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Abstract: This work provides a multi-agent extension of output-feedback model reference
adaptive control (MRAC), designed to synchronize a network of heterogeneous uncertain agents.
The implementation of this scheme is based on multi-agent matching conditions. The practical advantage
of the proposed MRAC is the possibility of handling the case of the unknown dynamics of the agents only
by using the output and the control input of its neighbors. In addition, it is reasonable to consider the case
when the communication topology is time-varying. In this work, the time-varying communication leads
to a switching control structure that depends on the number of the predecessor of the agents. By using
the switching control structure to handle the time-varying topologies, we show that synchronization can
be achieved. The multi-agent adaptive switching controller is first analyzed, and numerical simulations
based on formation control of simplifier quadcopter dynamics are provided.

Keywords: heterogeneous multi-agent systems; output-feedback model reference adaptive control;
switching topologies

1. Introduction

Research on synchronization of multi-agent systems (MASs) is inspired by certain collective
animal behaviors, such as fish schooling, bird flocking, and bug swarming. The mechanism behind
these behaviors can be found in crucial technological areas such as spacecraft formation flying [1],
cooperative adaptive cruise control (CACC) [2], autonomous warehouse vehicles [3], smart power
grids [4], robotics swarms [5], and smart buildings [6].

Prior to an explanation of the theory of synchronization of MASs, it is useful to give
a definition of “agent”. The term “agent” appears in multiple disciplines in engineering and science;
therefore, the term has been continuously revised. According to [7], an agent consists of four basic
elements: the sensor, the actuator, the information element, and the reasoning element. According
to [8], agents can be divided into three main categories: human agents, hardware agents, and software
agents. Depending on the task, the software agent can be broken down into information agents,
cooperation agents, and transaction agents. Information plays a crucial role in MASs: In centralized
schemes, agents have access to global information, while in distributed schemes only access to the
information from a few neighbors is possible [9,10].

In general, the study of synchronization has the objective of finding the coupling gains and/or
the network topology that guarantee that the synchronization state error or the synchronization output
error converges asymptotically to zero. Initial research on synchronization has been focusing on
networks of identical agents, e.g., [11]. However, it is well known that agents can have heterogeneous
dynamics, which makes synchronization more challenging [12]. Fixed coupling gains among the
identical and non-identical agents that stabilize the synchronization error and guarantee the desired
performance were proposed in [13]. Due to large uncertainties in network systems and unknown
parameters, many distributed adaptive approaches have been developed to synchronize the agents.
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The distributed adaptive synchronization of the unknown heterogeneous agents and bounded
misjudgment error was discussed extensively in [14]. In that work, synchronization was reached
by using an extended form of state feedback model reference adaptive control (MRAC). Another
approach based on the passification method was adopted to synchronize unknown heterogeneous
MASs in [15]. Hybrid dynamics in networks may arise from networked-induced constraints [16] or
from switching topologies.

In practice, the topology is not fixed and tends to change each time. An appropriate network
structure or topology to achieve synchronous behavior was discussed in [17]. By using the proposed
control laws, the topology changes lead to a different controller structure. In order to prove the stability
of the switched system, one can rely on multiple Lyapunov functions and the dwell time switching
law [18]. Novel model reference adaptive laws for uncertain switched linear systems to guarantee
asymptotic and bounded stability were discussed in [19,20]. An open question pertains to how output
synchronization can be achieved for heterogeneous agents with unknown dynamics in the presence of
possibly switching topologies, and this question motivates this work.

The main contribution here is an extended adaptive synchronization law based on output- feedback
MRAC for heterogeneous agents with unknown linear dynamics. It is to be noticed that our controller
does not need any global information of the network. A Lyapunov-based approach is derived
analytically to show that error converges asymptotically to zero. To address switching topologies, a novel
switching adaptive controller is proposed in case some neighbor’s measurements cannot be accessed.
Finally, numerical simulations are performed on a representative test case inspired by formation control
of quadrotors.

The article is organized as follows: Section 2 introduces multi-agent output-feedback
synchronization based on the MRAC approach. Section 3 includes switching communication
topologies that handle the communication loss between agents. Section 4 presents the simulation
to validate theoretical findings. Finally, Section 5 provides conclusions and proposes directions for
further research.

Notation: The directed graph G is a pair (N , E ), where N = {n1, n2, ..., nn} is a set of nodes and
E ⊆ N ×N is a set of edges. The edge’s weight is defined as aninj , where ni 6= nj. The R represents
the set of real numbers. The matrices are denoted by capital letters, e.g., P, and the notation P = PT > 0
indicates a symmetric positive definite matrix. The identity matrix of compatible dimensions is
denoted by I, and diag {...} represents a block-diagonal matrix. The function sgn(•) takes the sign
•. The vectors are denoted by small letters, e.g., x. A vector signal x ∈ Rn belongs to the L2 class;
if
∫ t

0 ||x(τ)||
2dτ < ∞, ∀t > 0. A vector signal x ∈ Rn belongs to L∞ class; if max ||x(t)|| < ∞, ∀t > 0.

2. Output-Feedback MRAC

The main task in this section is to find the control laws ui(t) for each agent that guarantee
synchronization of MASs with unknown linear dynamics by only using the input and the output of
the neighbors. In order to facilitate the main result, let us assume that there are three agents denoted
with subscripts 0, 1, and 2. Let us consider the network depicted in Figure 1. Here, the purpose of
Agent 1, the leader, is to follow Agent 0. At the same time, the purpose of Agent 2 is to follow Agent 1.
Agent 0 is a reference model that is connected to Agent 1, satisfying the following dynamics:

y0 = G0(s) = k0
Z0(s)
R0(s)

r (1)

where r ∈ R and y0 ∈ R are the reference input and the output of the reference model. Z0(s) and
R0(s) are known monic polynomials, and k0 is the high-frequency gain. Next, we have Agents 1 and 2,
denoted with subscripts 1 and 2, respectively, and with dynamics expressed in the transfer function
form as
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y1 = G1(s) = k1
Z1(s)
R1(s)

u1 y2 = G2(s) = k2
Z2(s)
R2(s)

u2 (2)

where u1,u2 ∈ R, and y1,y2 ∈ R are the inputs and the outputs of two agents. Z1(s), Z2(s), R1(s),
andR2(s) are unknown monic polynomials, and k1 and k2 are constants referred to the high frequency
gains. Note that, possibly, Z1(s) 6= Z2(s) and R1(s) 6= R2(s) (heterogeneous agents with unknown
dynamics). We assume a directed connection from Agent 1 to Agent 2, i.e., the digraph is described by
N = {1, 2}, E = {(1, 2)}. By using this configuration, Agent 2 can observe the measurement from
Agent 1, but not vice versa.

Figure 1. A sample leader–follower communication graph with one follower.

The synchronization task between Agent 0 and Agent 1 is achieved when y1 → y0 for t → ∞.
As the signal from the reference model is known to Agent 1 only, the purpose of Agent 2 is to follow
Agent 1. In this case, the synchronization task is achieved when y2 → y1 for t → ∞. It is clear that,
if both synchronization tasks are achieved, then we have also y2 → y0 for t→ ∞. These tasks should
be achieved for any bounded reference signal r.

Assumption 1. To achieve the synchronization objectives, we need the following assumptions for the reference
model (R) and the agents (A):

(R1) Z0(s) and R0(s) are monic Hurwitz polynomials, where the degree of R0(s) is less than or equal
to the relative degree of Ri(s), n.

(R2) The relative degree of G0(s) is the same as that of Gi(s), i ∈ {1, 2}.
(A1) Zi(s), i ∈ {1, 2} are monic Hurwitz polynomials.
(A2) An upper bound n of the degree ni of Ri(s), i.e., i ∈ {1, 2}, is known.
(A3) The relative degree n∗ = ni −mi of Gi(s), i.e., i ∈ {1, 2}, is known, where m is the degree of the

numerator. The relative degree of the agents and the reference should be the same.
(A4) The sign of the high frequency gains ki i.e., i ∈ {1, 2} is known.

In the next subsection, the synchronization of Agent 1 to a reference model will be discussed.

2.1. Synchronization of a Leader to a Reference Model

As classical MRAC was used for the SISO plant in Chapter 5 of [21], it is well known that the
agents i can be synchronized to the reference model by using the following control law:

ui = l∗T1
α(s)
Λ(s)

ui + f ∗T1
α(s)
Λ(s)

yi + g∗1yi + c∗1r (3)

where Λ(s) is a Hurwitz monic polynomial and α are defined as

α(s) =
[
sn−2 sn−3 ... s 1

]
for n ≥ 2

α(s) = 0 for n = 1

Λ(s) = sn−1 + λn−2sn−2 + ... + λ1s + λ0 = Λ0Z0.

(4)
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The consequence of Assumption 1 is that there are scalars l∗Ti , f ∗Ti , g∗Ti , and c∗Ti that match the
condition of agent i and the reference model such that

c∗i ki

Ri(s)(Λ(s)− l∗Ti α)− kiZi(s)( f ∗Ti α + g∗i Λ(s))
=

k0

R0(s)Zi(s)Λ0(s)
. (5)

The matching conditions for Agent 1 to the reference model can be defined as follows, in line with
Chapter 5 in [21].

c∗1k1 = k0

R1(s)(Λ(s)− l∗T1 α)− k1Z1(s)( f ∗T1 α + g∗1Λ(s)) = Z1(s)R0(s)Λ0(s)
(6)

where c∗1 = k0
k1

. Because the parameters of Agent 1 are unknown, the proposed control law (3) cannot
be used for Agent 1, and we can come up with

u1 = lT
1

α

Λ(s)
u1 + f T

1
α

Λ(s)
y1 + g1y1 + c1r (7)

where the controller parameter vector lT
1 , f T

1 , g1, and c1 are the estimates for l∗T1 , f ∗T1 , g∗1 , and c∗1 ,
respectively. Let us assume the relative degree of 1 for simplicity. Adopting a state–space representation
of the reference model and Agent 1, we obtain

ẋ0 = A0x0 + B0r y0 = hT
0 x0

ẋ1 = A1x1 + B1u1 y1 = hT
1 x1.

(8)

It is well known that one can use the following adaptive law:

ω̇u1 = Fωu1 + du1 θ̇1 = −Γ1e10ω1sgn(
k1

k0
)

ω̇y1 = Fωy1 + dy1 u1 = θT
1 ω1

(9)

where e10 = y1 − y0, Γ1 = ΓT
1 > 0, ω1, F, d, and θ1 defined as follows

ω1 =


ωu1

ωy1

y1

r

 F =

[
−λn−2 ... −λ0

In−2 0

]
d =


1
0
...
0

 θT
1 =

[
lT
1 f T

1 g1 c1

]
. (10)

Here the adaptive gain, Γ1, is not taken as a scalar, as it is in most literature, but as
a diagonal matrix:

Γ1 = diag{Γl , Γ f , Γg, Γc} (11)

where Γl , Γ f , Γg, Γc are the positive real numbers to be designed. By using the control law u1, one can
achieve y1 → y0 for t → ∞. In this work, the Lyapunov-based approach is derived to show
analytically the asymptotic convergence of the synchronization error. First, let us define the state–space
representation of Agent 1 in the closed-loop form:

˙̄x1 = Ā1 x̄1 + B̄1c∗1r + B̄1(u1 − θ∗T1 ω1) y1 = C̄1 x̄1 (12)

where x̄1 =
[

xT
1 ωT

u1
ωT

y1

]T
. Ā1, B̄1, and C̄1 are defined as
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Ā1 =

A1 + B1g∗1 hT
1 B1l∗T1 B1 f ∗T1

dg∗1 hT
1 F + dl∗T1 d f ∗T1

dhT
1 0 F

 B̄1 =

B1

d
0

 C̄T
1 =

[
hT

1 0 0
]

. (13)

Obviously, Agent 1 can be matched to Agent 0 or it can be said that C̄1(sI − Ā1)
−1B̄1c∗1 =

C0(sI − A0)
−1B0. Therefore, the state–space representation of Agent 1 in the closed-loop form could

be rewritten as follows:

˙̄x1 = A0 x̄1 + B0r + B0ρ∗1(u1 − θ∗T1 ω1) y1 = C0 x̄1 (14)

where ρ∗1 = 1
c∗1

. By defining the state tracking error x̃10 = x̄1 − x0 and the output error e10 = y1 − y0,
we obtain the error equation:

˙̃x10 = A0 x̃10 + B0ρ∗1 θ̃T
1 ω1 e10 = C0 x̃10 (15)

where θ̃1 = θ1 − θ∗1 .

Proof. To show analytically the asymptotic convergence of the synchronization error between the
leader and the model reference, let us define the following Lyapunov function:

V1(θ̃1, x̃10) =
x̃T

10Px̃10

2
+

θ̃T
1 Γ−1

1 θ̃1

2
|ρ∗1 | (16)

where P = PT > 0 such that

PA0 + AT
0 P = −qqT − vL PB0 = C0 (17)

where L = LT > 0, and v > 0. One can verify the time derivative of V1:

V̇1 = −
x̃T

10qqT x̃10

2
− v

2
x̃T

10Lx̃10 + PB0 x̃10ρ∗1 θ̃T
1 ω1 + θ̃T

1 Γ−1
1

˙̃θ1|ρ∗1 |. (18)

Since PB0 x̃10 = C0 x̃10 = e10 and ρ∗1 = |ρ∗1 |sgn(ρ∗1), we can delete the indefinite term by choosing

˙̃θ1 = −Γ1e10ω1sgn(ρ∗1) (19)

which leads to

V̇1 = −
x̃T

10qqT x̃10

2
− v

2
x̃T

10Lx̃10. (20)

From (20), we obtain that V1 has a finite limit, so x̃10, θ̃1 ∈ L∞. Because x̃10 = x̄1 − x̄0 ∈ L∞ and
x̄0 ∈ L∞, we have x̄1 ∈ L∞. This implies x1, y1, ω1, ω2 ∈ L∞. From u1 = θT

1 ω1 and θ1, ω1 ∈ L∞,
we have u1 ∈ L∞. Therefore, all signals in the closed-loop system are bounded. From (20), we can
establish that V̇1 has a bounded integral, so we have x̃10, e10 ∈ L2. Furthermore, using θ1, ω1, x̃10 ∈ L∞,
in (15), we have e10, ˙̃x10 ∈ L∞. This implies e10 → 0 for t→ ∞, which concludes the proof.

In relative degree 2 case (n∗ = 2), an extra filter is introduced to synchronize the agents with the
model reference. The extra-filter and the new form of the control law are defined as follows:

φ̇1 = −ρφ1 + ω1 θ̇1 = −Γ1e10φ1sgn(
k1

k0
) u1 = θT

1 ω1 + θ̇T
1 φ1 (21)

where ρ > 0 is to be designed. Using similar Lyapunov arguments as before, one can prove e10 → 0 for
t→ ∞ [21]. The complexity of the methods increases with the relative degree n∗ of the agent. In the
next subsection, the synchronization of Agent 2 to a leader node will be discussed.
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2.2. Synchronization of a Follower to a Neighbor

The control law (3) and consequently the matching condition (5) have two problems. The first
problem is that the transfer function G1 of the agents is unknown, and we do not know the l∗T1 , f ∗T1 , g∗1 ,
and c∗1 . The second problem is that, even if the transfer function were known, the control law (3)
would be implementable only for those agents connected to the reference model, Agent 0, and with
access to r. Therefore, we cannot implement the control law (3) for Agent 2. In place of the matching
condition between Agent 2 and Agent 0, we should formulate a matching condition between Agent 2
and Agent 1. The following proposition follows.

Proposition 1. There is an ideal control law that matches an agent to its neighbor in the form

u2 = l∗T21
α

Λ(s)
u1 + f ∗T21

α

Λ(s)
y1 + g∗21y1 + c∗21u1 + l∗T2

α

Λ(s)
(u2 − u1) + f ∗T2

α

Λ(s)
(y2 − y1) + g∗2(y2 − y1) . (22)

Proof. In this proof, we want to formulate the matching conditions for Agent 2 to Agent 1 by using
the proposed control law for Agent 2. First, let us rewrite the control law (22) as follows:

(1− l∗T2
α

Λ(s)
)u2 = (l∗21 − l∗2 )

T α

Λ(s)
u1 + ( f ∗21 − f ∗2 )

T α

Λ(s)
y1 + (g∗21 − g∗2)y1 + l∗2

α

Λ(s)
y2 + g∗2 y2 + c21u1

u2 =
(l∗21 − l∗2 )

Tαu1 + ( f ∗21 − f ∗2 )
Tαy1 + Λ(s)(g∗21 − g∗2)y1 + l∗2 αy2 + g∗2 y2Λ(s) + c21u1Λ(s)

(Λ(s)− l∗T2 α)
.

(23)

Substitute the control law in (23) to (2) and use the following matching condition of Agent 2 to
reference model

R2(s)(Λ(s)− l∗T2 α)− k2Z2(s)( f ∗T2 α + Λ(s)g∗2) = Z2(s)R0(s)Λ0(s) (24)

which leads to

(Z2(s)Λ0(s)R0(s))(y2 − y1) + (R2(s)(Λ(s)− l∗T2 α)− k2Z2(s)( f ∗T21 α + Λ(s)g∗21))y1 =

k2Z2(s)c∗21(Λ(s) +
l∗T21
c∗21

α−
l∗T2
c∗21

α)u1.
(25)

Then (25) can be written as follows:

R1(s)(Λ(s)− (l̄∗T2 − l̄∗T21 )α)− Z1(s)k2(( f ∗T2 − f ∗T21 )α + Λ(s)(g∗2 − g∗21)) = Z1(s)Λ0(s)R0(s) (26)

where c∗21 = k1
k2

, l̄∗21 =
l∗21
c∗21

, and l̄∗2 =
l∗2
c∗21

. This concludes the proof.

The parameters of Agent 2 are unknown, but we can come up with

u2 = lT
21

α
Λ(s)u1 + f T

21
α

Λ(s)y1 + g21y1 + c21u1 + lT
2

α
Λ(s) (u2 − u1) + f T

2
α

Λ(s) (y2 − y1) + g2(y2 − y1) (27)

where the controller parameter vector lT
21, lT

2 , f T
21, f T

2 , g21, g1, and c21 are the estimates for l∗T21 , l∗T2 ,
f ∗T21 , f ∗T2 , g∗21, g∗1 , and c∗21, respectively. Let us define the adaptive laws and the designed parameters
as follows

ω̇u1 = Fωu1 + du1 ω̇u21 = Fωu21 + d(u2 − u1) θ̇2 = −Γ2e21ω2sgn(
k2

k0
)

ω̇y1 = Fωy1 + dy1 ω̇y21 = Fωy21 + d(y2 − y1) u2 = θT
2 ω2

(28)

where e21 = y2 − y1.
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ω2 =



ωT
u1

ωT
y1

y1

u1

ωT
u21

ωT
y21

y2 − y1


F =

[
−λn−2 ... −λ0

In−2 0

]
d =


1
0
...
0

 θT
2 =

[
lT
21 f T

21 g21 c21 lT
2 f T

2 g2

]

Λ(s) = sn−1 + λn−2sn−2 + ... + λ1s + λ0 Γ2 = diag{Γl , Γ f , Γg, Γc, Γl , Γ f , Γg}

(29)

where Γl , Γ f , Γg, Γc are the positive real numbers to be designed. By using the proposed control law u2,
one can achieve the following result.

Proposition 2. Consider the reference model (1), with heterogeneous agents with unknown dynamics (2),
controllers (7) and (27), and adaptive laws (9) and (28). Then, all closed-loop signals are bounded and the errors
converge asymptotically to zero.

Proof. To show analytically the asymptotic converge of the synchronization error, the Lyapunov-based
approach will be used. First let us consider Agent 2 with dynamics

ẋ2 = A2x2 + B2u2 y2 = hT
2 x2. (30)

The closed-loop form allows us to write

˙̄x2 = Ā2 x̄2 + B̄2c∗21ū2 + B̄2(u2 − θ∗T2 ω2) y2 = C̄2 x̄2 (31)

where x̄2 =
[

xT
2 ωT

u1
ωT

y1
ωT

u21
ωT

y21

]T
and ū2 =

[
u1 y1

]T
.

Ā2 =


A2 + B2g∗2 hT

2 B2l∗T21 B2 f ∗T21 B2l∗T2 B2 f ∗T2
0 F 0 0 0

dhT
2 0 F 0 0

dg∗2 hT
2 dl∗21 d f ∗21 F + dl∗2 d f ∗2

dhT
2 0 0 0 F

 , B̄2 =



B2
B2(g∗21−g∗2 )

c∗21
d

c∗21
0

0 d
c∗21

d(1− 1
c∗21

)
d(g∗21−g∗2 )

c∗21

0 −−d
c∗21


C̄2 =

[
hT

2 0 0 0 0
]

.

(32)

From Equation (26), we already know that Agent 2 can match Agent 1 or it can be defined
as C̄2(sI − Ā2)

−1B̄2c∗21 = C̄1(sI − Ā1)
−1B̄1c∗1 . Therefore, Agent 2 can match the reference model

C̄2(sI − Ā2)
−1B̄2c∗21 = C0(sI − A0)

−1B0. We can then take a non-nominal state–space representation
of Agent 2:

˙̄x2 = A0 x̄2 + B0r + B0ρ∗2(u2 − θ∗T2 ω2) y2 = C0 x̄2 (33)

where ρ∗2 = 1
c∗21

. By defining the state tracking error x̃21 = x̄2 − x̄1, and the output error e21 = y2 − y1,
let us define the following error dynamics:

˙̃x21 = A0 x̃21 + B0ρ∗2(u2 − θ∗T2 ω2)

= A0 x̃21 + B0ρ∗2 θ̃∗T2 ω2

e21 = C0 x̃21

(34)
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where θ̃∗2 = θ2 − θ∗2 . By taking the Lyapunov function,

V2(θ̃2, x̃21) =
x̃T

21Px̃21

2
+

θ̃T
2 Γ−1

2 θ̃2

2
|ρ∗2 | (35)

where Γ2 = ΓT
2 > 0 and P = PT > 0 such that (17) holds. The time derivative (35) along the trajectory

of (34) is given by

V̇2 = −
x̃T

21qqT x̃21

2
− v

2
x̃T

21Lx̃21 + PB0 x̃21ρ∗2 θ̃T
2 ω2 + θ̃T

2 Γ−1
2

˙̃θ2|ρ∗2 |. (36)

Since PB0 x̃21 = C̄0 x̃21 = e21 and ρ∗2 = |ρ∗2 |sgn(ρ∗2), we can delete the indefinite term by choosing

˙̃θ2 = −Γ2e21ω2sgn(ρ∗2) (37)

which leads to

V̇2 = −
x̃T

21qqT x̃21

2
− v

2
x̃T

21Lx̃21. (38)

From (38), we obtain that V2 has a finite limit, so x̃21, θ̃2 ∈ L∞. Because x̃21 = x̄2 − x̄1 ∈ L∞

and x̄1 ∈ L∞, we have x̄2 ∈ L∞. This implies x2, y2, ωu1, ωy1, ωu21, ωy21,∈ L∞. From u2 = θT
2 ω2

and θ2, ω2 ∈ L∞, we have u2 ∈ L∞. Therefore, all signals in the closed-loop system are bounded.
From (38) we can establish that V̇2 has a bounded integral, so we have x̃21, e21 ∈ L2. Furthermore,
using θ2, ω2, x̃21 ∈ L∞ in (34), we have e21, ˙̃x21 ∈ L∞. This concludes the proof of the boundedness of
all closed-loop signals and convergence e21 → 0 for t→ ∞.

2.3. Synchronization of a Follower to Two Neighbors

Before giving the main result, it is necessary to deal with the case in which a follower
(called Agent 3) tries to synchronize two parent neighbors (called Agents 1 and 2). Let us assume
a directed connection from 1 to 3 and from 2 to 3. The digraph is described by N = {1, 2, 3},
E = {(1, 3), (1, 2), (2, 3)}.

Assumption 2. The communication graph is a directed acyclic graph (DAG), where the leader is the root node.

In addition, let us consider for simplicity an unweighted digraph, i.e., a12 = a13 = a23 = 1,
and the edges’ weights are equal to 1. The network under the consideration is presented in Figure 2.

Figure 2. A sample leader–follower directed communication graph with two followers.

We have Agent 3 denoted with subscript 3 and dynamics expressed in the transfer function form:

y3 = G3(s) = k3
Z3(s)
R3(s)

u3 (39)

where u3 ∈ R and y3 ∈ R are the input and the output of Agent 3. Z3(s) and R3(s) are unknown
monic polynomials, and k3 is a constant referred to the high frequency gains. Note that, possibly,
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Z3(s) 6= Z1(s), Z3(s) 6= Z2(s), and R3(s) 6= R1(s),R3(s) 6= R2(s) (heterogeneous agents with unknown
dynamics). We assume a directed connection from Agent 1 to Agent 3 and a directed connection from
Agent 2 to Agent 3. By using this configuration, Agent 3 can observe measurement from Agent 1 and
Agent 2, respectively, but not vice versa. By following an approach similar to that taken in the previous
subsection (cf. Proposition 2), the synchronization of Agent 3 to Agent 1 is possible via the controller.

u3 = lT
31

α

Λ(s)
u1 + f T

31
α

Λ(s)
y1 + g31y1 + c31u1 + lT

3
α

Λ(s)
u31 + f T

3
α

Λ(s)
e31 + g3e31

= θT
31ω31

(40)

and the synchronization of Agent 3 to Agent 2 is possible via the controller

u3 = lT
32

α

Λ(s)
u2 + f T

32
α

Λ(s)
y2 + g32y2 + c32u2 + lT

3
α

Λ(s)
u32 + f T

3
α

Λ(s)
e32 + g3e32

= θT
32ω32

(41)

where u31 = u3 − u1 and u32 = u3 − u2, and the output error e31 = y3 − y1, e32 = y3 − y2. In a more
compact form, the controller for Agent 3 can be defined as the addition of (40) and (41):

u3 = lT
31

α

2Λ(s)
u1 + f T

31
α

2Λ(s)
y1 +

g31y1

2
+

c31u1

2
+ lT

32
α

2Λ(s)
u2 + f T

32
α

2Λ(s)
y2 +

g32y2

2
+

c32u2

2

+ lT
3

α

2Λ(s)
u321 + f T

3
α

2Λ(s)
e321 +

g3e321

2

=
θT

3 ω3

2

(42)

where u321 = u31 + u32, e321 = e31 + e32, θ3 = θ31 + θ32, and ω3 = ω31 + ω32. We then derive the
adaptation law and the parameters to be designed for an agent with two parent neighbors as follows:

ω̇u1 = Fωu1 + du1 ω̇y1 = Fωy1 + dy1 ω̇u321 = Fωu321 + du321 θ̇3 = −Γ3e321ω3sgn(
k3

k0
)

ω̇u2 = Fωu2 + du2 ω̇y2 = Fωy2 + dy2 ω̇e321 = Fωe321 + de321 u3 =
θT

3 ω3

2
ωT

3 = [ωu1 ωy1 y1 u1 ωu2 ωy2 y2 u2 ωu321 ωe321 e321]

θT
3 = [lT

31 f T
31 g31 c31 lT

32 f T
32 g32 c32 lT

3 f T
3 g3]

F =

[
−λn−2 ... −λ0

In−2 0

]
dT =

[
1 0 . . . 0

]
Λ(s) = sn−1 + λn−2sn−2 + ... + λ1s + λ0 Γ3 = diag{Γl , Γ f , Γg, Γc, Γl , Γ f , Γg, Γc, Γl , Γ f , Γg}.

(43)

By using the proposed control law u3, the following result (which can be extended to general
DAG) holds.

Proposition 3. Consider the reference model (1), with the heterogeneous agents with unknown dynamics (2),
(39), controllers (7), (27), and (42), and adaptive laws (9), (28), and (43). Then, all closed-loop signals are
bounded and the errors converge asymptotically to zero. Using a similar approach as in [14], synchronization
can be extended to any DAG. The derivation is not provided due to a lack of space.

Proof. To show analytically the asymptotic convergence of the synchronization error, the Lyapunov-based
approach will be used. Let us define the dynamics error x̃31 = x̄3− x̄1, x̃32 = x̄3− x̄2, and x̃321 = x̄31 + x̄32.
Following the same approach in the previous section, let us derive the dynamics error e321:
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˙̃x321 = A0 x̃321 + B0ρ∗31(u3 − θ∗T31 ω31) + B0ρ∗32(u3 − θ∗T32 ω32)

= A0 x̃321 + 2B0ρ∗321θ̃∗T3 ω∗T3

e321 = C0 x̃321

(44)

where θ̃∗31 = θ31− θ∗31, θ̃∗32 = θ32− θ∗32, θ̃∗3 = θ̃∗31 + θ̃∗32, and ρ∗321 = ρ∗31 + ρ∗32. One can take the Lyapunov
function:

V3(θ̃3, x̃321) =
x̃T

321Px̃321

2
+

θ̃T
3 Γ−1

3 θ̃3

2
|ρ∗321| (45)

where Γ3 = ΓT
3 > 0 and P = PT > 0 such that (17) holds. The time derivative (45) along (44) is

given by

V̇3 = −
x̃T

321qqT x̃321

2
− v

2
x̃T

321Lx̃321 + PB0 x̃321ρ∗321θ̃T
3 ω3 + θ̃T

3 Γ−1
3

˙̃θ3|ρ∗321|. (46)

Since PB0 x̃321 = C0 x̃321 = e321 and ρ∗321 = |ρ∗321|sgn(ρ∗321), we can delete the indefinite term by
choosing

˙̃θ3 = θ̇3 = −Γ3e321ω3sgn(ρ∗321) (47)

which leads to

V̇3 = −
x̃T

321qqT x̃321

2
− v

2
x̃T

321Lx̃321. (48)

From (48), we obtain that V3 has a finite limit, so x̃321, θ̃3 ∈ L∞. Because x̃321 = x̄31 + x̄32,
x̃31 = x̄3 − x̄1 ∈ L∞, x̃32 = x̄3 − x̄2 ∈ L∞, x̄1 ∈ L∞, and x̄2 ∈ L∞, we have x̄3 ∈ L∞. This implies
x3, y3, ωu1, ωu2, ωy1, ωy2, ωu321, ωe321 ∈ L∞. From u3 = θT

3 ω3 and θ3, ω3 ∈ L∞, we have u3 ∈ L∞.
Therefore, all signals in the closed-loop system are bounded. From (48), we can establish that V̇3

has bounded integral, so we have x̃321, e321 ∈ L2. Furthermore, using θ3, ω3, x̃321 ∈ L∞ in (44),
we have e321, ˙̃x321 ∈ L∞. This concludes the proof of the boundedness of all closed-loop signals and
convergence e321 → 0 for t→ ∞.

3. Switching Topology of Multi-Agent Systems

In practice, communication losses between agents may occur. Here, the communication loss is
defined by a switching edge σ. If the switching edge is equal to zero, it means there is no communication
between Agent 1 and Agent 3, and vice versa. The time-varying communication between Agent 1 and
Agent 3 can change the network topology, which leads to different control structures in the form (42)
or (27). The network topology where communication loss may occur between Agent 1 and Agent 3 is
shown in Figure 3.

Figure 3. The adaptive leader–follower directed communication graph with a switching edge.
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In order to prove the stability of the switched system, one can rely on the Lyapunov-based
approach. In the case of Agent 3 with two parent neighbors, one can take the Lyapunov function
as follows:

V3(θ̃3, x̃321) =
x̃T

31Px̃31

2
+

x̃T
32Px̃32

2
+

θ̃T
3 Γ−1

3 θ̃3

2
|ρ∗321|. (49)

In the case of Agent 3 with one parent neighbor, one can take the Lyapunov function as follows:

V3(θ̃3, x̃32) =
x̃T

32Px̃32

2
+

θ̃T
3 Γ−1

3 θ̃3

2
|ρ∗32| (50)

where Γ3 = ΓT
3 > 0 and P = PT > 0 such that (17) holds. It is clear that the Lyapunov function is

not common to (49) and (50). This is because the Lyapunov function is influenced by the switching
topology. Using the result in [19,20], we know that there is a dwell time for which stability can be
derived. However, such a dwell time is unknown in the output-feedback case. Therefore, we conclude
this work by proposing an adaptive switching scheme and by evaluating its effectiveness in simulations.
The switching scheme resembles the multiple model adaptive control, e.g., as discussed in [22–24].
The switching adaptive controller that will be applied in this work is shown in Figure 4.

Here we have a free-running adaptive controller C3(σ = 0) for an agent with one parent neighbor
(Agent 2) and a reinitialized adaptive controller C3(σ = 1) for an agent with two parent neighbors
(Agent 1 and Agent 2). Then, let us define the adaptive controller parameter vectors θ3(σ = 1) and
θ3(σ = 0). Note that, if the switching edge is inactive, the θ3(σ = 1) value should be held at its last
value until the switching edge is active. Note also that θ3(σ = 0) is not affected by the switching edge
because it only depends on Agent 2. Consider that, if the switching edge is inactive, the measurement
of the input and the output of Agent 1 by Agent 3 are equal to zero.

Figure 4. Switching adaptive control of Agent 3.

4. Numerical Simulation

In line with [25,26], some simplified quadcopter dynamics are used as a numerical example.
The simplified quadcopter attitude dynamics is given as follows:

ψ̈ = I−1
y τψ (51)
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where ψ, Iy, and τψ are the yaw angle, the rotational moments of inertia on the y-axis, and the
rotating torque on yaw angle, respectively. The yaw angle output will be utilized to synchronize the
yaw angle for all the agents. The state–space representation of the quadcopter i with attitude dynamics:

ẋψi =

[
0 1
0 0

]
xψi +

[
0

I−1
yi

]
τψ

yψi =
[
1 0

]
xψi

(52)

where the state vector, xψi = [ψi, ψ̇i], comprises the yaw angle and the yaw rate, i ∈ {1, .., N},
where N is the total number of the quadcopter. Note that (52) has relative degree 2 (n∗ = 2). Index 1
indicates the leader quadcopter, which is the only quadcopter that has direct access to the reference
model. The reference model is indicated as fictitious Agent 0, which can communicate the reference
signal to Agent 1. The reference model dynamics in state–space formulation is given as follows:

ẋψ0 =

[
0 1
α1 α2

]
xψ0 +

[
0

I−1
y0

]
τψ

yψ0 =
[
1 0

]
xψ0

(53)

where the model reference parameters are taken as: α1 = −0.5, α2 = −1, Iy0 = 1, and the initial
condition of the reference model [ψi, ψ̇i] = [1,−1]. Each quadcopter has different and unknown
rotational moments of inertia Iy, and the initial state is also unknown. Therefore, the network is
composed of heterogeneous and unknown agents. Table 1 shows the parameters of each quadcopter
that are used only to simulate the network.

In the next subsection, we will illustrate the synchronization of the MAS based on output-feedback
MRAC with a fixed topology.

Table 1. Quadcopter parameters and initial conditions.

Iyi [ψi, ψ̇i]
Quadcopter 1 1 [1, 1]
Quadcopter 2 3 [−1, −1]
Quadcopter 3 2 [−1, 0]
Quadcopter 4 4 [0, 1]
Quadcopter 5 0.5 [1, 0]
Quadcopter 6 0.75 [−1, 1]

4.1. Multi-Agent Output-Feedback MRAC without Switching Topology

The simulations for multi-agent output-feedback MRAC with fixed topology are carried out
on the directed graph shown in Figure 5. The design parameters are taken as F = −0.7, ρ = 0.3,
and all coupling vector gains are initialized to be 0. Let us define the adaptive gain Γi for each agent i
as follows:

Γ1 = diag{Γl , Γ f , Γg, Γc}
Γ2 = Γ3 = Γ5 = Γ6 = diag{Γl , Γ f , Γg, Γc, Γl , Γ f , Γg}
Γ4 = diag{Γl , Γ f , Γg, Γc, Γl , Γ f , Γg, Γc, Γl , Γ f , Γg}

(54)

Γ have been selected to give a smooth response and acceptable input action where Γl = 0.2,
Γ f = 0.05, Γg = 0.1, and Γc = 0.025. In our case, two reference inputs are considered:
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1. a constant reference input with an amplitude of 1;
2. a sinusoidal reference input with a frequency of 0.2 rad/s and an amplitude of 1.

Figure 5. The Directed Communication Graph Output-Feedback Scheme for Fixed Topology

Figures 6 and 7 show the output response and input response of synchronization with a constant
reference input, and Figures 8 and 9 show the output response and input response of synchronization
with a sinusoidal reference input

Figure 6. Output response of output-feedback MRAC with a constant reference input.

Figure 7. Input response of output-feedback MRAC with a constant reference input.
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Figure 8. Output response of output-feedback MRAC with a sinusoidal reference input.

Figure 9. Input response of output feedback MRAC with a sinusoidal reference input.

It is observed that all outputs converge asymptotically to the output of the leader for constant
and sinusodal leader inputs, respectively. The following subsection will illustrate the synchronization
of the MAS with switching topology based on output-feedback MRAC.

4.2. Multi-Agent Output-Feedback MRAC with Switching Topology

The simulations for multi-agent output-feedback MRAC with switching topology are carried out
on the directed graph shown in Figure 10. The communication between Node 4 and Node 1 varies with
time, e.g., due to communication losses. It must be noted that Agent 4 only has one parent neighbor if
the edge is inactive and has two parents if the edge is active.

Figure 10. The directed communication graph output-feedback scheme with switching topology.
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The activity or inactivity of the edge is defined by the switching edge of Figure 10 (σ = 1, edge is
active and σ = 0, edge is inactive). The switching edge signal is shown in Figure 11. If the controller is
not switching, Agent 4 continues to use the controller for two neighbors instead of only one. Note that
the parameters of Agent 1 are equal to zero when there is no connection.

The design parameters and the reference inputs are the same as the design parameters and the
reference inputs in the previous subsection. The output response of synchronization with a constant
reference input and a sinusoidal reference input are shown in Figures 12 and 13, respectively.

It can be observed in Figures 12a and 13a that the output of Agent 4 does not converge to the
output of the leader, while in Figures 12b and 13b all the outputs converge asymptotically to the output
of the leader. It can be concluded that, in the case of switching topologies, the switching adaptive
controller must be implemented.

Figure 11. Switching edge σ.

(a) Agent 4 without a switching controller

(b) Agent 4 with a switching controller

Figure 12. Output response of the output-feedback MRAC with a constant input reference where the
controller is not switching (a) and the controller is switching (b).
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(a) Agent 4 without a switching controller

(b) Agent 4 with a switching controller

Figure 13. Output response of the output-feedback MRAC with a sinusoidal input reference where the
controller is not switching (a) and the controller is switching (b).

5. Conclusions

In this work, it was shown that the output synchronization of a heterogeneous MAS with unknown
dynamics can be achieved through output-feedback MRAC. New adaptive laws were formulated
for the controller parameter vector by using a matching condition assumption. In contrast with
standard MRAC, where the adaptive gain is scalar-valued, in this work, the adaptive gain is a diagonal
matrix. By using the proposed control law, the agents only require the output and the control input
of its neighbors. This approach provides much convenience in the design and application of MAS
synchronization because it does not require global information (e.g., the Laplacian matrix or algebraic
connectivity). In order to have the synchronization error converge asymptotically to zero and to achieve
bounded stability, a Lyapunov-based approach was derived analytically. In addition, a distributed
switching controller was proposed to handle communication losses that deteriorate the synchronized
response. Finally, numerical simulations were provided to validate the proposed method. It was
shown that the convergence of the synchronized response can be achieved for a network with fixed or
switching topologies.

Future work will include handling networks with possibly directed cycles; in the presence of
cycles or loops, we expect a specific condition to ensure the stability of the proposed approach.
The study of robustness in the presence of bounded disturbances could be an extension of the proposed
output-feedback MRAC. Another exciting research direction could consist in exploring the possibility
of handling system constraints (e.g., input constraints/actuator position saturation) for synchronization
of MASs [27,28]. Another avenue worth investigating is the extension to state/output synchronization
of nonlinear systems.
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