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Abstract: The use of lasers to weld polymer sheets provides a means of highly-adaptive and custom
additive manufacturing for a wide array of industrial, medical, and end user/consumer applications.
This paper provides an open source design for a laser polymer welding system, which can be
fabricated with low-cost fused filament fabrication and off-the-shelf mechanical and electrical parts.
The system is controlled with free and open source software and firmware. The operation of the
machine is validated and the performance of the system is quantified for the mechanical properties
(peak load) and weld width of linear low density polyethylene (LLDPE) lap welds manufactured
with the system as a function of linear energy density. The results provide incident laser power and
machine parameters that enable both dual (two layers) and multilayer (three layers while welding
only two sheets) polymer welded systems. The application of these parameter sets provides users of
the open source laser polymer welder with the fundamental requirements to produce mechanically
stable LLDPE multi-layer welded products, such as heat exchangers.

Keywords: polymer welding; laser welding; polymer laser welding; additive manufacturing; open
hardware; linear low density polyethylene; LLDPE; heat exchangers

1. Introduction

Focused laser radiation absorbed into a polymer interface produces an elevated temperature,
which can be used for inter-layer bonding. A contact free manufacturing method, such as laser
welding, provides increased flexibility and further application than its conventional joint bonding
processes [1]. Advancement in the field of polymer welding has expanded applications to microfluid
polymer packages [2], aseptic packaging [3], hermetic sealing of an electronic car key [4], microfluidic
channels [5], and additively manufactured and complex microchannel heat exchangers [6,7].

Characterization of polymer welds and in-process monitoring techniques have been explored with
acoustic, optical, thermal, ultrasonic, and emission techniques [8,9]. Thus, the application of polymer
sheet material(s) for lap-joint laser welding applications is not uncommon. Ghorbel et al. characterized
the thermal and mechanical behavior of some thermoplastic polymers [10]. They successfully welded
polypropylene sheets by diode-laser transmission welding [11] and selected soundness variables for
the diode laser welding of polypropylene thermoplastic polymers by experimental and numerical
analysis [12]. Also, Torrisi et al. characterized the adhesion susceptibility of polyethylene sheet
materials [13,14]. The work described indicates that efficient welding of polymer materials is the result
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of not only thermally induced melting effects, but also the development of ions near the laser-polymer
interface. Subsequently, pulsed laser radiation allows for adequate polymer weld adhesion, through
photo-chemical and ion implantation effects, while not elevating the polymer beyond its melting
temperature. All work described suggests that the resultant weld seam quality correlates to diode
laser process parameters (laser power (W) and cross-head speed (mm/s)) and the optical/absorption
properties of the incident polymer [11]. Dowding et al. successfully demonstrated the production of
viable adhesive bonds between LLDPE (linear low density polyethylene) on PP (polypropylene) at an
appropriate laser line energy (J/m), similar to a linear energy density (Coulombs/mm). In this study,
maximum peel force was used for quantification [15]. The response behavior of the material system is
constant in regard to incident laser line energy. Specifically, the linear energy density delivered to the
polymer system requires, at a minimum, a critical value to induce bonding.

This paper provides open source designs for a laser polymer welding system and then explores the
mechanical properties and weld width appearance of LLDPE lap welds manufactured with the system.
Specifically, apparent peak load (lbf) and linear energy density (coulombs/mm), corresponding to
weld width (mm), are quantified. The designed, open-source, system is meant to provide a reliable
manufacturing tool to be readily adapted to a multitude of polymer welding applications. Available
source code and the provided component build files allow a multitude of users the ability to utilize the
technology as they see appropriate.

2. Materials and Methods

2.1. Laser Welder

An open-source computer numeric control (CNC) laser welder [16] was modified for this
experiment. The apparatus is a gantry device with NEMA17 motors driving 20 tooth GT2 pulleys,
one set for the x-axis and one for y. The frame is constructed with 20-20 extruded aluminum with
accommodating fittings and fixtures. Utilized bearings and guide rods are readily available standard
equipment for purchase.

Printed members (Table 1) were redesigned in OpenSCAD [17], an open source parametric
scripting computer aided design (CAD) program, and printed on a standard RepRap [18–21] using
polylactic acid (PLA). Parts were designed so as to maximize rigidity while minimizing plastic
consumption to minimize printing time, embodied energy, environmental impact, and economic
cost. All SCAD files are available for free [22] under the GNU GPLv3 [23] along with operational
instructions [24].

Boxed idler ends were designed to maximize rigidity and to assure proper belt tracking under
tension. 624-ZZ roller bearings on 4 mm shafts were used as idlers. Belt tension was applied and
maintained through the use of large nylon wire ties stretched between belt terminators previously
designed for the MOST delta RepRap [25].

The x-carriage can adjust the position of the laser in the z-direction to assist in focusing. A pair
of printed thumbscrews clamp the position of a threaded rod upon which they ride to the x-carriage.
The laser mount is fixed to one end of the threaded rod and additionally constrained in the x and
y-directions by a 6 mm smooth rod that is press-fit into the mount and passes through the x-carriage.
The assembled x-carriage and z-adjustment system are shown in Figure 1.

Mechanical snap-action switches to eliminate the need for a 5 V power supply and to simplify
the design. A Melzi controller [26] was mounted to the frame with three dimensional (3-D) printed
components and this is driven by a Raspberry Pi [27] with custom Franklin firmware [28,29], Arroyo
Instruments 4320 20 A LaserSource, and 5305 5A/12V TECSource. Gcode, for the laser profile scans,
was user-generated and imported into Franklin. As designed, the 4320 20 A LaserSource and X/Y
laser-head movement is controlled by commands the user prescribed, while the 5305 TECSource
is a standalone unit. The 4320 20 A LaserSource provides the incident laser source while the 5305
TECSource is the cooling system for the laser apparatus.
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Table 1. Three-dimensional (3-D) printed parts.

Part Name/Description Count Rendered Image Part Name/Description Count Rendered Image

Controller standoff for
attaching controller
to frame

1
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switches to 
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for adjusting  
z-position of  
laser carriage 
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end of y-axis cable 
carrier 
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connecting  
y-bearing to  
y-drive belt 
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Y-idler for holding 
y-axis idler bearing 

2 

      

Laser carriage for
mounting laser to
holder apparatus

1

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

Limit switch mount for
mechanical switches to
appropriate guide rods

2

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

M8 thumbscrew for
adjusting z-position of
laser carriage

2

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

X-carriage cable mount
for attaching a cable
carrier to the x-carriage

1

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

X-carriage for
connecting x-axis linear
bearings to x-axis drive
belt, laser carriage, and
cable carrier

1

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

X-clamp for securing
x-axis guide rods to
y-bearings and for
holding x-axis idler

2

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

X fixed cable carrier
mount for attaching
cable carrier
to y-bearing

1

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

X-idler cap for boxing
x-axis idler bearing
and shaft

1

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

X-motor mount for
mounting x-motor
to y-bearing

1

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

X-motor saddle cable
carrier mount for
mounting a cable
carrier for the y-axis
and for added rigidity
of the x-motor mount

1

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

Y cable mount for
mounting fixed end of
y-axis cable carrier

1

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
mechanical 
switches to 
appropriate guide 
rods 

2 

M8 thumbscrew 
for adjusting  
z-position of  
laser carriage 

2 

      

X-carriage cable 
mount for 
attaching a cable 
carrier to the  
x-carriage 

1 

X-carriage for 
connecting x-axis 
linear bearings to 
x-axis drive belt, 
laser carriage, and 
cable carrier 

1 

      
X-clamp for 
securing x-axis 
guide rods to  
y-bearings and for 
holding x-axis 
idler 

2 

X fixed cable 
carrier mount for 
attaching cable 
carrier to y-bearing 

1 

      

X-idler cap for 
boxing x-axis idler 
bearing and shaft 

1 
X-motor mount for 
mounting x-motor 
to y-bearing 

1 

X-motor saddle 
cable carrier 
mount for 
mounting a cable 
carrier for the  
y-axis and for 
added rigidity of 
the x-motor mount 

1 

Y cable mount for 
mounting fixed 
end of y-axis cable 
carrier 

1 

      

Y-carriage for 
connecting  
y-bearing to  
y-drive belt 

1 
Y-idler for holding 
y-axis idler bearing 

2 

      

Y-carriage for
connecting y-bearing to
y-drive belt

1

 

Machines 2016, 4, 14; doi:10.3390/machines4030014 www.mdpi.com/journal/machines 

Table 1. Three-dimensional (3-D) printed parts. 

Part 
Name/Description 

Count Rendered Image 
Part 

Name/Description Count Rendered Image 

      

Controller standoff 
for attaching 
controller to frame 

1 
Laser carriage for 
mounting laser to 
holder apparatus 

1 

      
Limit switch 
mount for 
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Cable carriers are used to support the laser fiber and were mounted such that the fiber is nearly
continuously protected. The laser source is positioned under the frame. The entire apparatus (Figure 2)
is placed in a shielded aluminum box for the safety of operators.

2.2. Materials

Liner low-density polyethylene (LLDPE), which is typically utilized as an underground
encasement of ductile iron pipes per ANSI/AWWA C105/A21.5, is analyzed. Large industrial
LLDPE rolls are readily available [30]. Material was obtained in a continuous length measuring
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16 in (406.4 mm) ˘0.5 in (12.7 mm) in width and manufactured to a minimum thickness of 0.008 in
(0.203 mm). The supplier’s technical data sheets indicate a density of 0.910 to 0.935 g/cm3 and a carbon
black additive of no less than 2% [31].Machines 2016, 4, 14 4 of 14 
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2.3. Fabrication

The LLDPE sheeting was sectioned into dimensions 2.25 ˆ 4.5 in (57.15 ˆ 114.3 mm) ˘0.5 in
(12.7 mm). The specified dimensions allow for sufficient bonding area to be analyzed while fitting into
the tensile testing grips used for analysis. Prior to all welding operations, foreign particulate (e.g., dust



Machines 2016, 4, 14 5 of 14

and debris) was removed from the surface with a wet cloth then allowed to dry. Contaminates,
as described, may depreciate the validity of the analysis.

A single sample component is comprised of two to three layers of LLDPE, to dimensions specified
prior, depending upon testing conditions. Three individual samples are placed inside the polymer
welder at a time, thus providing three samples per testing condition. Multiple testing conditions were
analyzed beyond variable layer count. Incident current (I) and cross-head speed were intentionally
varied throughout the analysis. Specifically, the incident current was incremented 0.5 A per analysis
within the range of 5 A–20 A, and all collected data was done in two scenarios: one using a 10 mm/s
cross-head speed, and the other using a 20 mm/s cross-head speed. Laser scan patterns proceeded
linearly across the sample component, parallel to the rolled direction, near mid length ~2.25 in
(57.15 mm). Table 2 describes the test parameters in further detail.

Table 2. LaserSource 20A 4320 Set Up Values.

Variable Value Units

Mode Io (ACC) -
Io Limit 1 5.5–20 Amps (A)
Im Limit 20,400 Microamps (µm)
Vf Limit 5.1 Volts (V)
Vf Sense Internal -
Cable R 0.0 Ohms (Ω)

Tolerance Io 100 Milliamps (mA)
On Delay 0.0 Milliseconds (ms)

1 Variable in experimentation.

Low-iron glass plates, 0.6 cm thick, were utilized to ensure sample stability and flatness during the
welding operation. The experimental setup involved layering three samples adjacent to one another,
along their 4.5 mm length, followed by another secondary low-iron glass plate placed on top. Second,
the laser head, modifiable with a set screw, was placed adjacent to the top glass surface. Figure 3
describes the set-up involved during all experimentation.
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2.4. Characterization

2.4.1. Peak Load Determination

Procured materials for this analysis are assumed to not be anisotropic. Specifically, all tensile
tests performed induce force normal to the rolled direction of the manufactured LLPDE and/or
normal to the weld line. Baseline analysis of “virgin” LLDPE samples (e.g., no weld line specimens)
can be directly compared to their welded counterparts. An Instron 4206 tensile tester with testing
procedures modeled after ASTM D2990-01 and D638-02a allowed for determination of peak load (lbf)
for all sample conditions [32,33]. Specimens comprised of two and three layers were subjected to
this analysis. All two layered components exhibiting adequate layer-to-layer adhesion were deemed
adequate. If visual analysis post-welding determined any delamination and/or lack of weld cross
section, the sample was omitted from the analysis. Similar inspection criteria were employed on the
three layer samples. Ideally, the bottom layer (third layer—Figure 3) will not bond to the near-adjacent
first and second layers, which enables complex 3-D geometries to be fabricated with this system
(e.g., heat exchangers). Thus, the near-adjacent layers can be welded independently of the previous
bottom layers of LLDPE. Fabrication methods, as described prior, are aimed to ensure this. Thus,
tensile testing on three layered specimens was performed pending the observation that the first and
second layers are adequately bonded while the third has not.

2.4.2. Weld Width (mm) and Resultant Energy Density (Coulombs/mm)

The application of imaging software ImageJ 1.49 [34] allowed for the quantitative analysis of
each respective weld width. Images selected for analysis were captured utilizing a standard digital
camera. The image frame (i.e., contained in the image(s)) were a representative top-down view of
each weld line. Each image frame contained a ruler with 0.5 and 1.0 mm resolution/gradations.
The ruler provided the ability to utilize ImageJ 1.49 to properly scale the captured images. This is
accomplished by the software measurement correlation to the “real” measurements using a “pixels/in”
determination. An average of three distinct line profile length measurements ensured statistical
confidence in operator measurement(s). Figure 4 displays a representative weld width photograph
used for width determination.
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Correlating laser cross-head speed to incident laser current derives an expression for linear
energy density (Coulombs (A¨ s)/mm). Thus, linear energy density, weld width, and peak load can
be characterized.



Machines 2016, 4, 14 7 of 14

3. Results

3.1. Weld Width at Various Linear Energy Densities

Linear regression analysis of measured weld width vs. linear energy density data show that weld
width increases with increased linear energy density. Figures 5–8 describe the correlation. Directly
comparing the regression analysis of Figures 5 and 7 (two layered systems) shows that the slopes are
near equivalent and greater than one. Conversely, Figures 6 and 8 (three layered systems) also display
a similar slope, although at a different magnitude of ~0.5. Weld width data was recorded for linear
welds with, at a minimum, incident laser appearance. Specifically, solid linear welds to observable
faint heat lines were recorded. Significant data spread, in reference to the trend line, is apparent in
Figure 5 at a range of 0.5–1.3 (Coulombs/mm). At relatively low linear energy densities the resultant
weld width is a gradient (e.g., a thin linear indication that gradually fades at distances normal to
the weld direction). Conversely, relatively high linear energy density welds develop weld seams
with a visible finite width. Thus, upon measurement with ImageJ, the identification of the apparent
weld is subjective as some zone within the gradient is selected as the edge. The deviation in operator
measurement, which is identified as the edge of the weld, causes the spread shown in the Figure 5
data set.
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Typical weld cross sections are as shown in Figures 9 and 10. Figure 9 demonstrates a quality
weld, while Figure 10 demonstrates a delaminated failed weld.
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Figure 9. Representative photograph of a quality two layer LLDPE polymer laser weld. Similar surface
topology, as shown, is apparent in three layer LLDPE weld systems.



Machines 2016, 4, 14 9 of 14

Machines 2016, 4, 14 9 of 14 

 

 

Figure 10. Representative photograph of a degraded two layer LLDPE polymer laser weld. Similar 

line width decrease is apparent in three layer LLDPE weld systems. 

3.2. Polymer Weld Adhesion of Two and Three Layered LLDPE Systems Available 

Adhesion susceptibility due to an increase in linear energy density was analyzed qualitatively. 

Post welding operations/attempts, operators would analyze generated welds and exert a small pull 

force (by hand) in attempts to shear the weld zone. Welds requiring minimal effort (e.g., tackiness) 

were deemed unacceptable for further analysis. Welds exhibiting greater adhesion (i.e., greater than 

minimal force) were subjected to further mechanical testing. Laser welds requiring further 

mechanical testing and those sheared are shown in Figures 10 and 11, respectively. The linear line 

indication in Figures 11 and 12 represent solid weld regions. A proper weld contains a solid line 

(Figure 11). Conversely, a poor weld (Figure 12) will have dashed indications displaying improper 

adhesion. It is to be concluded that the ideal weld appearance will be a solid uninterrupted line. 

 

Figure 11. Laser weld subjected to further mechanical testing. Linear indications signify proper 

adhesion at the weld interface of the LLDPE sheeting. 

 

Figure 12. Laser weld not subjected to further mechanical testing. Broken/dashed linear indication 

represented a degraded weld seam between the LLDPE sheeting. 

Figure 10. Representative photograph of a degraded two layer LLDPE polymer laser weld. Similar
line width decrease is apparent in three layer LLDPE weld systems.

3.2. Polymer Weld Adhesion of Two and Three Layered LLDPE Systems Available

Adhesion susceptibility due to an increase in linear energy density was analyzed qualitatively.
Post welding operations/attempts, operators would analyze generated welds and exert a small pull
force (by hand) in attempts to shear the weld zone. Welds requiring minimal effort (e.g., tackiness)
were deemed unacceptable for further analysis. Welds exhibiting greater adhesion (i.e., greater than
minimal force) were subjected to further mechanical testing. Laser welds requiring further mechanical
testing and those sheared are shown in Figures 10 and 11, respectively. The linear line indication
in Figures 11 and 12 represent solid weld regions. A proper weld contains a solid line (Figure 11).
Conversely, a poor weld (Figure 12) will have dashed indications displaying improper adhesion. It is
to be concluded that the ideal weld appearance will be a solid uninterrupted line.
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Figure 12. Laser weld not subjected to further mechanical testing. Broken/dashed linear indication
represented a degraded weld seam between the LLDPE sheeting.
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Figure 13 describes each testing scenario and their respective shear point(s) (e.g., where mechanical
testing is not required for quantification).
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Figure 13. Shear and Bond Zone comparisons of 10 and 20 mm/s cross-head speeds at variable incident
laser current (A).

In application of three layered based systems a delaminated (i.e., un-bonded) third layer is
ideal. Specifically, the information described in Figure 13 indicates that multilayered systems are
applicable to this technology. By proper control of the linear energy density (vector speed x incident
current (i.e., laser power)) the overall depth of penetration can be controlled. Thus, providing an
adequate system to develop multichannel and multi-layered laser welded LLDPE polymer systems.
Specifically, in the developed system for three layered manufacturing processes at 10 and 20 mm/s
are to be set at 8.5 and 10.5 A, respectively. At these specified zones, the laser system has successfully
welded two layers of the three layered systems. Amperage settings greater than those recommended
will yield completely welded three layered components. Conversely, amperages settings below the
recommendations may fail to allow the top two layers to bond.

3.3. Mechanical Testing—Peak Load (lbf)

Mechanical testing was performed on all sample components abiding similar criteria, to the
energy density determination, were met. Typically, recorded mechanical data is resultant of an
average of three different peak load determinations. Specifically, all mechanically tested samples
resemble those described in Figure 11. Raw (i.e., non-welded LLDPE) samples set the baseline for
the analysis. Maximum sustained peak loads for each experimental condition (10 mm/s—two layers,
10 mm/s—three layers, 20 mm/s—two layers, and 20 mm/s—three layers) are displayed in Table 3.
Representative values shown indicate maximum peak load at the experimental setting just after the
shear zone (no-bond region). Thus, any incident current greater than the critical shear zone limit
amperage will provide, at a minimum, this corresponding peak load. Furthermore, for comparative
purposes, typical load-extension curves are displayed in Figure 14. Samples were subjected to a
cross-head displacement rate of 1 in/min with the maximum allowable extension set at 1 in. The test
was completed if a break/rupture was measured and/or the maximum cross-head displacement
was reached.
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Table 3. Maximum sustained peak load above shear point of LLDPE weld(s).

Sample Material Condition/Speed (mm/s) LLDPE Layers Peak Load (˘σ) (lbf) Incident Current Setting (A)

LLDPE RAW - 26.6 (2.1) -
LLDEP 10 2 19.6 (3.8) 5.5
LLDPE 10 3 25.3 (3.4) 8.5
LLDPE 20 2 25.7 (1.4) 9.5
LLDPE 20 3 25.4 (2.8) 10.5

4. Discussion

The proposed welding system was shown to adhere multi-layered systems. Sustained peak
load measurements of the resultant weld width(s) are equivalent to a virgin/raw LLDPE sample
sheet. The experimental trials have identified shear zones of the particular weld systems (e.g., 10
and 20 mm/s cross-head speeds coupled with variable incident beam current). Quantification of
the rigidity of two layered LLDPE systems, specifically the shear zone, allows for confirmation of a
quality lap weld seam. Furthermore, shear zone identification in three layered systems determines the
appropriate linear energy density for a given multi-layered system.

Mechanical property results describe a system in which a welded interface will perform similarly
to that of its not welded raw/virgin counterpart. Comparison of the representative data in Table 3
shows, at a maximum, the overall degradation in sustain peak load (lbf) is 26.32% (10 mm/s and
two layers of LLDPE). Collected mechanical data (peak load (lbf)) is representative of a weld just
beyond the potential shear zone. These data points described are theoretical operating minimums of
the polymer welding system. Thus, an adequate safety factor is to be applied to further manufacturing
operations to ensure, at a minimum, the peak load of the theoretical minimum is achieved. For example,
in a three layer 20 mm/s condition the incident current setting should be 10%–20% larger than the
recommended minimums of 9.5 A. The clustering of the mechanical property results suggest that
a weld interface does not significantly impact the mechanical performance of the polymer in this
test scenario. Various energy densities have been shown to produce quality welds. Refer to Table 3,
a LLDPE polymer weld at 10 mm/s with 8.5 A current (0.425 Coulombs/mm) produces a peak
sustained load of 25.3 lbf. Comparatively, a LLDPE polymer weld at 20 mm/s with 10.5 A current
(0.525 Coulombs/mm) produced a peak load of 25.4 lbf. Therefore, a linear energy variance of 21.95%
produces a LLDPE weld seam where the average mechanical property variance is relatively small
at 0.39%.

Larger scaled application(s) are possible with large X-Y build platforms. Increased productivity
(i.e., speed of manufacturing) is achievable by implementation of multiple laser head systems.
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Situations and models described in these experiments utilize a single laser source head, whereas
multiple systems would allow for a similar part (laser paths) to be replicated during the same
manufacturing cycle. Similarly, increased laser power allows for increased manufacturing speed [35].
High power laser systems have been shown to be valuable in the current scope in laser welding
applications [4]. Thus, quick-high power systems are achievable. In addition, large-scale mass
manufacturing is possible with this process using roll-to-roll technology [7].

Furthermore, numerous direct applications are available for implementation of the proposed
system. For example, the system can be used for additive manufacturing of vehicle heat recovery
ventilators for the automotive industry [36], industrial heat exchangers [6,37], heat exchangers for solar
water pasteurization [38], hermetic thermoplastic medical device encapsulation [39], bio-microfluidic
channels in transparent polymer materials [40], and consumer goods packaging [41]. The polymer laser
welder described is ideal for rapid prototyping. For example, the new floating photovoltaics (FPV)
can be combined with aquaponics to makeaquavoltaics (AV), which use thin film flexible substrate
based solar photovoltaic (PV) modules to float on water, yet designs have largely been untested [42,43].
The low mass allows a significantly diminished supporting structure and the flexible nature of the
system allows for designed yield to oncoming waves while maintaining electrical performance [44].
This enables FV to take advantage of the superior net energy production of thin film PV materials
like amorphous silicon [45,46]. To maintain the flexibility and long term structural integrity of the
module, thin-films should be encapsulated by a polymer with high transparency, low rigidity, and
be waterproof [42], and during the encapsulation process air pockets or voids can be purposefully
introduced to increase buoyancy without increasing mass [44]. The system described in this article can
be used to test various thin-film FPV designs by prototyping them at minimal costs.

5. Conclusions

Modification of a standard RepRap system has allowed for the development of a novel laser
welding system and weld protocol. Previously custom developed Franklin firmware has provided an
intuitive graphical user interface in which to control the welding system. Mechanical property analysis
and weld width characterization of representative LLDPE polymer welds have shown applicability
to multiple industrial, medical, and end user/consumer systems. Results have shown success in
both dual (two layer) and multilayer (three layer) systems. Proper incident laser power and machine
parameters (i.e., linear energy density) have been determined. Application of these parameter sets will
provide user(s) with the fundamental LLDPE requirements to produce adequate mechanical polymer
welds. Incident laser current (A) has been shown to display a positive linear relationship with relative
weld width data. Thus, weld width increases as incident laser current increases. However, increased
laser current did not show any increase and/or degradation to the LLDPE weld mechanical properties.
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