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Abstract: In this contribution, a novel translational parallel robot composed of an arrangement of
mechanisms with planar motion is presented. Its mobility is analyzed and the position analysis is
solved by using equations derived from mechanical constraints. Furthermore, the analysis of velocity
and acceleration are solved by means of the screw theory. For completeness, the inverse dynamics are
also presented and solved by means of an interesting combination of the screw theory and the virtual
work principle. Finally, a numerical example is included to show the application of the kinematic
model, which is verified with the aid of a commercially available software.
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1. Introduction

In recent years, there has been accelerated progress in the development of parallel manipulators
given their well-known advantages over the serial manipulators in terms of accuracy, repeatability,
velocity, rigidity and load-carrying capacity. However, despite all the effort invested in the study of
these manipulators, to this day, such architectures continue presenting a number of drawbacks, e.g.,
a reduced work space, limited dexterity, complex architecture, a direct kinematic model difficult to
solve and the presence of multiple singular configurations, and a number of problems that increase in
complexity as more kinematic chains and degrees of freedom are added to the mechanical system.

Considering the above, researchers and developers of such manipulators have expressed great
interest in parallel mechanisms with fewer than six degrees of freedom, but capable of performing
elementary movements adjusted to the specific requirements of a task. The central idea is to preserve
the inherent advantages of parallel mechanisms reducing the complexity of the drawbacks associated
with such architectures.

Regarding industrial applications, in most cases, three translational degrees of freedom are
enough for a robot, as in the case of the robots Delta [1] and Tricept [2], which were designed for
pick and place tasks and machining, respectively. However, manipulators are widely inserted in
industry. The Delta robot is probably the most successful parallel robot, being able to reach, in some
applications, accelerations up to 20 g. On the other hand, the Tricept in some versions has been able to
develop maximum forces of approximately 45 kN. Because of these and other characteristics, these
manipulators are considered symbols of parallel robotics.

Many contributions have been developed looking for new designs for parallel manipulators with
three degrees of freedom. In most cases, these designs are based on a moving platform connected to
a fixed platform by means of three identical kinematical chains. The differences between these designs

Machines 2016, 4, 22; doi:10.3390/machines4040022 www.mdpi.com/journal/machines

http://www.mdpi.com/journal/machines
http://www.mdpi.com
http://www.mdpi.com/journal/machines


Machines 2016, 4, 22 2 of 14

are basically the scheme of actuation or the joint arrangement in the kinematic chains. Some significant
contributions in this field are presented in Table 1.

There are several interesting translational parallel robots in the specialized literature [3]; however,
like many of the proposals presented in Table 1, their application is mostly theoretical, since some
of them represent a very complex design and, therefore, they are difficult to build. Furthermore,
Ruiz-Torres et al. [4] introduced a practical prototype based on two five bars mechanisms, a concept
very similar to the previously developed in [5].

Table 1. Some translational parallel manipulators.

Authors Topology

L.W. Tsai [6] 3-UPU
P. Wenger and D. Chablat [7] 3-PUU (Orthoglide)
T.S. Zhao and Z. Huang [8] 3-RRC

R. Di Gregorio [9] 3-URC
X. Kong and C.M. Gosselin [10] 3-CRR

M.Callegari and M. Tarantini [11] 3-RPC
G. Gogu [12,13] 3-CRR (Isoglide)

Y. Li and Q. Xu [14] 3-PRC
W. Li , F. Gao and J. Zhang [15] R-CUBE

M. Callegari , M. Palpacelli and M. Scarponi [16] 3-CPU
M. Callegari , M. Palpacelli and M. Scarponi [17] 3-RCC

M. Ruggiu [18] 3-CUR
S. Briot and I.A. Bonev [19] 3-pantographs (Pantopteron)

C = cylindrical joint, P = prismatic joint, R = revolute joint, S = spherical joint, U = universal joint.

Despite all the progress, at present, the design of a parallel manipulator with three translational
degrees of freedom that can repeat or exceed the advantages and capabilities of the robots Delta and
Tricept remains a challenge. Therefore, finding an innovative design with a great potential is a highly
justified task for the robotic engineering.

This paper presents a novel translational parallel manipulator with potential for rapid prototyping
tasks, whose design is based on the union of planar type mechanisms. The geometry of the manipulator
simplifies the forward and inverse displacement analysis, and allows one to avoid some typical
singularities that are associated with this type of robot. The remainder of the contribution is organized
as follows: in Section 2, the proposed parallel manipulator is outlined; in Section 3, the mobility
analysis of the robot is performed; in Section 4, the displacement analysis is presented; in Section 5, the
velocity and acceleration analyses are performed using screw theory; the driving forces are calculated
in Section 6; and, in Section 7, a numerical example is presented where the obtained results with the
proposed kinematic model are compared to a model that was generated using the simulation software
ADAMS/View 2014 from MSC Software; finally, the conclusions are presented in Section 8.

2. Description of the Proposed Robot

The proposed manipulator, Figure 1, consists of four RPRP-type kinematic chains, three of which
with the prismatic pair nearest to the base playing the role of active joint, and the fourth kinematic
chain is completely passive. Unless otherwise specified, hereafter, the subscripts i = 1, 2, 3 refer to each
of the three active kinematic chains, respectively.

The fixed platform of the manipulator is represented by the quadrilateral A1 A2 A3 A4, with
sides a and b. The fixed coordinate system Oxyz is conveniently located at the point A1, its x- and
z-axes lie on the plane defined by the quadrilateral, A1 A2 A3 A4 and the y-axis points upward. Points
Ai = (Axi, Ayi, Azi) denotes the nominal position, which is located by vectors Ai, of the first revolute
joint of each kinematic chain. Similarly, Bi = (Bxi, Byi, Bzi) denotes the nominal position, which is
located by vectors Bi, of the second revolute joint of each kinematic chain. Points Ai and Bi are
separated in the same kinematic chain by a variable distance qi, which is actually a measure associated
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with the linear displacement of the i-th active prismatic joint. On the other hand, points B1 and B3

are connected by a rod, which is perpendicular to the rod that connects points B2 and B4. Both rods
are connected to the moving platform by prismatic joints, which are separated from each other by a
vertical offset h. Finally, point P = (Px, Py, Pz), which is located by vector P, is the interest point in
the moving platform (end effector) and is conveniently located at the intersection point of the mobile
platform with the top rod.

P

A4

A3

A2
q3

A1

O
x

y

z

B1

B2

B4

B3

a b

h

û4

û3

û2

Figure 1. Proposed parallel robot.

Note that the rotational axes, denoted by ûi, of the revolute joints located at points Ai and Bi are
parallel to the x-axis for i = 1, 3, and parallel to the z-axis for i = 2, 4. Moreover, in the same kinematic
chain, the translation axis ŵi of the active prismatic joint is perpendicular to ûi.

The workspace of the proposed robot is shown in Figure 2, and it can be configured or optimized
following the method presented in [20].

To the best of the authors knowledge, the topology of the manipulator is original. The proposed
mechanism can be used, for example, in 3D printing systems and rapid prototyping machines due its
scheme of actuation and large workspace (Figure 2).

Figure 2. Workspace of the robot for y ≥ 0.

3. Mobility Analysis

One of the most used ways to determine the mobility or degrees of freedom of a mechanism is
through the well-known Chebychev–Grübler–Kutzback criterion. However, it has been demonstrated
that this formulation is not applicable for all types of mechanisms because the calculation is complicated
for architectures with multiple closed loops [21]. Considering the above, Gogu [22] proposes a method
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that is characterized by the decomposition of the mechanism in closed loops in order to analyze
the mobility constraints. In this section, an adaptation of this method is applied over the proposed
mechanism, where the mobility, M, of the mechanism is defined by:

M =
p

∑
i=1

fi − r , (1)

where p is the number of joints, fi is the number of degrees of relative motion permitted by the i-th joint,
and r is the number of joint parameters that lose their independence after closing all the mechanism
loops. The r variable is defined as:

r =
k

∑
j=1

SHj − SF + rl , (2)

where k is the number of closed loops in the mechanism, SHj is the connectivity of the j-th closed
loop Hj when it is disconnected from the mechanism, SF corresponds to the total connectivity of the
mechanism, and rl is the total number of parameters that lose their independence in the closed loops.
These variables are calculated as follows:

SHj = dim
(

RHj
)

, (3)

SF = dim (RF) , (4)

rl =
k

∑
j=1

rl
Hj , (5)

where RHj is the velocity vector associated with the interest point P in the closed loop Hj (Figure 3),
RF is the resultant velocity vector formed by the intersection of RHj, i.e., RF = RH1

⋂
RH2

⋂
...
⋂

RHk,
and rl

Hj is the number of parameters that lose their independence in the closed loop Hj. The variable
rl

Hj is defined by:
rl

Hj = SG1
Hj + SG2

Hj − SFHj , (6)

where SG1
Hj and SG2

Hj are, respectively, the connectivity of the limbs G1
Hj and G2

Hj in Hj, whereas
SFHj is the connectivity of the said loop. These variables are calculated as follows:

SG1,2
Hj = dim

(
RG1,2

Hj
)

, (7)

SFHj = dim
(

RFHj

)
, (8)

where RG1
Hj and RG2

Hj are the velocity vectors associated with G1
Hj and G2

Hj , and RFHj is the

resultant velocity vector formed by the intersection of RG1
Hj and RG2

Hj .

x
y

z
A1

A3

H1

1
1HG

2
1HG

A2 A4

H2

1
2HG 2

2HG

Figure 3. Closed loops of the mechanism.
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For the proposed mechanism, we can see that p = 14 and k = 2. Furthermore, considering
the fixed coordinate system located at the point A1, we can note that the velocity vector
associated to the point P for each closed loop H1 and H2 are: RH1 =

{
vx vy vz ωx

}
and

RH2 =
{

vx vy vz ωz

}
, thus the connectivity of each loop is SH1 = 4 and SH2 = 4. Considering the

above, RF = RH1
⋂

RH2 =
{

vx vy vz

}
, and the connectivity of the mechanism is SF = 3.

Disconnecting the limbs G1
Hj and G2

Hj from the mechanism and considering the fixed coordinate
system, the velocity vector of each limb is: RG1

H1 = RG2
H1 =

{
vy vz ωx

}
and RG1

H2 = RG2
H2 ={

vx vy ωz

}
, thus the connectivity of each limb is SG1,2

H1 = SG1,2
H2 = 3. Considering the above,

RFH1 = RG1
H1
⋂

RG2
H1 =

{
vy vz ωx

}
and

RFH2 = RG1
H2
⋂

RG2
H2 =

{
vx vy ωz

}
,

and the connectivity of each closed loop is SFH1 = SFH2 = 3.
From Equations (5) and (6), the number of parameters that lose their independence in each closed

loops are rl
H1 = rl

H2 = 3, and then, rl = 6. Considering this result, the number of joint parameters
that lose their independence after closing all the mechanism loops is

r = SH1 + SH2 − SF + rl = 11.

Finally, considering that each joint has only one degree of relative motion, we obtain that the
proposed manipulator has M = 3 degrees of freedom.

4. Position Analysis

In this section, the displacement analysis of the proposed robot is solved. Since each of the limbs
that form the manipulator have planar motion, it is convenient to study each of the closed loops as if
they were two planar mechanisms. First, we consider the projection of the H1 loop onto the yz-plane,
as shown in Figure 4. Note that the limb GH1

1 is restricted between vectors Ayz
1 and Pyz, which localizes

the projections of the points A1 and P onto the yz plane, respectively. Its length, q1, can be calculated
as follows: (

Pyz −Ayz
1

)
·
(

Pyz −Ayz
1

)
= q2

1. (9)

In the same way, for limb 3, we have:(
Pyz −Ayz

3

)
·
(

Pyz −Ayz
3

)
= q2

3. (10)

1
yzA 3

yzA

q1

yzP h

Py

Pz

y

z

q3

Figure 4. First closed loop of the mechanism.
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On the other hand, as presented in Figure 5, from the projection of the closed loop H2 onto the
xy-plane it is possible to write:

P 2
x +

(
Py − h

)2
= q2

2 . (11)

xy

2
xyA

q2

P

Py

Px
4
xyA

y

x

Figure 5. Second closed loop of the mechanism.

The inverse position analysis, which is to determine the length of the active prismatic pairs to
reach an arbitrary position of the moving platform, can be carried out by solving Equations (9)–(11),
given the coordinates P(Px, Py, Pz) of the moving platform.

The forward displacement analysis consist of finding the position of the moving platform if the
length of the active prismatic pairs, q1, q2 and q3, are known. To this end, from the left side of Figure 4,
we can write the next expression:

P2
y = q2

1 − P2
z , (12)

meanwhile, from the right side, we have

P2
y = q2

3 − (b− Pz)
2 . (13)

By subtracting Equation (13) from Equation (12), it is possible to calculate Pz as follows:

Pz =
b2 + q1

2 − q3
2

2b
. (14)

Furthermore, from Equations (12) and (14), the coordinate Py are determined following
the equation

Py =
1
2

√
4q2

1 −
(
b2 + q2

1 − q2
3
)2

b2 . (15)

Finally, from Equations (11) and (15), the coordinate Px may be calculated as follows:

Px =

√√√√√q2
2 −

1
2

√
4q2

1 −
(
b2 + q2

1 − q2
3
)2

b2 − h

2

. (16)

It is easy to show that, solving Equations (14)–(16), it is possible to numerically obtain four
possible positions of the point P of the mobile platform. Of course, for practical applications Px ≥ 0,
Py ≥ 0 and Pz ≥ 0 (see Figures 1 and 2). Thus, only one solution is considered.

5. Velocity and Acceleration Analyses

In this section, the velocity and acceleration analyzes are solved by using the screw theory and
the concept of reciprocity of screws.
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In order to complete the range of the Jacobian matrix, two virtual revolute joints are introduced
in each active limb of the robot, so they are modeled as SPRP kinematic chain, as shown in Figure 6,
where the screws 1$2

i and 2$3
i associated with the virtual spherical pair are fictitious. It is easy to show

that this does not affect the mobility of the mechanism. Furthermore, the screws associated with the

joints of the equivalent manipulator are: 0$1
i =

[
ûi

ûi ×−Ai

]
, 1$2

i =

[
ŵi

ŵi ×−Ai

]
, 2$3

i =

[
v̂i

v̂i ×−Ai

]
,

3$4
i =

[
0

ŵi

]
, 4$5

i =

[
ûi

ûi ×−Bi

]
, 5$6

i =

[
0
−ûi

]
, where ŵi is a unit vector along of the i-th limb, such

that ŵi =
1

‖Bi−Ai‖
(Bi −Ai) =

1
qi
(Bi −Ai); meanwhile, v̂i = ûi × ŵi.

$0 1
i

$1 2
i

$2 3
i

$3 4
i

$4 5
i

$5 6
i

viˆ
ûi

ŵi

Ai

BiBi

Ai

Figure 6. Infinitesimal screws of a limb.

On the other hand, let ω be the angular velocity vector of the moving platform as observed from
the fixed platform. Furthermore, let vO be the velocity vector of the center O of the moving platform,
where point O plays the role of reference pole; in other words, O is instantaneously coincident with
a point of the reference coordinate system Oxyz. Then, the velocity state 0V6

O = [ω , vO]
T, of the moving

platform with respect to the base may be expressed through the i-th limb as follows:

0V6
O = 0ωi

1
0$1

i + 1ωi
2

1$2
i + 2ωi

3
2$3

i + q̇i
3$4

i + 4ωi
5

4$5
i + 5ωi

6
5$6

i , (17)

where jω
i
j+1 denotes the joint ratio velocity of the rigid body j + 1 as observed from the adjacent body

j, both belonging to limb i. It is evident that ω = 0 due to fact that the robot under study only can
perform translational movements.

Furthermore, with reference to Figure 6, please note that screw 1$2
i is reciprocal to all the screws

belonging to the i-th limb except to 3$4
i . Then, by applying the Klein form {∗; ∗} between 1$2

i and both
sides of Equation (17), we have {

1$2
i ; 0V6

O

}
= q̇i. (18)

Casting into a matrix form, and for i = 1, 2, 3, the input–output equation of velocity of the parallel
robot results in

JrvO = Q̇, (19)

where Jr = [ŵ1 ŵ2 ŵ3]
T is the reduced Jacobian matrix of the manipulator; meanwhile,

Q̇ = [q̇1 q̇2 q̇3]
T is the generalized velocities vector, also called the first-order driver matrix of

the parallel manipulator.
On the other hand, the inverse velocity analysis is to find the velocity ratios of manipulator

mωi
m+1, a previous and necessary step in the acceleration analysis, for a given velocity state. Then, the

joint velocities ratios can be determined as follows:
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Ω = J−1
i

[
0
v

]
, (20)

where Ω =
[

0ωi
1, 1ωi

2, 2ωi
3, 3ωi

4, 4ωi
5, 5ωi

6
]T and Ji is the Jacobian matrix of the i-th limb.

Equation (19) is useful to find the singular configurations of the manipulator. Please note that,
according to [23], the robot is in a singular position when det (Jr) = 0, or, in other words, when vectors
ŵ1, ŵ2 and ŵ3 are linearly dependents. This occurs, for example, when the limbs lie in the the same
plane, or when two of them are parallel, etc. Some such configurations can be avoided with a proper
selection of the dimensions of the robot. For example, singularity shown in Figure 7 occurs when the
limbs lie in the plane of the fixed platform, and this configuration can be avoided if in the same closed
loop, the sum of the minimum linear displacement of the two active prismatic joints implicated is
greater than the distance between the first revolute joint and the last one (this distance is measured
parallel to the active prismatic joints). For instance, in the closed loop H1, the following relation must
be satisfied: min(q1) + min(q3) > b.

A1

A2

A3

A4

x

y

z
B1

B2

B4

B3ŵ2

ŵ4

Figure 7. A direct singularity: ŵ2 and ŵ4 are parallel.

In the case of parallelism between limbs, it is important to mention that, because of the geometry
of the robot, it is impossible for both limbs in the same closed loop to be parallel to each other.
However, two limbs belonging to different closed loops could adopt a vertical configuration and be
parallel. For example, Figure 8 shows a case of this configuration for the closed loop H1, specifically
for the limb associates with linear displacement q1, whose minimum value is obviously related to the
maximum value of q3. Considering the above, it is possible to define the following geometric relation:

max (q3) <
√
(min (q1))

2 + b2. A similar relation should be established for the other limb and in
general for the other closed loop in order to avoid this type of singular configuration. Furthermore,
note that the mechanism does not have the so-called inverse kinematics singularities [23], which
represents an advantage over similar topologies.

xz
A1

B1

A3

B3

Figure 8. A vertical configuration for a limb belonging to the closed loop H1.
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On the other hand, following a similar procedure procedure as the one used in the velocity
analysis, the input–output equation of acceleration can be written as follows:

JraO = Q̈, (21)

where aO is the acceleration of any point embedded to the moving platform, and Q̈ is given by

Q̈ =

q̈1 +
{1$2

1 ; L1
}

q̈2 +
{1$2

2 ; L2
}

q̈3 +
{1$2

3 ; L3
}
 .

Moreover, L1, L2 and L3 are the Lie screws, formed by Lie products [∗, ∗] of its respective kinematic
chain, and are given by

Li =
4

∑
j=0

[
jω

i
j+1

j$j+1
i ,

5

∑
k=j+1

kωi
k+1

k$k+1
i

]
.

6. Inverse Dynamic Analysis

The driving forces of the translational parallel robot are calculated in this section by means of
a combination of the screw theory and the principle of virtual work. This problem can be formulated
as follows: given the inertial, gravitational and external wrenches, to determine the driving forces
required to obtain the desired trajectory for the mobile platform.

According to the principle of D’Alembert [24], the inertial wrench Fj,i
I,∗ acting on the j-th body of

the i-th chain is given by:

Fj,i
I,∗ =

[
−mj,i

0aj
i,∗

−I0
j,i

0α
j
i −

0ω
j
i × I0

j,i
0ω

j
i

]
, (22)

where mj,i is the mass of the body, 0aj
i,∗ is the translational acceleration of the mass center, and I0

j,i is
the centroidal inertia tensor with respect to the global reference system. This matrix can be calculated
by transforming the local inertia tensor, I∗j,i, through rotation matrix Rj,i as:

I0
j,i = Rj,iI∗j,i

(
Rj,i
)T

. (23)

We consider the gravitational wrench Fj,i
G,∗ =

[
mj,i g ; 0

]T, where g is the acceleration of gravity

and an external wrench Fj,i
E,∗ applied to the body j at its center of mass. Then, the resultant wrench

acting on body j of the limb i is
Fj,i = Fj,i

I,∗ + Fj,i
G,∗ + Fj,i

E,∗. (24)

It is shown in [25] that the power wj,i produced by Fj,i that acts on the j body of the i-th chain

with velocity state 0Vj,i
∗ , whose reference pole is its center of mass, can be determined by:

wj,i =
{

Fj,i ; 0Vj,i
∗
}

. (25)

In order to apply the principle of virtual work, it is necessary to express 0Vj,i
∗ as a function of the

generalized velocities q̇i. From Equations (19) and (20):
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Ωi = (Ji)
−1



0
0
0

n1,1q̇1 + n1,2q̇2 + n1,3q̇3

n2,1q̇1 + n2,2q̇2 + n2,3q̇3

n3,1q̇1 + n3,2q̇2 + n3,3q̇3


, (26)

where coefficients n are elements of (Jr)−1:n1,1 n1,2 n1,3

n2,1 n2,2 n2,3

n3,1 n3,2 n3,3

 = (Jr)
−1 .

From Equation (26), the speed ratio of body j respect to body j − 1, belonging to chain i, is
expressed in terms of q̇i as follows:

j−1ωi
j =

3

∑
k=1

(
j−1Gk,i

j q̇k

)
, (27)

where the scalars j−1Gm,i
j are the first order kinematic influence coefficients. Then, the velocity state of

body j belonging to the i-th chain can be expressed as:

0Vj,i
O =

j−1

∑
k=0

[
3

∑
m=1

(
k−1Gm,i

k q̇m

)]
k$k+1

i . (28)

Then, grouping the terms in q̇i, and taking the mass center of the body as representation pole,
leads to:

0Vj,i
∗ =

3

∑
k=1

$k
j,i q̇k, (29)

where $1
j,i , $2

j,i and $3
j,i are called partial screws [25,26].

Thus, Equation (25) can be rewritten as follows:

w =
{

F6 ; V6
∗

}
+

4

∑
i=1

(
5

∑
j=1

{
Fj,i ; 0Vj,i

∗
})

+
3

∑
k=1

τk q̇k, (30)

where τk is the driving force associated to the generalized velocity q̇k for k = 1, 2, 3.
The principle of virtual work states that if a multi-body system is in equilibrium under the effect

of external actions, and then the global work δw produced by the external forces with any virtual
velocity must be null [24]. Taking into account the virtual velocities δq̇k, substituting Equation (29) in
Equation (30), and rearranging terms, leads to

δw =
3

∑
k=1

[({
F6 ; $k

6

}
+

4

∑
i=1

(
5

∑
j=1

{
Fj,i ; $k

j,i

})
+ τk

)
δq̇k

]
= 0. (31)

Since the generalized virtual velocities δqk are arbitrary, and δw = 0, it is necessary and sufficient
that the coefficients of the virtual displacements δqk are zero:

{
F6 ; $k

6

}
+

4

∑
i=1

(
5

∑
j=1

{
Fj,i ; $k

j,i

})
+ τk = 0, ∀k = 1, 2, 3. (32)

Finally, from Equation (32), the generalized forces τk can be computed directly.
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7. Numerical Example

To show the application of the method, in this section, a case study is reported. The parameters
of the mechanism are given by A1 = (0, 0, 0), A2 = (0, 0, 600), A3 = (600, 0, 600), A4 = (600, 0, 0),
and h = 20, where all dimensions are expressed in mm. Furthermore, consider that the generalized
coordinates are commanded to follow periodical functions given by q1 = 389.3182978 + 25 sin t,
q2 = 376.8866111 − 30 sin t, q3 = 389.3182978 + 20 sin t, where t is in the interval 0 < t < 2π.
With this information, the first part of the numerical example requires calculation of all the solutions
of the forward displacement analysis when t = 0. Applying the methodology described in Section 4,
there are four real solutions for the position of the moving platform, and they are presented in Table 2.

Table 2. Solutions of the forward position analysis, in mm.

Sol Px Py Pz

1 264.86 −248.13 300
2 −264.86 −248.13 300
3 300.00 248.13 300
4 −300 248.13 300

The second step in solving the example consists of computing the temporal behavior of the velocity
and acceleration of point P that belongs to the mobile platform. To this aim, the third solution of the
forward displacement analysis is chosen as the home position of the robot at hand. The application of
the method explained in Sections 4 and 5 yields the results shown in Figures 9 and 10, where they are
compared with the numerical results obtained with the aid of commercially available software like
ADAMS 2014.

Note that, according to Figures 9 and 10, the numerical results obtained by using the theory of
screws agree with those generated by means of a different approach such as the use of ADAMS.

The last step of the numerical example consists of finding the driving forces that are required to
execute the desired states of velocity and acceleration. In order to simplify the analysis, the following
considerations are assumed: (a) body 5 is considered as part of body 6; and (b) body 1 is assumed as
belonging to the cylinder, body 2. The inertial properties of the manipulator are depicted in Table 3.

Table 3. Inertial properties of the manipulator’s links.

Body mass, kg I∗j,i [kg·mm2]

2 0.357 diag[2443.907, 60.558, 2410.1092]
3 0.155 diag[1022.324, 5.4068, 1021.984]
4 0.339 diag[1.073, 10.859, 1.073]
6 0.212 diag[125.051, 70.720, 125.051]
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Figure 9. Velocity of point P. Using screw theory (left); and simulations in ADAMS/View 2014 (right).
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Figure 10. Acceleration of point P. Using screw theory (left); and simulations in ADAMS/View
2014 (right).

On the other hand, consider that the center of the moving platform is suffering a force of −1000 N
and a couple of 200 Nm where both vectors are normal to the plane of the moving platform along
the entire trajectory imposed to the moving platform. With these data, and following the method
presented in this work, the resulting temporal behavior of the three generalized forces are presented in
Figure 11.
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Figure 11. Diving forces. Using screw theory (left); and simulations in ADAMS (right).

8. Conclusions

A parallel robot with a novel architecture was presented in this paper. The mobility of this
mechanism was studied by the well-known method of Gogu, concluding that it has three translational
degrees of freedom. In addition, the equations of position analysis, which are notoriously simpler than
other similar robots, were obtained and solved. The large work space, which is not discussed in this
contribution, in addition to its scheme of actuation, allows the potential use of the manipulator in, for
example, machining of soft materials, rapid prototyping tasks, 3D printing, and others. Furthermore,
analyses of velocity and acceleration were solved by using the theory of screws and the Klein form.
This analysis shows that it is possible to avoid some of the evident singularity configurations with
an appropriate selection of the dimensions of the fixed platform. The generalized forces are determined
by combining the principle of virtual work and the theory of screws through the Klein form of the
Lie algebra se(3) of the Euclidean group SE(3). Finally, the results were validated by a simulation
software of coinciding numerical simulations with the results predicted by the method presented.
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