(t), β1m2(t)] ωgm2(t)

2 [β2m2(t), β1m2(t)] ωgm2(t)

3 [β3m1(t), β1m2(t)] ωgm2(t)

4 [β1m2(t), ωgm2(t)] ωrm1(t)

5 [β1m2(t), ωgm2(t)] ωrm2(t)

6 [β2m1(t), β1m2(t)] ωgm2(t)

7 [β3m2(t), β1m2(t)] ωgm2(t)

8 [β1m2(t), τgm(t)] ωgm2(t)

9 [β1m2(t), ωgm1(t)] ωgm2(t)

The rationale of using TS fuzzy models was highlighted in Section 3, whilst their efficacy is analyzed
in the following. Figure 7 reports the results of the correlation analysis on the input variables. In fact,
in fault-free conditions, the residuals y(k) − ŷ(k) associated with the data of each cluster (K = 4) and
the identified affine models should be ideally white and independent of the inputs u(k). This situation
guarantees that the estimators approximate correctly the measurements y(k) in each cluster.

Figure 7. Residual auto– and cross–correlation examples (K = 4).

Figure 7 shows the estimator residuals y(k)− ŷ(k) in fault-free conditions for each cluster (K = 4),
thus highlighting their whiteness and independence. In particular (1) the auto-correlation function of
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y(k) − ŷ(k) and (2) the cross-correlation function between y(k) − ŷ(k) and u(k) are displayed for
20 lags. For these variables, the 99% confidence intervals are also depicted as dotted lines, thus showing
that y(k) − ŷ(k) is white and independent of u(k) for each cluster. These results prove experimentally
the validity of the TS models proposed in this study.

It is worth noting that the nonlinear benchmark originally developed in [25] was modified by the
authors in order to vary the statistical properties of the signals used for modeling process parameter
uncertainty and measurement errors. Under this assumption, Table 6 reports the nominal values of the
considered wind turbine model parameters with respect to their simulated uncertainty. In this way, a
Monte Carlo analysis can be performed for assessing the reliability and the robustness of the considered
FDI scheme by modeling the model variables as Gaussian stochastic processes, with zero-mean and
standard deviations corresponding to realistic minimal and maximal error values of Table 6.

Table 6. Realistic wind turbine uncertainty.

Variable Nominal Value Min Error Max Error

ρ 1.225 kg/m3 ±0.1% ±20%
J 7.794× 106 kg/m2 ±0.1% ±30%
Cp Cp 0 ±0.1% ±50%
u u0 ±0.1% ±20%
y y0 ±0.1% ±20%

It is also assumed that the input-output signals u and y and the power coefficient map Cp entries were
affected by errors, expressed as percent standard deviations of the corresponding nominal values u0, y0
and Cp 0, also reported in Table 6. Therefore, for the performance evaluation of the FDI methodologies,
a sufficient number of Monte Carlo runs was performed.

Note that Table 6 describes the uncertain parameters that have been simulated in order to analyze the
reliability and the robustness features of the proposed approach with respect to parameter variations. In
fact, the approach was proposed here also for removing the effect of the uncertain wind term v(t) and
not for handling the parameter variations summarized in Table 6.

The simulations of different fault cases have been reported for highlighting the most important
features of the proposed approach. In particular, the first example was obtained by considering the
fault Case 1, commencing at the instant t = 2, 000 s, and active for 100 s. The considered fault fu(t)

causes alteration of the signals u(t) and y(t) and, therefore, of the residuals rIi(t) given by the model
of Equation (5). These residuals indicate the fault occurrence according to the logic of Equation (15),
whether their values are lower or higher than the thresholds fixed in fault-free conditions. Figure 8
represents the fault-free (grey continuous line) and the faulty (black dashed line) residuals rIi(t).

The fault detection thresholds of Equation (15) are represented as dotted constant lines in Figure 8.
Their values were properly settled, as described in Section 5.2, in order to minimize the false alarm and
missed fault rates, while maximizing the correct detection and isolation rates. In these conditions, the
fault is correctly detected and isolated when the corresponding residual signals exceed the thresholds, as
indicated in Figure 8.
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Figure 8. Residuals rIi(t) for the fault Case 1.

The second example depicted in Figure 9 represents the fault-free (grey continuous line) and the faulty
(black dashed line) residuals rOi

(t) related to the fault case 4, i.e., fy(t). It commences at the instant
t = 1500 s, and it is active for 100 s. The fault detection thresholds, represented as dotted constant lines
in Figure 9, were optimally fixed, as in the previous case.

The third example was obtained by considering the fault Case 8, i.e., fu(t), which is active
between 3800 s and 3900 s. Figure 10 represents the fault-free (grey continuous line) and the faulty
(black dashed line) residuals rIi(t).

Finally, Figure 11 depicts the fault-free (grey continuous line) and the faulty (black dashed line)
residuals rOi

(t) related to the fault Case 9, i.e., fy(t), active between 4000 s and 4200 s. Again, the FDI
thresholds represented in Figure 11 were optimally fixed, as in the previous case.

Figure 9. Residuals rOi
(t) for the fault Case 4.
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Figure 10. Residuals rIi(t) for the fault Case 8.

Figure 11. Residuals rOi
(t) for the fault Case 9.

5.1. Comparative Studies

This section provides some comparative results with respect to different FDI schemes.
The first alternative approach considered here uses a support vector machine based on a Gaussian

kernel (GKSV) developed in [8]. The scheme defines a vector of features for each fault, which contains
relevant signals obtained directly from measurements, filtered measurements or their combinations.
These vectors are subsequently projected onto the kernel of the support vector machine (SVM), which
provides suitable residuals for all of the defined faults. Different kernels have been tested, and it was
found that Gaussian kernel with different variance values can be used for all faults. Data with and without
faults were used for learning the model for the FDI of the specific faults.

The second scheme consists of an estimation-based (EB) solution shown in [10]. In particular, a fault
detection estimator is designed to detect a fault, and an additional bank of estimators is derived to isolate
them. The method was designed on the basis of a system linear model and used fixed thresholds, as
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in Equation (15). Each estimator for fault isolation was computed on the basis of the particular fault
scenario under consideration.

The third method relying on up-down counters (UDCs) was addressed in [11]. These tools, borrowed
from the aerospace framework, were exploited in the decision logic applied to the FDI residuals.
These residuals were obtained using both physical and analytical redundancy schemes, such as parity
equations from redundant sensors and Kalman filters. This approach is different from the straightforward
thresholding of Equation (15). In fact, the decision to declare the fault occurrence involves discrete-time
dynamics and is not simply a function of the residual current value.

The fourth approach combines observer and Kalman filter (COK) methods [7]. It relies on an
observer used as a residual generator for diagnosing the faults of the drive-train, in which the wind
speed is considered a disturbance. This diagnosis observer was designed to decouple the disturbance and
simultaneously achieve optimal residual generation in a statistical sense. For the other two subsystems
of the wind turbine, a Kalman filter-based approach was applied. The residual evaluation task used
a generalized likelihood ratio test, and cumulative variance indices were applied. For fault isolation
purpose, a bank of residual generators was exploited. Sensor and system faults were thus isolated via a
decision table.

The fifth method relies on the general fault model (GFM) scheme, which is a method of automatic
design [9]. The FDI strategy consists of three main steps. In the first step, a large set of potential residual
generators was designed. In the second step, the most suitable residual generators to be included in the
final FDI system were selected. In the third step, tests for the selected set of residual generators were
performed, which were based on comparisons of the estimated probability distributions of the residuals,
evaluated with fault-free and faulty data.

For performance evaluation and comparison of the considered FDI schemes, some indices have been
used. They were presented in [26] and here evaluated on 1, 000 Monte Carlo runs. These indices are
defined as:

False Alarm Rate (rfa): the number of wrongly detected faults divided by total fault cases;
Missed Fault Rate (rmf ): for each fault, the total number of undetected faults, divided by the total

number of times that the fault case occurs;
True Detection/Isolation Rate (rtdi): for a particular fault case, the number of times it is correctly

detected/isolated, divided by total number of times that the fault case occurs;
Mean Detection/Isolation Delay (τmdi): for a particular fault case, the average detection/isolation delay

time.

These criteria are computed for each fault case and for each FDI scheme. Table 7 summarizes also the
results obtained by considering the fuzzy predictors as residual generators (FPRG) and with an optimal
choice of the threshold parameter δ in Equation (15) that leads to achieving optimal results.

Several comments can be drawn here. GKSV is able to detect and isolate Faults 1, 2, 3, 4, 5 and 8
and some of them with delays bigger than 25 s. For these diagnosable faults, the average detection rate
is bigger than 65%, with missed fault and false alarm rates lower than 35%. Moreover, in general, this
scheme showed robustness with respect to the working point changes of the wind turbine, but effective
only on sensor faults. EB manages the faults quite quickly, apart from Fault 9. For the detectable faults,
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the detection rate is bigger than 66%, with missed fault and false alarm rates lower than 33%. The
diagnosis delays for Faults 2, 6 and 7 can be bigger than 11 s. In particular, for Faults 2 and 9, false
alarms can occur. UDC detects and isolates almost all faults, apart from Fault 9, with delay times lower
than 69 s. However, false alarm rates bigger than 12% are measured for Faults 2, 3, 4, 5, 6, 7 and 8.
In the same way, COK is able to detect and isolate faults, apart from 9, and in general, with a delay
time bigger that 10 s. False alarm and missed fault rates bigger that 10% can also occur. The same
considerations holds for the GFM solution. The detection delay times can be bigger than 9 s, with false
alarm and missed fault rates bigger that 12%. Regarding the proposed FPRG method, it seems to work
relatively better than the others, even if optimization stages are required, for example, for the optimal
FDI threshold selection. For this method, in general, also for Fault 9, the detection rates are bigger
than 83%, with false alarm and missed fault rates lower than 14%. The issue of the optimal threshold
selection will be analyzed in Section 5.2. Note finally that the simulator used in this study was modified
by the authors, and the working conditions can be slightly different from the ones shown in [6].

5.2. Robustness Evaluation

This section reports further experimental results regarding the performance optimization of the
developed FDI scheme with respect to modeling errors and measurement uncertainty. In particular,
the simulation of different fault-free and faulty data sequences has been performed by exploiting again
the wind turbine simulator and the Monte Carlo method. In fact, the Monte Carlo tool is useful at
this stage, since the efficacy of the FDI module depends on both the model approximation and the
measurement errors.

Therefore, the indices defined above have been evaluated for each fault case. In particular, Table 8
summarizes the results obtained by considering the fuzzy predictors as residual generators and with a
choice of the parameter δ of Equation (15) that leads to optimal performances.

Table 8 shows that the proper selection of the threshold levels of Equation (15) depending on δ allows
one to achieve false alarm and missed fault rates of less than 13% and detection/isolation rates larger
than 83%, with minimal detection/isolation delay times. The results demonstrate also that Monte Carlo
analysis is an effective tool for experimentally tuning and testing the suggested FDI method. In the
presence of uncertainty and modeling errors, this latter simulation technique seems to facilitate the
assessment of the reliability of the developed FDI methods for application to real test cases.

6. Conclusions

This paper proposed a procedure for the fault detection and isolation of a wind turbine model using
fuzzy models identified from uncertain input-output measurements. It was assumed that the process
under investigation is nonlinear, and its available measurements were normally not very reliable, due
to the wind speed’s uncertain nature. The residual generators considered here for diagnosis purposes
have the form of Takagi–Sugeno models. These fuzzy models were derived using fuzzy clustering and
dynamic model linear identification. The effectiveness of the proposed approach was tested on the data
acquired from a simulated wind turbine benchmark. The detection and isolation of the faults affecting
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sensors, component and actuators of the process under diagnosis was thus achieved. Future investigations
will concern the application of the diagnosis strategy to real wind turbine installations.

Table 7. Comparison of the considered FDI strategies. GKSV, Gaussian kernel support
vector; EB, estimation-based; UDC, up-down counter; COK, combined observer and
Kalman filter; GFM, general fault model; FPRG, fuzzy predictors as residual generators.

Fault Indices GKSV EB UDC COK GFM FPRG

1 rfa 0.001 0.001 0.001 0.001 0.001 0.001
rmf 0.002 0.003 0.002 0.003 0.002 0.001
rtdi 0.978 0.977 0.987 0.977 0.982 0.999
τmdi 0.03s. 0.03s. 0.04s. 10.32s. 0.05s. 0.02s.

2 rfa 0.234 0.224 0.123 0.003 0.235 0.001
rmf 0.343 0.333 0.232 0.029 0.532 0.003
rtdi 0.657 0.667 0.768 0.971 0.468 0.997
τmdi 47.24s. 44.65s. 69.03s. 19.32s. 13.74s. 0.08s.

3 rfa 0.004 0.141 0.123 0.056 0.135 0.003
rmf 0.006 0.132 0.241 0.128 0.232 0.008
rtdi 0.974 0.868 0.769 0.872 0.768 0.992
τmdi 0.05s. 0.54s. 0.05s. 19.32s. 0.74s. 0.02s.

4 rfa 0.006 0.005 0.123 0.056 0.236 0.004
rmf 0.005 0.006 0.113 0.128 0.333 0.004
rtdi 0.975 0.994 0.887 0.872 0.667 0.996
τmdi 0.15s. 0.33s. 0.04s. 19.32s. 17.64s. 0.02s.

5 rfa 0.178 0.004 0.234 0.256 0.236 0.002
rmf 0.223 0.005 0.254 0.329 0.242 0.003
rtdi 0.777 0.995 0.746 0.671 0.758 0.997
τmdi 25.95s. 0.07s. 0.04s. 31.32s. 9.49s. 0.03s.

6 rfa 0.897 0.173 0.334 0.156 0.096 0.042
rmf 0.987 0.234 0.257 0.129 0.042 0.033
rtdi 0.013 0.766 0.743 0.871 0.958 0.967
τmdi 95.95s. 11.37s. 12.94s. 34.02s. 9.49s. 3.03s.

7 rfa 0.899 0.044 0.134 0.134 0.123 0.047
rmf 0.899 0.035 0.121 0.101 0.098 0.023
rtdi 0.101 0.965 0.879 0.899 0.902 0.977
τmdi 99.95s. 26.17s. 13.93s. 35.01s. 29.79s. 5.07s.

8 rfa 0.004 0.045 0.144 0.109 0.099 0.003
rmf 0.007 0.011 0.101 0.032 0.124 0.002
rtdi 0.993 0.989 0.899 0.968 0.876 0.998
τmdi 0.07s. 0.08s. 0.09s. 0.06s. 8.94s. 0.05s.

9 rfa 0.778 0.879 0.894 0.956 0.995 0.134
rmf 0.996 0.934 0.947 0.929 0.941 0.165
rtdi 0.004 0.066 0.053 0.071 0.059 0.835
τmdi 95.95s. 91.37s. 92.94s. 94.02s. 99.49s. 0.30s.
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Table 8. Monte Carlo analysis with δ of Equations (15).

Fault rfa rmf rtdi τmdi δ

1 0.001 0.001 0.999 0.02s. 3.9

2 0.001 0.003 0.997 0.08s. 4.1

3 0.003 0.008 0.992 0.02s. 3.9

4 0.004 0.004 0.996 0.02s. 4.3

5 0.002 0.003 0.997 0.03s. 3.5

6 0.042 0.033 0.967 3.03s. 4.6

7 0.047 0.023 0.977 5.07s. 4.5

8 0.003 0.002 0.998 0.05s. 3.7

9 0.134 0.165 0.835 0.30s. 2.8
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