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Abstract: To achieve high-quality vibration isolation and trajectory following control of a cable
driven parallel robot based Stewart platform in the five hundred meter aperture spherical radio
telescope (FAST) design, the integrated dynamic model of the Stewart platform including the electric
cylinder is established in this paper, the globally feedback linearization of the dynamic model is
implemented based on the control law partitioning approach. To overcome the disadvantages
of the external disturbance on the base and unmodeled flexibility of the mechanism, a PID
(Proportional-Derivative-Integral) controller with base acceleration feedforward is designed in the
operational space of the Stewart platform. Experiments of the vibration isolation and trajectory
following control of the cable suspended Stewart platform with presence of the base disturbance is
carried out. The experimental results show that the presented control scheme has the advantage of
stable dynamics, high accuracy and strong robustness.

Keywords: FAST; Stewart platform; feedback linearization; acceleration feedforward; dynamics
and control

1. Introduction

As a favourable solution to the Square Kilometre Array (SKA) plan for astronomy, China’s
five-hundred-meter aperture spherical radio telescope (FAST) has attracted global attention since its
conceptual advent. This ongoing national major infrastructure for science is currently being constructed
in the unique karst limestone formation in the southwest China and will be completed in 2017 [1–3].
Once put into operation in the near future, it will be the largest single dish super antenna in the world.
It is therefore endowed the obligation to discover new stars and extraterrestrial intelligence. As a
highlight of structural design, the cable supporting subsystem for the feed (radio waves receiver),
which integrates mechanical, electronic and optical technologies, effectively reduces the weight and
cost of the supporting structure (see Figure 1).

As shown in Figure 1, the six steel cables driven by servo motors and winches are the limbs
of the first level cable-driven parallel manipulator (CDPM), with the semi-spherical feed cabin as
the end-effector [4,5]. The second level subsystem of Stewart platform is mounted on the bottom of
the cabin. The trajectory for the feed when observing a radio target will be as large as a circle with
the radius of 186 m and height of 150 m, but real-time RMS (Root Mean Squred) of positioning and
orientating error for the feed must be less than 4 mm and 8 arc-minute, respectively [6]. Consequently,
the goal of this CDPM based Stewart platform is to provide both large manipulating workspace and
high accuracy of the feed.
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Figure 1. Overview schematic of the supporting structure for five-hundred-meter aperture spherical
radio telescope (FAST).

As one of the most celebrated parallel manipulators, the Stewart platform (see Figure 2) has found
wide applications in motion generating, docking of space crafts, surgical operation and numerically
controlled machining since it was proposed in the 1960s [7–10]. The CDPM based fine tuning Stewart
platform in this research broadens the area of its application. From the system point of view, the
performance of a robotic manipulator depends not only the structural design, but also the control
scheme and implementation. The Stewart platform is a complicated multiple-input multiple-output
nonlinear system, and its dynamics are thus characterized by time variant, strong coupling and
nonlinearity. Thus, the dynamics and control of Stewart platform is still a challenging problem in the
field of robotics [10–15]. In general, the control pattern of a parallel manipulator can be divided into two
categories: joint space control and workspace control [10,12]. The joint space control is a conventional
single-input single-output control pattern and is actually a trajectory tracking control of following the
desired joint trajectory computed from the position command of the end-effector by inverse kinematics.
Therefore, most controllers in applications are based on the joint space coordinates, due to the fact
that only an approximated joint model is enough for this control pattern [11–13]. On the contrary,
the workspace control implies that the control is designed based on the dynamics described in the
workspace coordinates. However, the controller design in workspace coordinates needs information
of a 6-DOF (degree of freedom) sensor to measure the displacement or velocity of the mobile plate.
Hence, the workspace control for parallel manipulator is seldom used in practice [8,10,15].
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Since the mobile platform of Stewart platform is driven by the six electric cylinders in parallel,
there exists considerable dynamic coupling among the six electric cylinders. In addition, there also
exits dynamic coupling between the Stewart platform and its cable suspended base (bottom plate of
the feed cabin). Consequently, the control of Stewart platform in this application is related more to
technical challenges compared to those with fixed bases. Some literature reported the preliminary
research on this issue. Zhang and Wang [16] proposed the kinematics based interpolation strategy in
joint space for a flexible supported Stewart platform; by combining the position prediction according
to the velocity differentiation of the flexible base, they accomplished the trajectory tracking control of
the end-effector. Cheng and Ren [17] established the dynamic model of the flexible supported Stewart
platform via multibody system dynamics approach for simulation; however, the control action for
the legs was still exerted in terms of length rather than force. Zhou and Qi [18] presented a velocity
control solution for the flexible supported Stewart platform in a double-level positioning system and
validated the satisfactory precision of their solution by experiments.

From the system point of view, the multiple-input multiple-output controller based on a dynamic
model will be able to provide better performance than the single-input single-output controller
designed in joint space for each leg instead of considering the dynamics of the platform [11,13]. On the
other hand, the positioning and orientating precision of the Stewart platform with the kinematics
model based control depends on the precision of the electric cylinders. In order to optimize the
dynamical performance and improve the precision of the Stewart platform, it is desirable to carry out
tentative research on the dynamic model based control scheme in workspace [11–14].

In this paper, the entire dynamics of the Stewart platform including the dynamics of the
mechanism and property of the electric cylinder is established firstly. Then, the globally feedback
linearization of the dynamic model is implemented by employing the control law partitioning approach.
To overcome the disadvantages of the external disturbance on the base and unmodeled flexibility of
the mechanism, a PID (Proportional-Derivative-Integral) controller with base acceleration feedforward
is designed in the workspace of the Stewart platform. Field experiments were also carried out on the
1/10 scaled model.

We begin this paper with an introduction of the application of Stewart platform in the super radio
telescope. In Section 2, the closed-form dynamics of Stewart platform is elaborated. The PID control
law with acceleration feedforward of the base for the Stewart platform is developed in Section 3 and
the 1/10 scaled model of FAST is described in Section 4. In Section 5, two representative experiments
and discussion are dealt with. Finally, some meaningful conclusions and future work are presented in
Section 6.

2. Closed-Form Entire Dynamics of Stewart Platform

2.1. Equation of Driving Force for an Electric Cylinder Leg

As shown in Figure 3a, an electric cylinder (a.k.a electrical linear actuator) is a mechatronic actuator
consisting of a DC blushless servo motor, lead screw and related transmission components. It is used to
provide linear motion or force in all types of applications. In this research, a synchronized conveying
belt is employed to transmit the rotation of the servo motor to the lead screw. Since the belt is flexible by
its nature, the frames and bearings of the servo motors also have finite stiffness and flexibility [19–21].
Therefore, mechanical deformation occurs in the driving axis and components under the load. For the
systems with high acceleration and precision specifications, the effect of the elastic deformation on
the system performance is no longer negligible. Taking the elastic deformation of the conveying belt
for an example, it will introduce an energy-storing property when transmitting high-speed motion.
Under the circumstance of low damping, it probably leads to high-order mechanical resonance in the
transmission. Mechanical resonance of a mechatronic system will necessarily deteriorate its stability
and dynamical performance [21–23].
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Figure 3. Schematic diagram of the Stewart platform. (a) Mechanical schematic of the electric cylinder;
and (b) equivalent diagram of the electric cylinder.

For the reasons mentioned above, in order to get better knowledge of the dynamical system,
the electric cylinder is considered as a two-mass system consisting of a servo motor, load and equivalent
transmission components between them. As shown in Figure 3b, Tm is the electromagnetic torque
from the motor shaft. TmL is the output torque from the ball screw; FmL is the output driving force of
the electric cylinder; θm and θL are angular displacement of the servo motor and nut of the ball screw.
Other mechanical and electrical parameters are listed in Table 1, and we can further derive the block
diagram shown in Figure 4 and the transfer function in Equation (1) of the electric cylinder under the
condition that the input is the driving voltage and the output is the driving force:

G(s) =
FmL(s)
Ua(s)

=
KmKLKFT(JLs + bL)

a4s4 + a3s3 + a2s2 + a1s + a0
, (1)

where,

a4 = Jm JLLa;
a3 = La (JLbm + JmbL) + (Ra + Ki) Jm JL;
a2 = (Ra + Ki) (JLbm + JmbL) + (JmKL + bmbL) La + (LaKL + KmCe) JL;
a1 = (Ra + Ki) (KL JL + JmKL + bmbL) + (bm + bL) LaKL + KmCebL;
a0 = KmCeKL + (Ki + Ra) (bm + bL)KL.
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Table 1. Specification parameters of the electric cylinder.

Symbol Physical Sense Value and Unit

Jm moment of inertia of the servo motor shaft 2.2 × 10−5 kg·m2

JL equivalent moment of inertia of load on ball screw 2.4 × 10−5 kg·m2

bm viscous damping coefficient of the motor shaft 2.5 × 10−3 N·s/rad
KL Equivalent stiffness of the belt and motor shaft 293.36 Nm/rad
bL viscous damping coefficient of the ball screw 3.0 × 10−3 N·s/m
Ki current feedback coefficient of the motor armature 0.02
Ra resistance of the motor armature 0.4 Ω
La inductance of the motor armature 0.0173 H
Ce Coefficient of counter electromotive force 5.0 × 10−3 V·min/rev
Km Coefficient of electromagnetic force 0.85 Nm/A
KFT Coefficient of transmission of torque to thrust 1256.6

Substitution of parameters in Table 1 into Equation (1) yields the transfer function of the electric
cylinder as follows:

G(s) =
6.67s + 826.64

9.21× 10−12s4 + 2.41× 10−9s3 + 2.42× 10−4s2 + 0.0346s + 104.00
.

Therefore, the nominal transfer function of the electric cylinder is

G(s) =
FmL(s)
Ua(s)

≈ 0.06(s + 123.93), (2)

where FmL(s) and Ua(s) are Laplace transformation functions of input and output of the electric
cylinder, respectively. From Equation (2), one can observe that the nominal model of the electric
cylinder displays a first-order differential property due to its friction and elastic effect being stronger
than its inertial effect. This phenomenon is a distinction between traditional modeling of a general
DC servo motor [22,23]. Moreover, the approximation-induced variation between the nominal and
physical models is considered as model perturbation [19,21], which will be tackled in the following
design of the control algorithm.

2.2. Dynamics of the Stewart Platform

In this research, the legs of the Stewart platform are connected to the base with universal joints
and connected to the mobile platform with spherical joints. The change of the leg lengths controls
the position and orientation of the mobile platform. The base frame denoted by OXYZ as shown
in Figure 5 is developed, with the origin at the center of the base. The mobile feed platform frame
denoted by pxyz is fixed on the mobile platform, with the origin at the center of the mobile platform.
The local frame Uixiyizi (i = 1, 2, . . . , 6) is attached to the upper part of each leg with its origin at the
rotation center of the universal joint, xi-axis along the leg, yi-axis along the rotating axis (axis fixed
to the leg) of the universal joint and zi-axis perpendicular to the xi and yi axes according to the right
hand rule. Another frame Dixiyizi (i = 1, 2, . . . , 6) with the same orientation for the same value of i,
is attached to the lower part of the leg with the origin at the at the rotation center of the spherical joint.
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Let bi be the i-th base joint point vector of Bi in the base frame, and pi be the platform joint point
vector of Pi in pxyz. p = (x, y, z)T represents the position vector of the origin p of the mobile frame pxyz
referred to OXYZ. The orientation of the mobile platform is described with the fixed angles convention,
and ∆ = (φ, θ, ψ)T indicates the angular rotation vector to the X, Y, Z axes of OXYZ, separately. Then,
the i-th leg vector in the base frame can be expressed as

li = p + qi − bi, (3)

where qi = <pi and < is the rotation matrix of frame pxyz relative to OXYZ [19,22].
Therefore, once given the position and orientation of the mobile platform referred to the base, the

corresponding length of the i-th leg can be calculated and the velocity of the platform-connection-point
of the i-th leg is

.
li = ω× .

qi +
.
p, (4)

where ω is the angular velocity of the mobile platform. The sliding velocity between the two parts of
the i-th leg is given by the component of this velocity in the i-th leg direction

.
li = ui ·

.
li, (5)

where ui = li/||li|| is the unit vector of the i-th leg. The acceleration of the platform-connection-point
is the time derivative of the velocity and is expressed in terms of the linear and angular acceleration of
the platform as

..
li = ε× qi + ω× (ω× qi) +

..
p, (6)

where ε is the angular acceleration of the mobile platform.
..
li can be expressed in terms of the sliding

acceleration
..
l i at the prismatic joint and the angular acceleration ali of the i-th leg as

..
li =

..
l iui + ωli × (ωli × li) + 2ωli ×

.
liui + ali × li, (7)

where ωli and ali denote the angular velocity and acceleration of the i-th leg, respectively.
Taking account of ui ·ωli = 0 and simplifying lead to

..
l i = ui ·

..
li + liωli ·ωli. (8)
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Based on the Newton-Euler formulations developed by Dasgupta and Mruthyunjaya [24] and
revised by Fu, Yao and Wu [25], the inverse dynamics of the Stewart platform is available with the base,
mobile platform and limb electric cylinder assumed to be rigid bodies. Because of the symmetry of the
mechanism, the analysis of the single limb electric cylinder can be applied to the others. By employing
the Newton-Euler formulations and combining the inverse kinematic and dynamical equations of the
legs and the mobile platform, the following dynamic model of the Stewart platform system can be
obtained with a series of transformations and simplifications:

JF = D, (9)

where,

J =

[
u1 u2 u3 u4 u5 u6

q1 × u1 q2 × u2 q3 × u3 q4 × u4 q5 × u5 q6 × u6

]T

, (10)

F = (F1, F2, F3, F4, F5, F6)
T ,

D =

 <Fext + M(g− a)−
6
∑

i=1
Ki

<r0 ×M(g− a)− Iε−ω× Iω +<Mext −
6
∑

i=1
(<pi ×Ki) +

6
∑

i=1
Csi(ωli −ω)

 . (11)

The D ∈ R6×1 in Equation (12) includes the loads and inertia forces of the platform and the
legs. The F ∈ R6×1 in Equation (12) represents the input force vector of the Stewart platform, and
the 6× 6 matrix J denotes the Jacobian matrix mapping the input and output forces. In the above
equations, the subscript i represents the i-th leg, and i = 1, 2, . . . , 6. Fi = ui · Fsi is the component of
Fsi along the i-th leg, and Fsi is the acting force of the i-th spherical joint on the platform with the
following form

Fsi = uiFi + Ki. (12)

Then, the constraint force of the i-th universal joint is

Fui = muiaui + mdiadi − (mdi + mui)g− Fsi, (13)

where Fext is the external force acting on the mobile platform in the local frame. M stands for the mass
of the mobile platform. g is the acceleration of gravity and a is the linear acceleration of the mobile
platform. Ki = (Ei × ui)/li, Ei = rdi × mdiadi + rui × muiaui − (mdirdi + muirui)× g + (Idi + Iui)ali+

ωlii × (Idi + Iui)ωli + Cuiωli + Csi(ωli −ω). The main parameters are listed in Table 2. In addition,
rdi and rui denote the position vectors of the centers of gravity of the lower and the upper parts in the
global frame, respectively. adi and aui are the acceleration of the centers of gravity of the lower and the
upper part of the leg. Iui and Idi are the moments of inertia of the upper and lower part of the leg in
inertial coordinates, respectively, and they can be obtained from their moments of inertia Iui0 and Idi0
in their local coordinates by the rotation transformation.
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Table 2. Main parameters of the Stewart platform.

Symbol Physical Sense Value and Unit

M mass of the mobile platform 5.5 kg
r0 COG of the mobile platform (0,0,0)T

mdi mass of the upper part of leg 3.5 kg
mui mass of the lower part of leg 2.5 kg
ru0 COG of the upper part of leg (−0.22,0,0)T

rd0 COG of the lower part of leg (0.16,0,0)T

Cui viscous coefficients at the universal joint 0.001
Csi viscous coefficients at the spherical joint 0.002
ω angular velocity of the mobile platform variable
ε angular acceleration of the mobile platform variable

Mext external moment acting on the mobile platform in the local frame variable

The external force and moment acting on the mobile platform are assumed to be zero for
consistency with the work condition. The dynamical equations of the Stewart platform are simplified
as the following Equation (15) by separating the linear and angular acceleration terms out

JF =

[
Ma
Iε

]
+

 Mg−
6
∑

i=1
Ki

<r0 ×M(g− a)−ω× Iω−
6
∑

i=1
(<bi ×Ki) +

6
∑

i=1
Csi(ωli −ω)

 . (14)

For the purpose of mechanical design of the Stewart platform, the constraint forces are of great
importance. After F is known, the equations for the legs are decoupled and the forces in different legs
can be determined separately. The constraint forces of the universal and spherical joints are calculated
as the more detailed description in References [24,25].

For the i-th leg one can obtain from Equation (2):

FmLi = 0.06
.
uai + 7.44uai, i = 1, 2, . . . , 6. (15)

Furthermore, the relationship of the input force vector of Stewart platform and output force vector
of the six electric cylinders is subject to Equation (16):

F = (Fml1, Fml2, Fml3, Fml4, Fml5, Fml6)
T. (16)

Thus far, Equations (14)–(16) constitute the complete dynamics of the Stewart platform.

2.3. Control Law Partition Based Globally Feedback Linearization of the Stewart Platform

Let X,
.
X = (νT, ωT)

T,
..
X = (aT, εT)

T be generalized displacement, velocity and acceleration,
respectively. Then Equation (14) can be rewritten as

M(X)
..
X + g(X,

.
X) = JF, (17)

where M(X) is the 6 × 6 inertia matrix of the Stewart platform, g(X,
.
X) is the 6 × 1 vector including

centrifugal, Coriolis and gravity terms. By applying the control law partition to the complex dynamics
described in Equation (17), one can obtain the model based control law as

F = αF′ + β, (18)
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where F is the driving force vector of the six electric cylinders. It is assumed that{
α = J−1M(X)

β = J−1g(X,
.

X)
, (19)

where J−1 is the inverse of the Jacobian matrix of the Stewart platform. In terms of Equations (17)–(19),
one can derive F′ =

..
X. This result shows that the dynamics of the Stewart platform can be divided

into the servo control law based linear part and model based nonlinear part. The nonlinear dynamics
of the Stewart platform is simplified to the second order linear system, and this operation is called
the globally feedback linearization. On the basis of this linearized model, the controller design is
straightforward according to feedback control theory.

3. PID Control Law with Acceleration Feedforward of the Base for the Stewart Platform

3.1. Real-Time Acceleration Estimation of the Base

From the mechanics point of view, the main difference between the CDPM based Stewart platform
and that with a fixed base lies in the nonholonomic constraints of the base. As a result of the
external disturbances (wind load and vibrations of cables of the CDPM) and dynamical interaction
between the cabin and Stewart platform, the feed cabin often displays small-amplitude multiple
degree-of-freedom vibration near its equilibrium. On the other hand, the vibrations of the feed cabin
will affect the positioning and orientation of the feed platform, i.e., the end-effector of the Stewart
platform. Consequently, it is of great necessity to feed forward the motion information of the cabin
into the control system of the Stewart platform so that the high precision trajectory following of the
feed platform can be achieved. According to Newton’s Second Law, the acceleration is the straightest
reflection due to its proportional relation to force applied on the object. Therefore, compared with
position and velocity, the acceleration reflects straighter the knowledge of the force applied on the
system. Thus, in order to suppress the dynamical interaction between the feed cabin and the Stewart
platform, the acceleration is fed forward to the control algorithm in this research. However, from
the hardware point of view, it is of high cost in certain cases for measuring the acceleration of an
object [12,19,22], and only the position and orientation information is measured in this research with a
laser tracker. In terms of these reasons, the real-time estimation of velocity and acceleration based on
the position and orientation of the feed cabin is a fundamental issue in this research.

From the kinematics of mechanical system, one can infer that there exists linear differentiation
relation among the position, velocity and acceleration. The differentiator algorithm is needed in
common tracking and prediction strategy to obtain the velocity from position signal and acceleration
from velocity signal. The problem is that the ordinary differentiator also amplifies the noise signal
mixed in the measuring data. To overcome this problem, a low-pass filer often is employed. However,
the filter results in phase lag when dealing with high frequency noise, which deteriorates the stability
of the control system and narrows the bandwidth.

Thus, this research adopts a novel nonlinear tracking differentiator (NTD) playing an important
role in the active disturbance rejection controller proposed by Han [26,27]. It achieves the goals
of obtaining the differential signals from discontinuous or noisy measuring signals in engineering
practice. This prediction algorithm needs to abstract the velocity and acceleration signals from the leg
length signals.

The second-order tracking differentiator has the following discrete form:{
r1(k + 1) = r1(k) + h · r2(k)
r2(k + 1) = r2(k) + h · f han(r1(k)− r(k), r2(k), δ, h)

, (20)



Machines 2016, 4, 20 10 of 18

where h is the sampling step, and δ is the velocity factor determining the transient process.
The nonlinear function f han(x1, x2, δ, h) is expressed by

f han(x1, x2, δ, h) =

{
−δ · sgn(a), |a| > d
−δ · a/d, |a| ≤ d

, (21)

where sgn(·) indicates the sign function, and the parameters a and d of the nonlinear function are
defined as the following:

a =

{
x2 +

a0−d
2 sgn(y), |y| > d0

x2 + y/2, |y| ≤ d0
, (22)


d = hδ, d0 = hd
y = x1 + hx2

a0 =
√

d2 + 8δ |y|
, (23)

where d and d0 are switching thresholds of the function, y is the combinatorial value of the state
variables, and a and a0 are the net increment of the state variable values of the function.

For any limitary integrable function r(t), the two signals r1(t) and r2(t) provided by Equation (21)
are able to track r(t) and

.
r(t), respectively, i.e., lim

t→∞
[r(t)− r1(t)] = 0, lim

t→∞

[ .
r(t)− r2(t)

]
= 0. For the

parameter δ = 25, 000, the initial condition is set as r1(0) = 0, r2(0) = 0. In this algorithm, since the
second order differential signal of the leg length signal is needed, two tracking differentiators are used
serially to achieve the goal.

3.2. Controller Design of the Stewart Platform

As shown in Figure 6, Xc is the measured position (generalized position including translation

and rotation) of the feed cabin,
..
X̃c is the estimated acceleration of the feed cabin, and Xd,

.
Xd,

..
Xd are the

desired position, velocity and acceleration of the feed cabin, respectively. The parameters mentioned
above are all described in inertial coordinate. Concerning the globally feedback linearized Stewart
platform, the PID control law is designed as

F′ =
..
Xd −

..
X̃c + Kp(Xd −X) + Kd(

.
Xd −

.
X) + Ki

∫
(Xd − X)dt, (24)

where Kp, Ki, Kd are diagonal controller gain matrices, each element of which is determined according
to the control performance [28]. Noticing that these equations are described in the coordinate of the
feed cabin, i.e., the acceleration is a relative value respect to the feed cabin, one can derive

F′ =
..
Xd −

..
X̃c + Kp(Xd −X) + Kd(

.
Xd −

.
X) + Ki

∫
(Xd − X)dt =

..
X−

..
X̃c. (25)

Additionally, the incomplete linearization error stemmed from the unmodeled dynamics and
parameters perturbation, together with the driving error of the electric cylinder, are considered as
external disturbances [18,25]. By defining Ẽ = Xd − X, one can obtain,

..
Ẽ + Kv

.
Ẽ + KpẼ + Ki

∫
Ẽdt = fdist. (26)

It is assumed that the disturbance term fdist is boundary, i.e., there exists a constant vector
a satisfying

max
t

[fdist(t)]i < ai, i = 1, 2, . . . , 6. (27)
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Then, from the linear control theory, one can design a controller so that the closed loop system is
globally boundary input and boundary output stable [19,28]. Moreover, the condition of t < 0 leads to
Ẽi(t) = 0, and then, for t > 0, differentiation in both ends of Equation (26) with respect to time yields

...
Ẽ + Kv

..
Ẽ + Kp

.
Ẽ + KiẼ =

.
fdist (28)

From Equation (28), one can infer that for constant disturbance fdist, the static error of the system
Ẽ = 0 holds. In the simulation, the disturbance fdist was set as zero-mean white noise signal with
amplitude of 0.2 by trial and error [29]. The reason why the white noise is employed here lies in the
complex internal and external perturbations of the system being difficult to describe; therefore, they
are approximated by the white noise signal. As for the diagonal controller gain matrices Kp, Ki, Kd,
they were determined by analytical deduction with the pole placement method. The objective for
designing the controller with pole placement method is the system damp ratio approaching 0.8, so that
the system lies in the range of underdamped systems, displaying balanced settling time and overshoot.
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4. Experimental Apparatus

A FAST 50 m feed supporting and tracking system model shown in Figure 7 was constructed
according to a 1/10 proportion of its prototype in Xidian University. It is expected to verify
the mechatronic model and software and validate the complex control and measurement strategy.
The height and radius of the distribution circle of the cable towers were designed according to the
geometrical similarity with the ratio of 1/10. The movement specification of feed cabin in the FAST
prototype is designed to reject the earth rotation when tracking a radio star. Therefore, the tracking
velocity of feed cabin in the FAST 50 m model is also designed based on the geometrical similarity.
By computation, this value is 3.5 mm/s.
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The CDPM for coarse tuning is driven by six large span steel cable servo systems, with the
semi-spherical feed cabin as the end-effector. In each of the six servo systems, there are a servo
motor, a reducer, a wrench and two pulleys. The six cable towers have the same height of 21 m.
The multi-stranded steel cable has a radius of 0.521 cm and a linear density of 0.14 kg/m. The feed
cabin has a diameter of 1.0 m and a mass of 120.0 kg. Its center of gravity lies at the point 4.9 cm
vertically from the center of the bottom.

The CDPM based Stewart platform employs THOMSON TN-series TN-BK23-10-5A-10 electric
cylinders (Radford, VA, USA) with an incremental encoder (8192 P/5 mm). The electric cylinder
has a stroke length of 254 mm and basic length of 146.1 mm. The main parameters are: maximum
velocity 305 mm/s, maximum acceleration 7.7 m/s2, maximum thrust 2670 N, total mass 5.5 kg, and
repeatability ±0.013 mm. The six drive units for the electric cylinders are connected one by one with
RJ-45 cable, and then connected to the MEI network motion controller, which is inserted into the PCI
(Peripheral Component Interconnect) socket of the micro tuning computer. The MEI XMP-SynqNet-PCI
motion controller (Radford, VA, USA) is used here so that up to a 100 m remote control of the Stewart
platform can be realized. The parameters of the motion controller are: DSP Analog Devices SHARC
32-bit floating point (Norwood, MA, USA), speed 40 MHz, update rate user programmable, and
velocity, acceleration, jerk 32-bit floating point. The electric cylinder is running the torque mode under
the MEI motion controller. The Stewart platform has a gross mass of 37.3 kg. The initial height of the
feed platform, i.e., the center of the task space is −630 mm in the cabin frame.

There are four EVOC industrial computers with Pentium 4–2.4 GHz in total in the field model.
The computers are connected to a local area network to communicate mutually and achieve the
measuring and control goals. The task distribution of the four computers is as follows. The measuring
computer deals with the real-time measuring data and sends them to the main control computer.
The main control computer generates the motion trajectory of the macro-micro parallel manipulator
system, and then sends the trajectory data to the macro tuning computer. The macro tuning computer
conducts the kinetostatic computation and feedback control of the macro parallel manipulator with the
pulse distribution card. The micro tuning computer carries out the decoupled position and orientation
prediction, feedback control and kinematic computation of the Stewart platform, and then sends the
control values of the six linear actuators to the MEI motion controller. In addition, each computer has
a graphical user interface, which is used to display the status of the measuring and control processes
and to input all kinds of commands and parameters.

5. Experiments and Discussion

The first experiment is related to the sinusoidal disturbance rejection of the CDPM based Stewart
platform. This cable suspended system has better stiffness in Z (vertical direction) while weak stiffness
in X and Y directions. In this case, the disturbance induced motion in X or Y directions attracted
more attention. Therefore, the experiment of trajectory following in X, Y and Z directions were all
conducted. However, for abbreviation, the paper only supplies the experimental result in the X
direction. Similar conclusions can be drawn in these two horizontal directions. The air temperature
was 18◦ C, and the maximum wind speed was 3.2 m/s. Since there is not a strong enough wind
resulting in a large amplitude deviation of the feed cabin, the equivalent method of intentionally
moving the cabin is proposed here. The feed cabin is controlled to move a sinusoidal displacement
only in X with amplitude of 40 mm and a period of 14 s. The amplitude and period values came
from the simulation of the FAST under permissive wind load with finite element method and were
scaled down to the 1/10 model. The control goal is that the feed platform keeps still on a fixed point
in the Cartesian coordinate system. Their trajectories are plotted in Figure 8. To observe the control
performance in more detail, Figures 9–11 shows the positioning errors in X, Y and Z, respectively.
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From Figures 9–11, one can infer that the positioning error has a maximum of 4 mm. The result
is able to meet the requirement of astronomy observation [1,3,6]. Moreover, the envelope of the
error curve shows a similarity to the disturbance of the feed cabin. From the beginning to the 35th s,
the feed cabin is commanded to remain static, but, as a result of the wind load and measurement noise,
it vibrates in a tiny amplitude of less than 1 mm. In order to overcome the disturbance, the Stewart
platform also moves with a tiny amplitude of less than 1mm as shown in Figure 9. The displacement
of feed platform should be zero in both Y and Z; however, for a similar reason, the platform has
positioning errors less than 2 mm in these two directions. The experiment verifies the effectiveness
of the globally feedback linearization control of the CDPM based Stewart platform in local domain.
By referring to the control performance with traditional kinematics approach reported in [4], the newly
proposed approach achieves better performance in terms of precision.

The second experiment deals with a large trajectory area following the CDPM based Stewart
platform, in which the feed cabin is designed to track a complete circle with radius of 0.5 m and height
of 9.0 m. The control goal is that the feed platform will be able to track its desired curve in Figure 12,
though there exists considerable error for the cabin trajectory tracking. The desired linear velocity for
the feed cabin and platform is set as 5 mm/s. As for the orientation of the feed cabin and platform, it is
prescribed that their normal directions point to a fixed point on the Z-axis of the inertial coordinates.
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Figures 13–15 show the positioning errors of the feed cabin and platform in X, Y and Z, respectively.
The positioning error of the CDPM may come from the model perturbation, internal parameter
variation and external wind load. One can notice this because of the flexibility of the six large
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span cables with positioning errors in each direction of the feed cabin being over 1 cm, while the
positioning error of the feed platform is limited to 2.5 mm. The CDPM based Stewart platform reduces
the positioning error of the feed cabin in a translational direction by as much as 75%. In addition,
the distribution of the platform errors is quite stationary. The control performance of this research
satisfies the positioning specifications completely. It is noted that this positioning specification is
obtained with a relatively low velocity of the feed cabin, which is determined by the law of similarity
between the model and the prototype.
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Figure 16 shows the pitch angle error of the feed cabin and platform. As an astronomical piece of
equipment, the pitch angle precision of the platform will affect the observing result of the telescope,
so enough attention should be paid to system design and controller tuning. The maximum pitch
angle error of the cabin is up to 0.6◦, while pitch angle error of the feed platform is restricted to 0.06◦.
Compared with error curves in the same level reported in [3], the position and pitch angle errors of the
platform are displayed more uniformly. This experiment illustrates the effectiveness of the globally
feedback linearization control of the CDPM based Stewart platform in a large domain.
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6. Conclusions

The modeling, control and experiment of the CDPM based Stewart platform have been
investigated in this paper. Some meaningful conclusions can be drawn as follows:

(1) The integrated dynamic model of the Stewart platform including the electric cylinder is
established, and the global feedback linearization of the dynamic model is implemented based on the
control law partitioning approach. Then, the approximated linear model is derived. This result lays a
solid base for controller design in the operational space of the Stewart platform.

(2) A PID controller with base acceleration feedforward is designed in the operational space of
the Stewart platform. In order to feed forward the dynamic information of the cabin into the control
system of the Stewart platform, a novel nonlinear tracking differentiator is successfully employed to
get the velocity and acceleration from the position information of the feed cabin.

(3) The experimental results of the FAST 50 m field model validate the effectiveness of the globally
feedback linearization based PID control strategy, accompanied with the motion predication of the
cabin; it manages to suppress the vibration of the feed cabin in local and large domains. The feed
supporting, pointing and tracking system is able to meet the demands of positioning and orientating
precision with the particular tracking velocity.

Future work related to this research includes the parameter optimization of the control scheme,
mechatronic servo bandwidth [30] and control performance evaluation in the maximum workspace of
the Stewart platform.
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