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Abstract: The most common cause of the excessive vibration in rotating machines is the rotor mass
unbalance. If a machine vibration due to mass unbalance exceeds the alarm limits, then it may lead
to machine failure. Therefore, rotating machines should be regularly checked to ensure that they are
properly balanced. Currently, industries use the influence coefficient (IC) balancing technique for in
situ machine balancing. The accepted practice is to use the vibration measurements in both vertical
and horizontal directions at the machine-bearing pedestals together with the tachometer signal to
estimate the machine rotor unbalance (both mass and phase angle). It is generally believed that the
use of the machine vibration measurements in the vertical and horizontal directions represents better
machine dynamics, and hence the estimated unbalance is likely to be more accurate. However, this
paper applies the same concept of the IC method but with a reduced number of vibration sensors (one
sensor per bearing pedestal at 45◦ instead of two sensors at the vertical and horizontal directions).
The use of one sensor per bearing pedestal at 45◦ from both vertical and horizontal directions is likely
to have responses from both directions. The reduction in the number of sensors by half will definitely
save the instruments and their maintenance cost and reduce the computational effort in the signal
processing significantly. The proposed concept is applied on a small-size laboratory rig with two
balancing planes. The paper presents the unbalance estimations by using the measured vibration
responses in both the vertical and horizontal directions simultaneously and using vibration responses
measured at 45◦.
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1. Introduction

Rotating machines are considered the foundation of most industries such as oil and gas, mining
and chemicals as they play a vital role in many activities. Therefore, it is of the utmost importance
for any industry to ensure that their rotating machines are in good condition. Most of the rotating
machines consist of several integrated components including the rotor, supporting structure, bearings,
couplings, electric motor, etc. The dynamic conditions under which rotating machines operate make
them vulnerable to a great variety of undesired aberrations that often result in different machine
faults [1–3]. The machine rotor unbalance is observed to be one of the frequently occurring problems
for any industrial rotating machine. Hence, regular in situ balancing is important to maintain the plant
safety, reduce downtime and enhance production [3,4].

Several vibration-based rotor fault identification methods have been proposed in the
literature [1–10]. The influence coefficient (IC) balancing method [11–15], the modal balancing [7]
and other balancing methods [16–29] are the most utilized vibration-based unbalance identification
methods. In order to apply the modal balancing method effectively, an accurate numerical model of
the rotor and a highly skilled engineer with thorough knowledge of rotor dynamics are required [8].
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The IC balancing approach does not involve any modeling of the rotor [3]. It only requires machine
runs with trial weights [3]. Therefore, owing to its simplicity and high efficiency, the IC balancing
technique has become the most commonly used balancing method in the industries.

Darlow [17], Fang et al. [18], Zhou et al. [19], Dyer et al. [20] and Parkinson [21] presented reviews
of the literature on the IC balancing method. In 1964, Goodman [22] presented a least square approach
to extend the method to multiple planes balancing using data from different machine speeds and
measurement locations. Lund and Tonnesen [23] as well as Tessarzik et al. [24] have used this method
for the rotor balancing. Yu [26] and Lee et al. [29] used the IC method to estimate the rotor unbalance
at a constant rotor speed. Ibn Shamsah et al. [14,15] have used this method and highlighted that the
use of more speeds simultaneously during the machine’s transient operation (run-up or run-down)
gives much better rotor unbalance estimates than at a single machine speed.

The accepted practice is to use the vibration measurements in both vertical and horizontal
directions at the machine-bearing pedestals together with the tachometer signal to estimate the
machine rotor unbalance (both mass and phase angle). It is generally believed that the use of the
machine vibration measurements in the vertical and horizontal directions represents better machine
dynamics, and hence the estimated unbalance is likely to be more accurate. However, this paper
applies the same concept of the IC method but with a reduced number of vibration sensors (one sensor
per bearing pedestal at 45◦ instead of two sensors at the vertical and horizontal directions). The use of
one sensor per bearing pedestal at 45◦ from both the vertical and horizontal directions is likely to have
responses from both directions. This reduction in the number of sensors by half will definitely save the
instruments and their maintenance costs significantly. Furthermore, the signal processing time will be
reduced significantly, and hence the balancing decision is made faster. The proposed concept is applied
on a small-size laboratory rig with two balancing planes. The paper presents the unbalance estimations
by using the measured vibration responses in both vertical and horizontal directions simultaneously
as well as using vibration responses measured at 45◦.

2. Experimental Rig

Figure 1 shows a photograph of the test rig used for the experiments. Basically, the rig is
made up of three main components which are the rotor, bearings and foundation. The rotor of
the rig is a mild steel circular cross-section shaft (20 mm × 1000 mm) that is flexibly coupled to a
0.75 kW, three-phase electric motor which has a variable speed range from 0 to 3000 rpm. The shaft
has two identical discs at distances of 320 and 745 mm from the flexible coupling and they are
supported by two ball bearings which are secured atop the flexible foundation. The discs, which
have an outer diameter of 130 mm and a thickness of 20 mm, contain staggered threaded holes (M5)
in two different pitch diameters, which are 70 and 120 mm. The angle between the two adjacent
holes for each pitch diameter is 30◦. The supporting structure of each bearing is comprised of a
steel horizontal beam (530 mm × 25 mm × 8 mm) that is secured atop two rectangular steel blocks
(107 mm × 25 mm × 25 mm). The supporting structure is mounted on a massive steel platform by
means of four bolts. An anti-vibration (TICO) pad which has a thickness of 12 mm is attached to the
bottom side of the steel platform for the purpose of mitigating noise and vibration. The bearing and
disc closer to the coupling are denoted as B1 and D1 while the other bearing and disc are denoted as
B2 and D2, respectively.
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Figure 1. Mechanical layout of the experimental rig.

3. Theory

Assume that the displacement vectors in the vertical and horizontal directions at all bearing
pedestals in a machine are d0, d1, d2, . . . , dn, where the subscripts denote the first, second, third, . . . ,
(n + 1)-th machine run-ups, respectively. The displacement vectors for the different machine run-up
speeds can be written as

d0 = [d0 ( f1) d0 ( f2) . . . d0 ( fk) . . . d0 ( fN)]
T

d1 = [d1 ( f1) d1 ( f2) . . . d1 ( fk) . . . d1 ( fN)]
T

d2 = [d2 ( f1) d2 ( f2) . . . d2 ( fk) . . . d2 ( fN)]
T

...

dn = [dn ( f1) dn ( f2) . . . dn ( fk) . . . dn ( fN)]
T

(1)

where f1, f2, . . . , fN are the machine run-up speeds in Hz, with fN as the maximum speed. Note that
the displacement vector d0 is always for the machine’s first run with residual rotor unbalance (i.e.,
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without any trial masses on the balancing planes) that needs to be balanced. The rig has only two
bearing pedestals. Hence, the displacement vectors at a single rotor speed fk can be written as

d1 ( fk) =
[
y1,1 ( fk) x1,1 ( fk) y2,1 ( fk) x2,1 ( fk)]

T

d2 ( fk) =
[
y1,2 ( fk) x1,2 ( fk) y2,2 ( fk) x2,2 ( fk)]

T

...

dn ( fk) =
[
y1,n ( fk) x1,n ( fk) y2,n ( fk) x2,n ( fk)]

T

(2)

where y1,n and x1,n are the displacements at the bearing B1 pedestal in the vertical and horizontal
directions, respectively, for the (n + 1)-th machine run. Similarly, y2,n and x2,n are the displacements
at the bearing B2 pedestal in the vertical and horizontal directions, respectively, for the (n + 1)-th
machine run.

In the case of two balancing planes, the sensitivity matrix S is constructed using the measured
vibration responses from the first three machine runs as written in Equation (3).

S =


d1( f1)−d0( f1)

e1,1
d1( f2)−d0( f2)

e1,1
...

d1( fN)−d0( fN)
e1,1

d2( f1)−d0( f1)
e2,2

d2( f2)−d0( f2)
e2,2
...

d2( fN)−d0( fN)
e2,2

 (3)

where e1,1 is the added unbalance to the first balancing plane at the second machine run-up, and e2,2 is
the added unbalance to the second balancing plane at the third machine run-up.

The residual rotor mass unbalance e0 for each balancing plane can then be calculated using
Equation (4).

[S]4N×2

[
e1,0

e2,0

]
2×1

= [d0]4N×1 (4)

The rotor mass unbalance e is a complex value and can further be written as

[
1 j 0 0
0 0 1 j

]
2×4


real (e1,0)

imag (e1,0)

real (e2,0)

mag (e2,0)


4×1

= Te0 (5)

where T is the transformation matrix. Substituting Equation (5) into Equation (4) gives

[S]4N×2 T2×4 [e0]4×1 = [d0]4N×1 (6)

Equation (6) can be rewritten as

[ST ]4N×4 [e0]4×1 = [d0]4N×1 (7)

where ST = ST. The real and imaginary parts in Equation (7) are separated as[
real (ST)4N×4

imag (ST)4N×4

]
8N×4

[e0]4×1 =

[
real (d0)4N×1

imag (d0)4N×1

]
8N×1

(8)

Hence,
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[Ss]8N×4 [e0]4×1 = [d0s ]8N×1 (9)

Rearranging Equation (9) gives
e0 = [Ss]

+ d0s (10)

where [Ss]
+ is the Moore-Penrose pseudo-inverse of [Ss], i.e., [Ss]

+ =
(

ST
s Ss
)−1 ST

s . Equation (4) can
be further modified to calculate the added unbalances at the different planes simultaneously directly
for each machine run,

[S]4N×2

[
e1,q
e2,q

]
2×1

=
[
dq − d0

]
4N×1 (11)

where the subscript q in Equation (11) represents the (q + 1)-th machine run. Thus, Equation (11) can
be rewritten as

eq = [Ss]
+ dq,0s (12)

In case of measurement at 45◦ from the horizontal or vertical direction, the displacement vectors
can be rewritten as

d0 ( fk) =
[

r1,0 ( fk) r2,0 ( fk)
]T

d1 ( fk) =
[

r1,1 ( fk) r2,1 ( fk)
]T

d2 ( fk) =
[

r1,2 ( fk) r2,2 ( fk)
]T

...

dn ( fk) =
[

r1,n ( fk) r2,n ( fk)
]T

(13)

where r1,n ( fk) and r2,n ( fk) are the radial displacements (i.e., 45◦ from the vertical and horizontal
directions) at the bearing B1 and B2 pedestals at the rotor speed fk for the (n + 1)-th machine run.

4. Experiments and Data Acquisition

Modal tests [3] were conducted on the test rig at zero rpm. The rig was excited by an instrumented
hammer (sensitivity of 1.1 mV/g), and the machine vibration was measured by seven Integrated Circuit
Piezo-electric (ICP) accelerometers (sensitivity of 100 mV/g). Table 1 lists the experimentally identified
natural frequencies and Figure 2 shows their corresponding mode shapes.

A total of 13 machine run-ups were carried out, and 10 unbalance estimation scenarios were
used. For each of the 13 machine run-ups, the machine speed was increased linearly from 300 rpm
(5 Hz) to 3000 rpm (50 Hz) in a period of 135 s. The different masses added to both balancing planes
at a fixed radius of 6 cm for the different runs are listed in Table 2. The vibration responses were
measured at both bearing housings/pedestals for each run. The measurements at each bearing were
taken in three directions (vertical, horizontal and radial 45◦) as shown in Figure 3. Since the rotor
vibrations due to mass unbalance are synchronous to the rotational speed, the measured vibration
responses of each machine run were order-tracked to get the 1× (one multiplied by rotating frequency)
responses. The order-tracked 1× vibration displacement data in the speed range from 15 to 40 Hz
(i.e., 900 to 2400 rpm) with an interval of 0.5 Hz (30 rpm) were used in the unbalance estimation. Few
1× order-tracked displacement responses are typically shown in Figure 4. The two critical speeds
clearly appear in the responses shown in Figure 4 at around 22 Hz and 31 Hz, so there is little shift in
their values when compared to the natural frequencies at zero rpm that are listed in Table 1.
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Table 1. Experimentally identified natural frequencies of the test rig.

Mode Frequency (Hz)

1 24.41
2 31.13
3 53.1
4 84.23
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Table 2. Mass unbalances and phase angles of 13 runs.

Run No.
Added Unbalance

(
gcm @ θ

◦)
Disc D1 Disc D2

run0 Residual unbalance e1,0 Residual unbalance e2,0
run1 3 g × 6 cm @ 30

◦
= 18 gcm @ 30

◦ e1,0 + e1,1 Residual unbalance e2,0

run2 Residual unbalance e1,0 3 g × 6 cm @ 30
◦
= 18 gcm @ 30

◦ e2,0 + e2,2

run3 7 g × 6 cm @ 60
◦
= 42 gcm @ 60

◦ e1,0 + e1,3 3 g × 6 cm @ 150
◦
= 18 gcm @ 150

◦ e2,0 + e2,3

run4 5 g × 6 cm @ 60
◦
= 30 gcm @ 60

◦ e1,0 + e1,4 7 g × 6 cm @ 150
◦
= 42 gcm @ 150

◦ e2,0 + e2,4

run5 7 g × 6 cm @ 30
◦
= 42 gcm @ 30

◦ e1,0 + e1,5 3 g × 6 cm @ 330
◦
= 18 gcm @ 330

◦ e2,0 + e2,5

run6 5 g × 6 cm @ 180
◦
= 30 gcm @ 180

◦ e1,0 + e1,6 3 g × 6 cm @ 30
◦
= 18 gcm @ 30

◦ e2,0 + e2,6

run7 5 g × 6 cm @ 330
◦
= 30 gcm @ 330

◦ e1,0 + e1,7 3 g × 6 cm @ 210
◦
= 18 gcm @ 210

◦ e2,0 + e2,7

run8 3 g × 6 cm @ 90
◦
= 18 gcm @ 90

◦ e1,0 + e1,8 5 g × 6 cm @ 30
◦
= 30 gcm @ 30

◦ e2,0 + e2,8

run9 3 g × 6 cm @ 30
◦
= 18 gcm @ 30

◦ e1,0 + e1,9 5 g × 6 cm @ 90
◦
= 30 gcm @ 90

◦ e2,0 + e2,9

run10 3 g × 6 cm @ 120
◦
= 18 gcm @ 120

◦ e1,0 + e1,10 5 g × 6 cm @ 270
◦
= 30 gcm @ 270

◦ e2,0 + e2,10

run11 3 g × 6 cm @ 90
◦
= 18 gcm @ 90

◦ e1,0 + e1,11 7 g × 6 cm @ 240
◦
= 42 gcm @ 240

◦ e2,0 + e2,11

run12 5 g × 6 cm @ 90
◦
= 30 gcm @ 90

◦ e1,0 + e1,12 7 g × 6 cm @ 60
◦
= 42 gcm @ 60

◦ e2,0 + e2,12
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5. Results and Discussion

Machine run numbers 0, 1 and 2 were used to construct the sensitivity matrix using Equation (3).
First, for each case in Table 2, the unbalances were estimated using the measured vibration response
from both vertical and horizontal directions of the whole run-up speed range in a single band. Then,
the same unbalance estimation process was repeated using the radial responses measured by the
accelerometers mounted at 45◦ on the bearing housings. A comparison between the actual added and
estimated mass unbalances (both unbalance masses and their phases) on the balance discs D1 and D2 is
presented in Tables 3 and 4, respectively. For the sake of easy comparison, the results in Tables 3 and 4
are also presented in the form of a grouped bar chart in Figure 5. It is obvious from Figure 5 as well
as Tables 3 and 4 that the estimated unbalances for all cases using vibration measurements at either
vertical and horizontal directions or the radial 45◦ direction are close to the actual added unbalances.

Therefore, the current industrial application of the IC balancing method can be simplified and
enhanced by using a single vibration sensor per bearing pedestal instead of two. This improvement
will increase the efficiency of the IC method as it will save the computational efforts and reduce the
time consumed during data analysis. In addition, it can be clearly seen that when applying the IC
balancing method using the vibration response acquired at the whole run-up speed range in a single
band, the certainty of reliably achieving an accurate rotor unbalance (both amplitude and phase)
estimation is high.

Table 3. Comparison between the actual and estimated unbalances (disc D1).

Case No. Added Unbalance
(

gcm @ θ
◦) Estimated Unbalance

(
gcm @ θ

◦)
Vertical and Horizontal Radial 45◦

Case 1 run3 − run0 e1,3 = 42 @ 60
◦

45.74 @ 62.9
◦ 53.9 @ 60.5

◦

Case 2 run4 − run0 e1,4 = 30 @ 60
◦

27.52 @ 55.4
◦ 31.36 @ 62.76

◦

Case 3 run5 − run0 e1,5 = 42 @ 30
◦

54 @ 37.16
◦ 52.54 @ 36.05

◦

Case 4 run6 − run0 e1,6 = 30 @ 180
◦

33.07 @ 185.2
◦ 39.97 @ 179.5

◦

Case 5 run7 − run0 e1,7 = 30 @ 330
◦

35.49 @ 332.4
◦ 39.08 @ 326.2

◦

Case 6 run8 − run0 e1,8 = 18 @ 90
◦

21.63 @ 112.1
◦ 16.62 @ 100.5

◦

Case 7 run9 − run0 e1,9 = 18 @ 30
◦

15.59 @ 23.45
◦ 18.14 @ 23.64

◦

Case 8 run10 − run0 e1,10 = 18 @ 120
◦

17.1 @ 120.5
◦ 20.9 @ 123.3

◦

Case 9 run11 − run0 e1,11 = 18 @ 90
◦

18.24 @ 88.27
◦ 20.42 @ 90.95

◦

Case 10 run12 − run0 e1,12 = 30 @ 90
◦

31.11 @ 100.7
◦ 37.18 @ 95.94

◦

Table 4. Comparison between the actual and estimated unbalances (disc D2).

Case No. Added Unbalance
(

gcm @ θ
◦) Estimated Unbalance

(
gcm @ θ

◦)
Vertical and Horizontal Radial 45◦

Case 1 run3 − run0 e2,3 = 18 @ 150
◦

26.07 @ 160.9
◦

19.25 @ 159.8
◦

Case 2 run4 − run0 e2,4 = 42 @ 150
◦

47.43 @ 158.7
◦

56.8 @ 152.5
◦

Case 3 run5 − run0 e2,5 = 18 @ 330
◦

17.41 @ 322.3
◦

18.95 @ 322
◦

Case 4 run6 − run0 e2,6 = 18 @ 30
◦

15.88 @ 18.46
◦

17.91 @ 25.97
◦

Case 5 run7 − run0 e2,7 = 18 @ 210
◦

15.16 @ 185
◦

14.21 @ 208.3
◦

Case 6 run8 − run0 e2,8 = 30 @ 30
◦

32.38 @ 32.79
◦

38.06 @ 28.86
◦

Case 7 run9 − run0 e2,9 = 30 @ 90
◦

37.49 @ 102.4
◦

34.56 @ 99.34
◦

Case 8 run10 − run0 e2,10 = 30 @ 270
◦

37.31 @ 273.1
◦

35.57 @ 283.4
◦

Case 9 run11 − run0 e2,11 = 42 @ 240
◦

52.45 @ 244.9
◦

49.22 @ 252.3
◦

Case 10 run12 − run0 e2,12 = 42 @ 60
◦

42.51 @ 67.14
◦

45.02 @ 65.05
◦
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6. Conclusions

This paper compared the application of the IC balancing approach using vibration measurements
acquired at two directions (vertical and horizontal) with one radial direction. In the case of vibration
measurements from one radial direction, the accelerometer is mounted at 45◦ to both the vertical
and horizontal directions on each bearing housing/pedestal in the machine in order to include the
vibration effect from both the vertical and horizontal directions. Vibration responses from 13 run-ups
of a small test rig are used in the unbalance estimation. The results showed that the application of
the IC balancing approach using measured vibration responses from a single vibration sensor (45◦

direction) per bearing pedestal provides as good estimation of the rotor unbalance (both amplitude
and phase) as when two vibration sensors (vertical and horizontal directions) per bearing pedestal are
used. Therefore, the use of one vibration sensor in a radial direction per bearing pedestal is a viable
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option for rotor unbalance estimation based on the present experimental study. This way the number
of vibration sensors per bearing pedestal can be reduced to half. This practice is definitely welcomed
by any industry as it will significantly reduce the time needed for the complex signal processing
required for rotor unbalance estimation. In addition, the reduction of the number of sensors by half
will definitely save the cost of the vibration instrumentation and their maintenance.
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