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Abstract: The modelling, optimization issues and stiffness for several types of three
degrees-of-freedom parallel robotic manipulators, i.e., 3-DOF pure translational, 3-DOF pure
rotational and 3-DOF mixed motion types, are studied in this paper. First of all, the kinematics
and Jacobian for the robotic manipulators are determined through different approaches; secondly,
objective functions modelling are presented, and the associated optimization issues and the geometric
parameters’ effect on the objective functions for the robotic mechanisms are illustrated and analyzed
in detail. Through employing several multi-objective optimization approaches, we manifest an overall
process and approach for multi-objective optimization of robotic systems. The correlation among
different stiffness models is finally presented. The results indicate that the kinetostatic compliance
model is the closest one to the traditional stiffness model.

Keywords: kinematics; modelling; optimization; pure translation; pure rotation; mixed motion;
parallel mechanism

1. Introduction

Parallel robotic mechanisms have been broadly employed in the healthcare area [1], agricultural
area [2,3], manufacturing area [4–6], sensor applications [7,8], etc. The Steward mechanism, one
would say, is one of the most popular parallel robotic mechanisms. The upper moving platform
of the Steward mechanism is joined to the base through six actuated limbs, and it possesses three
translational degrees-of-freedom and three rotational degrees-of-freedom. The function of the full
degrees-of-freedom for a parallel mechanism is not necessary for most applications; rather, three
degrees-of-freedom, four degrees-of-freedom or even five degrees-of-freedom mechanisms are more
preferable. In addition, full degrees-of-freedom parallel mechanisms have a few drawbacks, i.e., their
forward kinematic analysis is usually very inconvenient to solve, and their workspace is very limited.
The stiffness performance, in a large number of cases, is one of the critical factors that needs to be
taken into consideration in the parallel robotic arena, because stiffness demonstrates how rigid a
parallel mechanism can be and sometimes can also represent the general accuracy performance of
a robotic mechanism. Stiffness is usually employed to measure how much a mechanism can resist
under certain loads, and it is seen by many scholars and engineers as one of the most important
attributes for robotic mechanisms, as a large value of stiffness will usually result in good precision
when robotic mechanisms are employed as machine tools to manufacture pieces. One usually employs
a stiffness matrix to represent the stiffness of a parallel robotic mechanism. Additionally, when
a parallel mechanism possesses multiple types of design variables or a certain objective function
for a parallel mechanism is complicated, the global stiffness design and its optimization in parallel
robotic mechanisms will become hard. The above issue can be effectively addressed by resorting
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to the optimization approach that is based on the kinetostatic analysis. The authors will analyze
three types of three degrees-of-freedom parallel robotic mechanisms, i.e., a three degrees-of-freedom
translational robotic mechanism, a three degrees-of-freedom rotational robotic mechanism and a mixed
three degrees-of-freedom (one translational degree-of-freedom and two rotational degrees-of-freedom)
robotic mechanism. The authors here will also study the optimization problem of each parallel robotic
mechanism, and lastly, we will present and compare a few stiffness/compliance models.

This paper is organized as follows: the kinematic and Jacobian analysis and modelling for the three
robotic mechanisms are presented in Section 2; Section 3 establishes the related objective functions; the
optimization issues for the robotic mechanisms are conducted in Section 4; Sections 5 and 6 illustrate
existing popular stiffness models and compare the compliance among the models, respectively; finally,
the conclusion is given in Section 7.

2. Kinematic Analysis and Modelling

2.1. Pure Translational Case

As illustrated in Figure 1, the top moving platform of the 3UPU (U represents universal joint,
and P represents prismatic joint) robotic mechanism is joined to the base through three identical UPU
type limbs. A coordinate frame O(X, Y, Z) is fixed to the point O, which is the base center, and another
coordinate frame P(x, y, z) is fixed to the point P, which is the moving platform center. αb represents
the angle from the X axis of the base frame to OB1, and αp presents the angle from x axis of the moving
frame to OP1.
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Figure 1. 3UPU robotic manipulator. 66 

The limb length can be determined as follows:   67 

i i iL p q b    (1) 

where ib  represents the coordinate of point iB  relative to the base frame, [x,y,z]Tq   represents 68 

the vector of point P  relative to the base frame and ip  represents the coordinate of point iP  69 

relative to the moving frame. The point iP ’s velocity can be determined as follows:    70 

Figure 1. 3UPU robotic manipulator.

The limb length can be determined as follows:

Li = |pi + q− bi| (1)

where bi represents the coordinate of point Bi relative to the base frame, q = [x, y, z]T represents the
vector of point P relative to the base frame and pi represents the coordinate of point Pi relative to the
moving frame. The point Pi’s velocity can be determined as follows:

vPi = ωi × si +
•
Lisi (2)
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where si denotes the unit vector along the i-th limb and ωi denotes the angular velocity for the i-th limb
relative to the frame O. If one multiplies si on both sides of Equation (2), the following can be derived:

JvP =
•
q (3)

where vP denotes the point P’s velocity, and the Jacobian matrix is determined as follows:

J =
[

sT
1 sT

2 sT
3

]T
(4)

2.2. Pure Rotational Case

Figure 2 illustrates the 3SPS-S (S represents spherical joint, and P represents prismatic joint)
parallel mechanism. The frames P(x, y, z) and B(X, Y, Z) are fixed to the point W. qi represents a unit
vector along BiPi. Li represents the vector of the length for prismatic actuators, and their lengths are
represented by li. The distance from point W to the base is denoted as hB, and the distance from point
W to the top platform is denoted as hb. The radius of the base is denoted as rB, and the radius of the
top platform is denoted as rb.
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li2 = LiLi = (liqi) (liqi) = (QPPi − Bi) (QPPi − Bi) (5)

where PPi represents the position vector of points Pi relative to the moving coordinate system and
Bi represents the position vector of points Bi (i = 1, 2, 3) relative to the fixed coordinate system B.
By taking the time derivative of the above formulation, the following can be derived:

·
li =

Li
li

vpi = qivpi (6)

The points’ Pi velocity can be determined as follows:

vpi = v + ω × bi = ω × bi (7)
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If one substitutes Equation (7) to (6), the Jacobian matrix can be obtained as follows:

J = (bi × qi)
T (8)

where bi = QPPi, and qi = Li/li (i = 1, 2, 3).

2.3. Mixed Motion Case

Figure 3 shows the 4UPS-PU (U represents universal joint, P represents prismatic joint, and S
represents spherical joint) parallel mechanism. It contains four identical limbs and one passive limb.
The purpose of employing the passive limb is to make the robotic mechanism only have three DOFs.
A frame (XYZ) is fixed to the base center, and another frame (xyz) is fixed to the moving platform
center. The angle from the x axis of the moving frame to ai is denoted as ϕ′i.
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Firstly, li can be determined as follows:

li = pe + ai − bi (9)

where ai = Ra′i, bi =
[

r cos ϕi r sin ϕi 0
]T

, a′i =
[

c cos ϕ′i c sin ϕ′i 0
]T

, the radius of the base is
denoted as r and the radius of the moving platform is denoted as c.

The i-th limb length can be determined as follows:

q2
i = liT li (10)

If one differentiates Equation (10) with respect to time, the Jacobian can be determined as follows:

J =


q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4


−1

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

 (11)

where ai1 = −rc sin ϕi cos ϕi cos ϕ sin ψ + rc sin ϕ sin2 ϕi + hc cos ϕi sin ϕ sin ψ + hc sin ϕi cos ϕ, ai2 =

rc cos2 ϕi sin ψ − rc sin ϕi cos ϕi sin ϕ cos ψ − hc cos ϕi cos ϕ cos ψ and ai3 = h − c cos ϕi sin ψ cos ϕ +

c sin ϕi sin ϕ.
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3. Optimization Discussion and Modelling

3.1. Pure Translational Case

It is known that the stiffness matrix can be obtained as follows:

K = JTKJ J = kJT J (12)

Every single component on the leading diagonal of the stiffness matrix can reflect each moving
directional stiffness. When a robotic mechanism moves, these diagonal components will also change.
If one employs these diagonal components to conduct the optimization, one can just obtain the optimum
stiffness value at a single spot. Thus, a factor that can reflect the average stiffness [9] is utilized:

GSIi =

∫ ∫ ∫
Kidxdydz∫ ∫ ∫
dxdydz

(i = x, y, z) (13)

As a case study, here, the authors set αb = 30◦, αp = 15◦; the distributions of the X directional stiffness
and Z directional stiffness with respect to the radius of the base and radius of the top platform are illustrated
in Figure 4. Note that the distributions for X and Y are the same, so here, we only plotted one case.
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Similarly, for a different case, the authors set Rb = 3 cm, Rp = 2 cm, the distributions of X
directional stiffness and Z directional stiffness with respect to the attachment points angles are illustrated
in Figure 5. Note that the distributions for X and Y are the same, so here, we only plotted one case.
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It is observed that the stiffness depends on the radius of the base, the radius of the top platform
and the angles of the attachment points on the base and top platform. It is also observed that the
summation of these three stiffnesses is constant. Thus, if one employs the summation of these three
stiffnesses to conduct the optimization, it will be unsuitable. A scholar suggested that the Z directional
stiffness is able to reflect a robotic mechanism’s stiffness [10]. Here, the authors will test if the Z
directional stiffness is an objective function and see the outcome.
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It is observed from Figure 6 that the distributions of the workspace volume have the same
changing fashion with respect to the Z directional stiffness case, whereas it has the opposite changing
fashion with respect to the X directional stiffness case and Y directional stiffness case. Additionally, the
summation of the three stiffnesses is unchanging, and also, the distributions of the X and Y directional
stiffnesses have the opposite changing fashion with respect to the Z directional stiffness. Optimizing the
Z directional stiffness will affect the X and Y directional stiffnesses. Hence, in practical applications,
one needs to select the appropriate objective function based on one’s own needs. In the scenario where
the Z directional stiffness is vital, one then optimizes the Z directional stiffness. In the scenario where
the X and Y directional stiffnesses are vital, one then uses the X and Y directional stiffnesses as an
objective function. Here, for a case study, the authors assume that the X and Y directional stiffnesses
are vital. The X and Y directional stiffnesses are optimized together with the workspace performance.
One can employ the fast search approach [11] to determine the workspace volume.



Machines 2016, 4, 24 7 of 15

3.2. Pure Rotational Case

In the compliance matrix, the leading diagonal segments’ mean value can reflect the overall
compliance. The leading diagonal segments’ standard deviation can reflect the compliance variation.
A small mean value means that a robotic mechanism has better stiffness performance, and a small
standard deviation value means the compliance is evenly distributed. Here, the mean value and
standard deviation are utilized for conducting the stiffness optimization.

By resorting to the virtual work principle, the Cartesian compliance matrix of the robotic
manipulator is able to be obtained:

Cc = Jserial(AJserial)
−1BCBT(AJserial)

−T Jserial
T (14)

where mean =

6
∑

1=1
Cc(i,i)

6 represents the mean value and std =

√
6
∑

i=1
(Cc(i,i)−mean)2

6 represents the
standard deviation.

There are numerous methodologies being put forward for workspace optimization. However,
it was noticed that parallel robotic manipulators that are geared to the largest workspace can sometimes
produce unwanted kinematic performances (e.g., bad dexterity). Thus, one scholar suggested to employ
a global condition index [12] to handle the mentioned issue. The authors will resort to this index as
formulated in Equation (15) to represent the performance of the manipulator’s workspace.

η =
∫
W

1
k

dW (15)

where k represents the Jacobian’s condition number. Determining the above Equation (15) can be
difficult, which compels the authors to employ a numerical solution approach (e.g., the Monte Carlo
methodology). The approach can be summarized as four major steps: first of all, we select a tremendous
amount of points ntotal inside the predicted workspace region; secondly, these selected points need to
be checked to see whether they do indeed fall within the workspace boundary. By computing every
single limb length, one is able to determine the above condition. If the limb length complies with its
maximum and minimum length, it means the condition is satisfied. After that, one needs to calculate
the kinematics condition index. This index times the predicted workspace volume and this product
then divided by ntotal , one finally has the following:

η = 2π(
√

l22 + Rp2)
3
·∑

i

1
ki

/3ntotal

3.3. Mixed Motion Case

Based on the virtual work principle, the manipulator’s Cartesian stiffness matrix can be derived
as follows:

K = AT B−TKJ B−1 A + (Jserial
′)−TKn+1(Jserial

′)−1 (16)

The compliance matrix can therefore be obtained as follows:

C = K−1 (17)

Thus:

M =

6
∑

1=1
Cc(i, i)

6
, S =

√√√√√ 6
∑

i=1
(Cc(i, i)−mean)2

6
(18)

where M represents the mean value and S represents the standard deviation.
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In terms of the workspace, similarly, the authors here will employ the global condition index as
described in Section 3.2. Regarding the mixed motion mechanism, first of all, we select a tremendous
amount of points ntotal inside the predicted workspace region; second, by computing every single limb
length, one is able to determine if the limb length complies with its maximum and minimum length.
After that, one needs to calculate the kinematics condition index. This index times the predicted
workspace volume and this product then divided by ntotal , one finally has the following:

η =
π · R2

P · (hmax − hmin) · KCI
ntotal

.

4. Optimization Results

4.1. Pure Translational Case

One regards particle swarm optimization as one of the computational intelligent
methodologies [13]. Figure 7 illustrates the general working principle of particle swarm optimization.
The authors here use the workspace volume, which is denoted as V for its optimization, and the
summation of X and Y directional stiffnesses, which is denoted as f , to reflect stiffness performance.

Machines 2016, 4, 24 8 of 17 

 

3.3. Mixed Motion Case  173 

Based on the virtual work principle, the manipulator’s Cartesian stiffness matrix can be derived 174 
as follows:  175 

1 ' ' 1

1( ) ( )T T T

J serial n serialK A B K B A J K J   

   (16) 

The compliance matrix can therefore be obtained as follows:  176 

1C K   (17) 

Thus:  177 

6

1 1

( , )

6

cC i i

M 


, 

6
2

1

( ( , ) )

6

c

i

C i i mean

S 






 
(18) 

where M represents the mean value and S represents the standard deviation.  178 
In terms of the workspace, similarly, the authors here will employ the global condition index as 179 

described in Section 3.2. Regarding the mixed motion mechanism, first of all, we select a tremendous 180 

amount of points totaln  inside the predicted workspace region; second, by computing every single 181 

limb length, one is able to determine if the limb length complies with its maximum and minimum 182 
length. After that, one needs to calculate the kinematics condition index. This index times the 183 

predicted workspace volume and this product then divided by totaln , one finally has the following: 184 

2

max min( )P

total

R h h KCI

n




   
 . 185 

4. Optimization Results 186 

4.1. Pure Translational Case 187 

One regards particle swarm optimization as one of the computational intelligent  188 
methodologies [13]. Figure 7 illustrates the general working principle of particle swarm optimization. 189 

The authors here use the workspace volume, which is denoted as V  for its optimization, and the 190 

summation of X and Y directional stiffnesses, which is denoted as f , to reflect stiffness performance. 191 

Initial particle 
swarm

Fitness calculation

Compare and 
substitute with the 
best global value 

Update the speed 
and position of 

particle

If the termination 
criteria is met

No

Epoch=epoch+1

Yes
Optimal individual

End

 192 

Figure 7. Working principle of PSO. 193 Figure 7. Working principle of PSO.

By combining two objective functions into one, the final objective function is listed below:

Gbest = min
1

0.5 f + 0.5V
(19)

Rb, Rp, αb and αp are the design variables, and Rb ∈ [2, 5] cm, Rp ∈ [1, 3] cm, αb ∈ [20◦, 40◦] and
αp ∈ [0◦, 20◦] are set as the corresponding constraints for each design variable. Figure 8 illustrates this
optimization result. It is observed that the objective function is improved approximately two times.
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By combining two objective functions into one, the final objective function is listed below:

Gbest = min
1

0.5 f + 0.5V
(19)

Rb, Rp, αb and αp are the design variables, and Rb ∈ [2, 5] cm, Rp ∈ [1, 3] cm, αb ∈ [20◦, 40◦] and
αp ∈ [0◦, 20◦] are set as the corresponding constraints for each design variable. Figure 8 illustrates this
optimization result. It is observed that the objective function is improved approximately two times.
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4.2. Pure Rotational Case

If one is making the summation of leading diagonal segments’ mean value and standard deviation
be the smallest one, one can have a better stiffness performance. However, doing this can deteriorate
the workspace performance. The authors will utilize the multi-optimization genetic algorithm solver
in MATLAB. The first objective function is to reflect the stiffness performance, and the second objective
function is to reflect the workspace performance. Thus, the objective function that reflects the stiffness
performance is f1 = mean + std, and the objective function that reflects the workspace performance is

f2 = 2π(
√

l22 + Rp2)
3
·∑

i

1
ki

/3ntotal .

s = [Rp, Rb, l1, l2, θ1, θ2, θ3] are set as the design variables, and Rp ∈ [0.40, 0.50] m, Rb ∈ [0.70, 0.80] m,
l1 ∈ [0.40, 0.50] m, l2 ∈ [0.20, 0.30] m, θ1 ∈ [−30◦, 30◦], θ2 ∈ [60◦, 120◦], and θ3 ∈ [−30◦, 30◦] are their
corresponding constraints. The optimization is conducted through utilizing the gamultiobj solver
in MATLAB. The optimization parameters are selected as shown in Table 1. After running the
optimization, the optimization result is illustrated in Figure 9.

Table 1. Optimization parameters.

Options Parameters

The size of the population 50
Maximum of generations 66

Selection strategy Tournament
The size of tournament 2

Crossover type Intermediate
Crossover ratio 1

Pareto front population fraction 0.7
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It is observed that the first objective function that reflects the stiffness performance and the second
objective function that reflects the workspace performance conflict with each other. The optimization
result shows multiple possible solutions, which one calls non-dominant. One is able to select one
particular solution based on one’s own situations.

4.3. Mixed Motion Case

Regarding the mixed motion case, one has:

f1 = M + S (20)

f2 =
π · R2

P · (hmax − hmin) · KCI
ntotal

(21)

s = [Rp, Rb, θ5, θ6, z] are set as the design variables, and Rp ∈ [0.40, 0.50] m, Rb ∈ [0.70, 0.80] m,
θ5 ∈ [−120◦,−60◦], θ6 ∈ [60◦, 120◦] and z ∈ [0.2, 1.2] m are their corresponding constraints.Machines 2016, 4, 24 11 of 17 
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Based on the results as illustrated in Figure 10, one is able to select one particular solution based
on one’s own requests.

5. Stiffness Models

The traditional stiffness model (TSM), which is very popular and well established, is able to
be easily obtained on the basis of a mechanism’s Jacobian. One does not take the center limb
(if it is applicable) into consideration for the traditional stiffness model. In [14], the author derived
a kinetostatic stiffness model under the case where one takes the compliance of the center limb into
consideration and a kinetostatic compliance model (KCM) under the case where one considers the
center limb as rigid on the basis of the virtual work principle. As demonstrated in [15], the authors
suggested to employ a dexterous stiffness model (DSM) to reflect a robotic mechanism’s singularity
situation. Here, the authors will employ the 3UPS-PU robotic manipulator (as shown in Figure 11) to
do a comparison among these models.
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5.1. TSM Case

One is able to obtain the TSM as follows:

K = Jrigid
TKq Jrigid (22)

where Kq = diag[k1, k2, k3]. ki denotes the joint stiffness. Since the active limbs are identical, one can
rewrite Equation (22) as follows:

K = kJrigid
T Jrigid = 1000Jrigid

T Jrigid (23)

The above matrix’s leading diagonal segments can reflect corresponding moving
directional stiffness.

5.2. KCM Case

The author in [14] obtained the KCM under the case where one considers the center limb as rigid.
In order to make a comparison, here the authors assume the center limb to be rigid. Furthermore,
we make the value of the compliance for the actuators 0.001; this will make the KCM case be consistent
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with the TSM case. We can derive the compliance matrix as follows. The detailed derivation process is
not illustrated here anymore; interested readers can refer to [14].

∆c = Jserial(AJserial)
−1BCBT(AJserial)

−T Jserial
Tw = Ccw (24)

where Cc denotes the compliance matrix.

5.3. DSM Case

Under the case where a robotic mechanism is inside the singular boundary, the robotic
mechanism’s stiffness property can be deteriorated. Under this case, the leading diagonal segments
cannot accurately reflect the corresponding stiffness in each moving direction [15]. Thus, in [15],
the authors suggested to employ the DSM as illustrated in Equation (25) to handle the above issue.
Its matrix is written as follows:

KL
′ =

1000

(svd(Jrigid))
T · svd(Jrigid)

Jrigid
T Jrigid (25)

6. Comparisons

6.1. Three Cases

As a case study, the authors here set Rp = 0.07, Rb = 0.16, Z = 0.66, θ2 = 100◦ and θ3 = 0◦.
Under the above condition, for the TSM case, the compliance in the Z direction is calculated as 0.0003;
the compliance in the θx direction is calculated as 0.1461; and the compliance in the θy direction is
calculated as 0.1472. For the KCM case, the compliance in the θx direction is calculated as 0.1428; the
compliance in the θy direction is calculated as 0.1461; the compliance in the θz direction is calculated
as 0.0044; the compliance in the X direction is calculated as zero; the compliance in the Y direction is
calculated as zero; and the compliance in the Z direction is calculated as 0.0003. For the DSM case, the
compliance in the Z direction is calculated as 0.001; the compliance in the θx direction is calculated as
0.4218; and the compliance in the θy direction is calculated as 0.4249.

6.2. Comparison

Table 2 compares the TSM, KCM and DSM, from which it can be observed that the Z compliance
of the TSM case equals that of the KCM case; this indicates that the Z stiffness of the TSM case equals
that of the KCM case. The θx compliance offset is 0.0033; the θy compliance offset is 0.0011; and the
sum of the compliance of the TSM case equals that of the KCM case. There is just a tiny bit of offset for
both the θx and θy cases; hence, KCM has been reaffirmed and verified.

Table 2. Comparison table. KCM, kinetostatic compliance model; TSM, traditional stiffness model;
DSM, dexterous stiffness model.

KCM TSM DSM

Z Compliance 0.0003 0.0003 0.0010
θx Compliance 0.1428 0.1461 0.4218
θy Compliance 0.1461 0.1472 0.4249

Sum of compliances 0.2936 0.2936 0.8477

Regarding the TSM case and the DSM case, the θx compliance offset is 0.2757; the θy compliance
offset is 0.2777; the Z compliance offset is 0.0007; and the compliance sum offset is 0.5541. The scale of
these offsets is large, and this is expected because as can be observed from Equations (22) and (25),
these two cases do show an offset. Based on Figure 12, Figure 13, and Figure 14, it can be observed that
the KCM coincides with the TSM; this further reaffirms and verifies the KCM.
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Figure 14. θy Compliance.

When we change the coefficient k from 1000 to 2000 in the TSM, the TSM will deviate from
the KCM in terms of θx compliance, θy compliance and Z compliance (illustrated from Figure 15,
Figure 16, and Figure 17), and this is expected due to the fact that the actuator stiffness is not consistent
with the actuator compliance in the KCM case anymore. Therefore, based on the above analysis
and demonstrations, the correlation and agreement of the TSM, KCM and DSM have been verified.
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With respect to the four degrees-of-freedom case and the five degrees-of-freedom robotic manipulators
case, one has similar outcomes.
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7. Conclusions

In this paper, the authors study the kinematic performances and optimization for three types of
parallel robotic manipulators. Firstly, the kinematics analysis and Jacobian are determined for the
three types of manipulators; secondly, through selecting two indices that are able to reflect the stiffness
performance and workspace performance, the authors conduct the optimization analysis towards these
two performances for the three types of manipulators and manifest an overall process and approach
for multi-objective optimization issues of robotic manipulators; lastly, the correlation and agreement of
the TSM, KCM and DSM are presented.
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