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Abstract: In this work, the analytical derivation and the computer implementation of the adjoint
method are described. The adjoint method can be effectively used for solving the optimal control
problem associated with a large class of nonlinear mechanical systems. As discussed in this
investigation, the adjoint method represents a broad computational framework, rather than a
single numerical algorithm, in which the control problem for nonlinear dynamical systems can
be effectively formulated and implemented employing a set of advanced analytical methods as
well as an array of well-established numerical procedures. A detailed theoretical derivation and a
comprehensive description of the numerical algorithm suitable for the computer implementation
of the methodology used for performing the adjoint analysis are provided in the paper. For this
purpose, two important cases are analyzed in this work, namely the design of a feedforward control
scheme and the development of a feedback control architecture. In this investigation, the control
problem relative to the mechanical vibrations of a nonlinear oscillator characterized by a generalized
Van der Pol damping model is considered in order to illustrate the effectiveness of the computational
algorithm based on the adjoint method by means of numerical experiments.

Keywords: adjoint method; nonlinear optimal control; open-loop control scheme; closed-loop control
scheme; nonlinear mechanical vibrations; generalized Van der Pol damping model

1. Introduction

This paper is focused on the development of an adjoint-based analytical and computational
framework for the optimal design of open-loop and closed-loop control laws suitable for controlling
nonlinear mechanical systems. In this section, background material, a concise literature review,
the formulation of the problem of interest for this study, the scope and the contributions of this
investigation, and the organization of the manuscript are provided.

1.1. Background and Significance

In different areas of structural and mechanical engineering, the study of the mechanical behavior
of dynamical systems having a nonlinear nature represents an important field of research [1,2].
As discussed in detail in the scientific literature, this problem is relevant especially in the case
of complex engineering systems in which the final design solution represents an engineering
approximation subjected to a certain degree of uncertainty [3–17]. In order to develop effective control
actions for controlling the dynamic evolution of a general nonlinear mechanical system, appropriate
formulation procedures and computational strategies are needed. Therefore, the first step necessary
for the development of a new control strategy for a given mechanical system is to construct a reliable
dynamic model of the system itself that is able to correctly capture its intrinsic nonlinear physics.
Afterward, the design problem concerning the development of a control strategy for the nonlinear
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mechanical system under consideration can be addressed using several approaches and methodologies
available in the literature. For example, the classical control methods are based on the linearization
of the dynamic equations of the mechanical system under examination. Such methods lead to a loss
of information on the complex nonlinear dynamic behavior and work properly only when the time
response of the mechanical system at hand evolves around a fixed point of the state space or in the
proximity of a prescribed trajectory. However, this is not the case of several mechanical systems
employed in engineering applications in which a fully nonlinear dynamic behavior is found and,
therefore, more complex control strategies are required.

1.2. Literature Review

In engineering applications, the analysis and the synthesis of machines and structures subjected
to nonlinear vibrations represent an important topic of research. Several different energy sources
can induce undesired mechanical vibrations of a given structural system, which, in turn, can
be dangerous for the system integrity and can lead to a progressive deterioration of the system
performance. Consequently, in numerous industrial applications, the vibration control problem
represents a fundamental issue. In order to solve this important problem, different analytical
approaches, computational methods, and experimental solutions have been extensively developed
and tested in recent years. For instance, the methods based on the State-Dependent Riccati
Equation (SDRE), the feedback linearization method, the sliding mode control approach, and
nonlinear control methods based on the control-Lyapunov function represent effective control
strategies suitable for solving the vibration control problem associated with a nonlinear mechanical
system [18–29]. Moreover, the vibration control problem is particularly challenging in the case of
rigid-flexible multibody mechanical systems. A multibody system is a special type of mechanical
system characterized by a set of rigid bodies, deformable components, kinematic joints, force
elements, force fields, electromechanical sensors, and control actuators [30–37]. Among the others,
mechanisms and machines, flexible robotic manipulators, ground vehicles, aerospace structures,
and biomechanical systems are examples of rigid-flexible multibody mechanical systems [38–43].
In order to solve the vibration control problem associated with a multibody mechanical system,
the correct analytical formulation and the consistent numerical solution of the equations of motion
represent a fundamental step of primary importance that is a current topic of research [44–51].
To this end, several multibody formulation approaches based on the finite element method have
been recently developed for modelling flexible continuum bodies that undergo large reference
displacements and large deformations [52–59]. In particular, the simple algorithms based on the
linearization of the dynamic equations are not suitable for controlling the nonlinear behavior of
a flexible multibody mechanical system and more advanced control approaches and numerical
procedures are required [60–65].

1.3. Formulation of the Problem of Interest for this Study

In order to face the challenges associated with the nonlinear control problem, the adjoint method
was originally devised in the field of computational fluid dynamics [66,67]. The adjoint method
represents a wide computational procedure, rather than a single method, in which the control
problem of nonlinear mechanical systems is analyzed by using the optimal control theory and an
approximate solution of the resulting set of differential-algebraic equations can be obtained employing
a broad variety of numerical procedures [68,69]. For this purpose, the discrete-time solution of
the continuous-time adjoint equations can be achieved by the formulation of a set of archetypical
sub-problems that can be treated with some mathematical techniques already developed and optimized
in the field of numerical analysis [70]. For example, the adjoint method for solving the nonlinear
optimal control problem has been applied in different engineering areas such as structural design and
shape optimization, structural mechanics, electromagnetics, fluid kinetics, and the stabilization of
business cycles of finance agents [71–74]. Since this process is not unique and, therefore, several valid
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options are available, there is the need for defining in a clear perspective the structure of the adjoint
method in order to facilitate the development of a more general computational framework in which
the adjoint equations can be effectively formulated and solved.

1.4. Scope and Contributions of this Investigation

The research presented in this work represents an attempt to address the important nonlinear
control problem by developing a general computational procedure based on the adjoint method.
For this purpose, this investigation is focused on a general adjoint-based approach that can be tested
in a virtual environment by means of dynamical simulations and can be subsequently implemented
in a control system based on the feedforward and feedback control paradigms. Thus, the purpose
of this paper is to use the analytical background to formulate the adjoint equations and, at the same
time, to propose a viable path that can be followed step-by-step for the numerical solutions of the
adjoint equations employing a reliable set of pre-established computational algorithms. On the other
hand, in order to demonstrate the effectiveness and the feasibility of the adjoint-based approach for
obtaining nonlinear control laws suitable for solving the optimal control problem for a general class
of mechanical systems, the vibration control problem of a nonlinear oscillator is considered in this
investigation as an illustrative example. As will be shown in future investigations, the nonlinear
control method developed in this paper can be extended to the class of multibody mechanical systems
by formulating and solving the adjoint equations for a differential-algebraic set of dynamic equations.

This paper is part of a wider research plan that deals with the use of analytical methods and
numerical techniques for solving the optimal control problem associated with the dynamic behavior of
nonlinear mechanical systems. In such regard, the adjoint equations are analytically formulated in this
work considering a general case of a nonlinear dynamical system. Afterward, an iterative procedure
for performing the nonlinear optimization of the desired control laws is developed in this investigation.
In the computational procedure elaborated in this study, the fourth-order explicit Adams–Bashforth
method is used for numerically solving the direct dynamic problem as well as the inverse adjoint
problem; the conjugate gradient method based on the Fletcher–Reeves numerical scheme is employed
in the formulation of the line search strategy for computing the minimum of the cost functional;
the golden section algorithm is implemented for bracketing the search interval of the minimum and for
computing the line parameter corresponding to the minimum of the cost function. As demonstrated
by using the numerical results obtained in the paper, the approach developed in this investigation
allows for deriving effective open-loop and closed-loop control actions.

1.5. Organization of the Manuscript

The structure of this manuscript can be summarized as follows. In Section 2, the analytical
derivation of the adjoint equations and their application to the optimal control problem are discussed.
In particular, the optimal design of control actions based the open-loop and closed-loop strategies
are analyzed in this section. In Section 3, the computational steps necessary for obtaining an optimal
numerical solution of the adjoint equations are illustrated in the case of a simple demonstrative example.
For this purpose, the problem of the vibration reduction of a nonlinear oscillator is considered in the
paper for demonstrating the computer implementation of the adjoint-based approach. In Section 4,
the summary of this investigation, the conclusions drawn in this paper, and some indications on the
future directions of research are provided.

2. Mathematical Background

In this section, background material on the analytical formulation of the adjoint equations is
reported. Subsequently, the principal steps for numerically solving the adjoint equations by means
of a general solution framework are described. In order to achieve this goal, two general cases are
considered. The first case is the design of an optimal open-loop controller, while the second case is the
design of an optimal closed-loop controller.
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2.1. Adjoint Equations for Constructing an Optimal Open-Loop Controller

In this subsection, the adjoint equations for the optimal construction of a feedforward control
action are discussed. A feedforward control action is an open-loop control law characterized by a set of
explicit functions of time [75,76]. In the case of the design of an optimal open-loop controller, consider
a system of n differential equations featuring a nonlinear structure that mathematically describes a
dynamical system:

ż = f, z(0) = z0, (1)

where t is the continuous time variable, z ≡ z(t) is a vector of dimension n that defines the system state,
z0 is a vector of dimension n denoting the initial conditions, f ≡ f(t, z, u, r) is a vector of dimension
n representing the system state function, u ≡ u(t) is a vector of dimension mu that stands for the
open-loop control action, and r ≡ r(t) is a vector of dimension mr representing the external inputs that
are uncontrollable. In the case of the derivation of an optimal open-loop controller, one can assume a
cost functional Ju defined as:

Ju =
∫ T

0
gdt + h(T), (2)

where T is a specified time horizon, h ≡ h(t, z) is called terminal cost function, and g ≡ g(t, z, u, r) is
referred to as the current cost function [77]. In the case of the design of an optimal open-loop controller,
one can introduce an augmented cost functional employing the mathematical expressions of the system
state-space equations of motion (1) and the cost functional (2) by means of an adjoining process as follows:

Ja
u =

∫ T

0

(
g + vT (f − ż)

)
dt + h(T), (3)

where v ≡ v(t) identifies the adjoint state vector. On the other hand, consider the Hamiltonian function
Hu ≡ Hu(t, z, u, r) defined as:

Hu = vTf + g. (4)

It can be proved that an optimal feedforward control action u∗ ≡ u∗(t) can be obtained in
correspondence of an unconstrained minimum of the Hamiltonian function [78]. To this end, one can write:

Ja
u =

∫ T

0

(
Hu − vT ż

)
dt + h(T). (5)

The augmented cost functional (3) can be rewritten employing the integration by parts process as:

Ja
u =

∫ T

0

(
Hu + v̇Tz

)
dt + h(T) + vT(0)z(0)− vT(T)z(T). (6)

The variation of the augmented cost functional (6) yields:

δJa
u =

∫ T

0

((∂Hu

∂z

)T
+ v̇

)T

δz +
∂Hu

∂u
δu

 dt +

((∂h
∂z

)T
− v

)T

δz

∣∣∣∣∣∣
t=T

+
[
vTδz

]∣∣∣
t=0

. (7)

One can considerably simplify the mathematical form of the first variation of the augmented cost
functional (7) by introducing the following definitions:

A =
∂f
∂z

, B =
∂f
∂u

, η =
∂h
∂z

, ϕ =
∂g
∂z

, ψ =
∂g
∂u

, (8)

where A ≡ A(t, z, u, r) is the state matrix of dimensions n × n obtained by linearizing the system
state function f around the current system state z, B ≡ B(t, z, u, r) is the input influence matrix of
dimensions n × mu obtained by linearizing the system state function f around the current open-loop
control action vector u, η ≡ η(t, z) is the perturbation vector having dimension n of the terminal cost
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function h referred to the system state z, ϕ ≡ ϕ(t, z, u, r) is the perturbation vector having dimension n
of the current cost function g referred to the system state z, and ψ ≡ ψ(t, z, u, r) is the perturbation
vector having dimension mu of the current cost function g referred to the open-loop control action
vector u. Therefore, the first variation of the augmented cost functional δJa

u can be rewritten as:

δJa
u =

(∫ T
0

(
ϕT + ATv + v̇

)Tdt
)

δz +
(∫ T

0

(
ψT + BTv

)Tdt
)

δu,

+
[(

ηT − v
)T

δz
]∣∣∣

t=T
+
[
vTδz

]∣∣
t=0 = 0.

(9)

Assuming that the system initial state z0 is fixed and considering a given time horizon T, the nonlinear
set of equations that identify an optimal feedforward controller can be derived as follows:

ż = f, z(0) = z0,

v̇ = −ATv −ϕT , v(T) = ηT(T),

BTv + ψT = 0.

(10)

The resulting set of differential-algebraic equations given by Equation (10) forms the adjoint
equations and constitutes a differential-algebraic nonlinear two-point boundary value problem
representing the necessary conditions associated with an optimal feedforward control action [79].

2.2. Adjoint Equations for Constructing an Optimal Closed-Loop Controller

In this subsection, the adjoint equations for the optimal derivation of a feedback control action are
illustrated. A feedback control action is a closed-loop control law characterized by an explicit function
of the system state [80,81]. In the case of the design of an optimal closed-loop controller, consider a
system of n differential equations having a nonlinear structure, which mathematically represents a
mechanical system:

ż = f, z(0) = z0, (11)

where t is the continuous time variable, z ≡ z(t) is a vector of dimension n that indicates the system
state, z0 is a vector of dimension n denoting the initial conditions, f ≡ f(t, z, u, r; γ) is a vector of
dimension n representing the system state function, u ≡ u(t, z; γ) is a vector of dimension mu that
describes the closed-loop control action defined in terms of a set of constant control parameters
grouped in the parameter vector γ having dimension mγ, and r ≡ r(t) is a vector of dimension mr

representing the external inputs that are uncontrollable. In the case of the construction of an optimal
closed-loop controller, one can consider a cost functional denoted with Jγ and defined as:

Jγ =
∫ T

0
gdt + h(T), (12)

where T is a given time interval, h ≡ h(t, z; γ) is referred to as the terminal cost function, and g ≡
g(t, z, u, r; γ) is called the current cost function [82]. In the case of the design of an optimal closed-loop
controller, one can define an augmented cost functional using the analytical forms of the system equations
of motion (11) and the cost functional (12) considering an adjoining process as follows:

Ja
γ =

∫ T

0

(
g + vT (f − ż)

)
dt + h(T), (13)

where v ≡ v(t) identifies the adjoint state vector. On the other hand, consider the Hamiltonian function
Hγ ≡ Hγ(t, z, u, r; γ) given by:

Hγ = vTf + g. (14)
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One can demonstrate that an optimal set of control parameters γ∗ associated with the feedback
controller corresponds to an unconstrained minimum of the Hamiltonian function [83]. For this
purpose, one can define:

Ja
γ =

∫ T

0

(
Hγ − vT ż

)
dt + h(T). (15)

The augmented cost functional (13) can be reformulated using the integration by parts rule as:

Ja
γ =

∫ T

0

(
Hγ + v̇Tz

)
dt + h(T) + vT(0)z(0)− vT(T)z(T). (16)

The variation of the augmented cost functional (16) produces:

δJa
γ =

∫ T

0

((∂Hγ

∂z

)T
+ v̇

)T

δz +
∂Hγ

∂γ
δγ

 dt +

((∂h
∂z

)T
− v

)T

δz

∣∣∣∣∣∣
t=T

+
[
vTδz

]∣∣∣
t=0

. (17)

One can substantially simplify the analytical form of the first variation of the augmented cost
functional (17) by introducing the following definitions:

A =
∂f
∂z

, B =
∂f
∂γ

, η =
∂h
∂z

, ϕ =
∂g
∂z

, ψ =
∂g
∂γ

, (18)

where A ≡ A(t, z, u, r; γ) is the state matrix of dimensions n × n obtained by linearizing the system
state function f around the current system state z, B ≡ B(t, z, u, r; γ) is the input influence matrix of
dimensions n × mγ obtained by linearizing the system state function f around the current closed-loop
control parameter vector γ, η ≡ η(t, z; γ) is the perturbation vector having dimension n of the terminal cost
function h referred to the system state z, ϕ ≡ ϕ(t, z, u, r; γ) is the perturbation vector having dimension n
of the current cost function g referred to the system state z, and ψ ≡ ψ(t, z, u, r; γ) is the perturbation
vector of dimension mγ of the current cost function g referred to the closed-loop control parameter vector
γ. Thus, the first variation of the augmented cost functional δJa

γ can be rewritten as follows:

δJa
γ =

(∫ T
0

(
ϕT + ATv + v̇

)Tdt
)

δz +
(∫ T

0

(
ψT + BTv

)Tdt
)

δγ

+
[(

ηT − v
)T

δz
]∣∣∣

t=T
+
[
vTδz

]∣∣
t=0 = 0.

(19)

Considering a given vector of initial conditions z0 and assuming a fixed time interval T,
the nonlinear set of equations that defines an optimal feedback controller can be obtained as follows:

ż = f, z(0) = z0,

v̇ = −ATv −ϕT , v(T) = ηT(T),

∫ T
0

(
BTv + ψT) dt = 0.

(20)

The resulting set of integro-differential-algebraic equations given by Equation (20) constitutes
the adjoint equations and forms an integro-differential-algebraic nonlinear two-point boundary value
problem representing the necessary conditions associated with an optimal feedback control action [84].

2.3. Iterative Adjoint-Based Computational Optimization Algorithm

In this subsection, the principal computational steps of the computer implementation of the adjoint
equations are described. To this end, a numerical method for the derivation of an optimal open-loop
controller as well as the construction of an optimal closed-loop control action are considered. In both the
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adjoint-based control optimization procedure and the adjoint-based parameter optimization procedure,
a line search approach is used for searching for the minimum of the cost functional that corresponds to
an optimal control law. For this purpose, in the case of the research of an optimal feedforward control
action, the following structure of the control input can be assumed for implementing the iterative line
search algorithm:

uk+1 = uk + ξkpk, (21)

where uk is the optimal control force vector at the iteration k, pk identifies the direction of the research
of the minimum, and ξk is a dimensionless parameter to be determined by means of a minimization
process. On the other hand, in the case of the research of an optimal feedback controller, one can write
in a similar way:

γk+1 = γk + ξkpk, (22)

where γk is the optimal control parameter vector at the iteration k. There are several useful strategies
available in the literature for selecting an optimal direction of research pk in the iterative minimization
algorithm [85]. For instance, considering the conjugate gradient method, one can assume the following
direction vector:

pk = −Gk−1 + βkpk−1, (23)

where the parameter βk can be found using the following formula based on the Fletcher–Reeves method:

βk =

(
Gk
)T

Gk(
Gk−1

)TGk−1
, (24)

where Gk denotes the gradient vector of the cost functional, which can be obtained from the third
equation of the systems (10) and (20), respectively, for an optimal feedforward and an optimal feedback
control scheme. The dimensionless parameter ξk, on the other hand, can be calculated using a standard
minimization procedure for one-dimensional functions preceded by a process of bracketing of the
interval in which a local minimum is collocated. In order to obtain the gradient of the cost functional
Gk at a given step k of the iterative procedure, one needs to solve the system equations of motion and,
subsequently, the system adjoint equations that represent the first two equations of the systems (10)
and (20). These two computational steps are respectively called solutions of the direct problem
and solution of the inverse problem. The complete process continues iteratively until a tolerance is
reached for the variation of the minimum of the cost functional obtained numerically. A schematic
representation of the iterative computational procedure used for solving the adjoint equations is
represented in Figure 1.

In Figure 1, ε denotes the tolerance set for the iterative minimization of the cost function Jk.
The computational procedure described in this subsection can be used for the computer implementation
the adjoint method, which leads to a numerical solution for an optimal open-loop controller and an
optimal closed-loop controller. In particular, the flowchart illustrated in Figure 1 describes the principal
steps necessary for the computer implementation of the adjoint approach. It is important to note that
all the computational steps of the adjoint-based iterative procedure can be implemented employing
standard numerical methods. For this purpose, the solution of both the direct and inverse problems can
be performed using the explicit and/or implicit Runge–Kutta algorithms as well as the explicit and/or
implicit linear multistep schemes. Several numerical methods are also suitable for obtaining the line
direction used in the search algorithm such as, for example, the simple steepest descent approach as
well as the more advanced conjugate gradient algorithms and the quasi-Newton methods. Furthermore,
both the bracketing of the minimum and the minimization of the cost function can be carried out
employing the Fibonacci search approach, the golden section search algorithm, and the Brent search
method. In this paper, on the other hand, the fourth-order explicit Adams–Bashforth method was
used for solving both the direct and the inverse problems, the conjugate gradient method based on
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the Fletcher–Reeves algorithm was employed for computing the gradient-based search direction at
each iteration of the minimization procedure, and the golden section approach was implemented
for accomplishing both the bracketing of the minimum and the minimization of the cost function.
As illustrated in the numerical result section of this investigation, the approach developed in this paper
produces feedforward and feedback control laws that are efficient and effective.

START 

Formulation of the 

adjoint equations: 

  1) FF Control 

  2) FB Control 

  

Inverse 

Problem 

Solution 

 

Line Direction 

Calculation 

?kJ 

STOP 

NO 

YES 

  

Direct 

Problem 

Solution 

 
  

Gradient 

Computation 

 

  

Bracketing 

 

  

Minimization 

 

  

Control 

Action 

Updating 

 

Figure 1. Adjoint iterative computational algorithm.

3. Numerical Results and Discussion

In this section, a demonstrative example is used for testing the effectiveness of the analytical
methods developed in this paper employing dynamical simulations. This section is also used for
illustrating the main steps of the numerical implementation of the adjoint-based approach. To this
end, the performance of the adjoint equations for the design of optimal feedforward and feedback
controllers are analyzed below.

3.1. Description of the Demonstrative Example

In this subsection, the demonstrative example considered as a case study is described. To this
end, consider the mechanical system represented in Figure 2.

x(t)

m
F(t)

k

a,b,c

Figure 2. Nonlinear mechanical oscillator.
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The mechanical system considered as a demonstrative example is a nonlinear oscillator with one
degree of freedom indicated with x ≡ x(t), where x represents the displacement of the point mass.
In Figure 2, m is the mass of the mechanical system, k represents the stiffness of the linear spring,
whereas a, b, and c denote the constant coefficients of the nonlinear damper. The mechanical oscillator
is connected to a nonlinear dashpot device based on the generalized Van der Pol damping model [86].
The force generated by the nonlinear damper is denoted with Fc ≡ Fc(t, x, ẋ) and is given by:

Fc = −c
(

ax2 + b
)

ẋ. (25)

The nonlinear device shown in Figure 2 is based on the generalized Van der Pol damping model
described by the force law given in Equation (25). Therefore, this component alternatively provides
and drains mechanical energy from the nonlinear oscillator leading to a limit cycle in the system
dynamical behavior. By using the analytical methods of classical mechanics, the nonlinear equation of
motion of the mechanical oscillator can be readily written as follows:

Fi + Fc + Fk + Fe = 0, (26)

where Fi = −mẍ is the inertia force, Fk = −kx represents the elastic force, and Fe = u denotes a control
force associated with a control actuator collocated on the mechanical oscillator. In this way, one can
explicitly rewrite the system equation of motion as:

mẍ + c
(

ax2 + b
)

ẋ + kx = u. (27)

In particular, two general cases are considered, namely a feedforward controller described by the
control action u ≡ u(t) and a feedback controller described by the control action u ≡ u(t, x, ẋ). In the
case of a pure open-loop controller, the control action is an arbitrary function of time. In the case of
a pure closed-loop controller, on the other hand, a simple linear structure is assumed for the control
action given by:

u = −γ1x − γ2 ẋ, (28)

where γ1 and γ2 are constant parameters defining the linear structure of the feedback controller, which
can be groped in a two-dimensional parameter vector γ as follows:

γ =

[
γ1

γ2

]
. (29)

Therefore, the feedback controller considered in this demonstrative example is based on the
proportional-derivative control scheme. In the dynamical simulations, the following set of initial
conditions is assumed for the nonlinear oscillator:{

x(0) = x0,
ẋ(0) = v0,

(30)

where x0 represents the initial displacement of the particle and v0 identifies the initial velocity of the
point mass. In particular, a nonzero initial displacement x0 and a zero initial velocity v0 are selected
for the nonlinear oscillator in order to set the initial configuration of the nonlinear system outside
the region of the limit cycle that appear in the state-space diagram. Consequently, when there is no
control action applied to the dynamical system, its spontaneous evolution is towards the limit cycle.
The numerical data employed for performing the dynamical simulations are reported in Table 1.

Furthermore, in the numerical solution of the dynamic equation that describes the motion of the
nonlinear oscillator, the dynamical simulations are performed considering a time interval equal to
T = 30 (s) and a time step equal to ∆t = 10−2 (s). The numerical integration scheme employed for the
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numerical solution of the dynamic equation is the well-known fourth-order Adams–Bashforth method
that represents a classical multistep explicit numerical integration algorithm.

Table 1. Nonlinear oscillator numerical parameters.

Description Symbols Data (Units)

System Mass m 1 (kg)
Spring Stiffness k 2 (kg · s−2)

Damper First Coefficient a 1 (m−2)
Damper Second Coefficient b −1 (−)
Damper Third Coefficient c 0.3 (kg · s−1)

Initial Displacement x0 4 (m)
Initial Velocity v0 0 (m · s−1)

3.2. Development of an Open-Loop Optimal Controller

In this subsection, the development of an optimal controller based on a feedforward control
strategy is carried out for the nonlinear oscillator used as a demonstrative example employing the
adjoint-based control optimization method. To this end, one can define a state vector for the mechanical
oscillator given by:

z =

[
z1

z2

]
=

[
x
ẋ

]
. (31)

By doing so, in the case of the design of an optimal open-loop controller, the equations of motion
and the initial conditions can be represented in the state-space as follows:

ż = f,

z(0) = z0,
(32)

where f denotes the system state function and z0 identifies the vector of initial conditions that are
respectively defined in the case of an open-loop control action as follows:

f =

[
z2

− k
m z1 − c

m
(
az2

1 + b
)

z2 +
1
m u

]
, z0 =

[
x0

v0

]
. (33)

In the case of an open-loop control architecture, the sensitivity matrices A and B can be readily
calculated by evaluating the Jacobian matrices of the system state function f as follows:

A =
∂f
∂z

=

[
0 1

− k
m − 2 c

m az1z2 − c
m
(
az2

1 + b
) ] , (34)

B =
∂f
∂u

=

[
0
1
m

]
, (35)

where A and B denote respectively the state matrix and the input influence matrix obtained by
linearizing the system state function f around the current system state z and the current open-loop
control force u. The open-loop controller is a feedforward control scheme. The goal of the feedforward
control action is to reduce the magnitude of the mechanical vibrations of the nonlinear oscillator
without using an excessive amount of external energy associated with the control actuator. For this
purpose, the terminal cost function h and the current cost function g can be simply constructed
employing the following quadratic forms:
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h =
1
2

zTQTz =
1
2

QT,1z2
1 +

1
2

QT,2z2
2, (36)

g =
1
2

zTQzz +
1
2

uTQuu =
1
2

Qz,1z2
1 +

1
2

Qz,2z2
2 +

1
2

Quu2, (37)

where QT , Qz, and Qu are diagonal matrices that define the weights of the terminal cost function
h and the structure of the current cost function g. The numerical data used for the entries of the
weight matrices necessary for the design of the optimal feedforward controller are QT,1 = QT,2 = 1,
Qz,1 = Qz,2 = 5, and Qu = 1. Considering the analytical definitions of the terminal cost function h and
of the current cost function g, one can readily determine the sensitivity vectors η, ϕ, and ψ associated
with the feedforward controller as follows:

η =
∂h
∂z

=
[

QT,1z1 QT,2z2

]
, (38)

ϕ =
∂g
∂z

=
[

Qz,1z1 Qz,2z2

]
, (39)

ψ =
∂g
∂u

= Quu, (40)

where η is the perturbation vector of the terminal cost function h referred to the system state z, ϕ is the
perturbation vector of the current cost function g referred to the system state z, and ψ is the perturbation
vector of the current cost function g referred to the open-loop control vector u. Employing the sensitivity
matrices and vectors defined before, the adjoint equations for the optimal design of a feedforward
controller are analytically implemented and numerically solved by using a computer program developed
in MATLAB (R2013a version). The initial guess for the feedforward control action used in the control
optimization algorithm based on the adjoint approach is u0 = sin(t). Figure 3 shows the time law of the
optimal feedforward control force resulting from the iterative numerical solution of the adjoint equations.
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Figure 3. Optimal feedforward controller.

Figure 4a,b respectively show the displacement and velocity time histories relative to the
mechanical oscillator used for testing the performance of the feedforward control action.
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(a) Oscillator displacement.
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(b) Oscillator velocity.

Figure 4. Uncontrolled motion (dashed line) and feedforward controlled motion (solid line).

In Figure 4a,b, the dashed lines represent the time responses of the nonlinear oscillator when
the control action is absent, whereas the solid lines represent the time responses of the mechanical
oscillator when the optimal feedforward controller is active. The state-space representation of the
dynamic evolution of the mechanical oscillator subjected to the action of the open-loop controller is
shown in Figure 5.

-5 0 5
Displacement (m)

-5

0

5

V
el

oc
ity

 (
m

/s
)

Figure 5. Uncontrolled state-space trajectory (dashed line) and feedforward controlled state-space
trajectory (solid line).

In Figure 5, the dashed line represents the time response of the nonlinear oscillator when
the open-loop control action is absent, whereas the solid line represents the time response of the
mechanical oscillator when the optimal open-loop controller is active. As shown in Figures 4 and 5,
the feedforward control action represented in Figure 3 leads to a substantial attenuation of the
mechanical vibrations of the nonlinear oscillator. In order to quantify the reduction of the mechanical
vibrations, the Root-Mean-Square (RMS) deviations of the dynamical responses from the zero reference
trajectory are computed with and without the action of the feedforward controller and the numerical
results obtained are reported in Table 2.

Table 2 shows that the optimal open-loop control action obtained by using the control optimization
procedure based on the adjoint approach effectively yields the desired vibration suppression.
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Table 2. Performance of the Optimal Feedforward Controller.

Uncontrolled Motion RMS Controlled Motion RMS Relative Reduction

Displacement 1.5752 0.6681 57.59 %

Velocity 2.0819 0.4525 78.25 %

3.3. Development of a Closed-Loop Optimal Controller

In this subsection, the development of an optimal controller based on a feedback control strategy
is performed for the nonlinear oscillator used as a demonstrative example employing the adjoint-based
parameter optimization method. For this purpose, one can define a state vector for the mechanical
oscillator given by:

z =

[
z1

z2

]
=

[
x
ẋ

]
. (41)

By doing so, in the case of the design of an optimal closed-loop controller, the equations of motion
and the initial conditions can be rewritten in the state-space as follows:

ż = f,

z(0) = z0,
(42)

where f identifies the system state function and z0 denotes the vector of initial conditions that are
respectively defined in the case of a closed-loop control action as follows:

f =

[
z2

− 1
m (k + γ1) z1 − 1

m
(
c
(
az2

1 + b
)
+ γ2

)
z2

]
, z0 =

[
x0

v0

]
. (43)

In the case of a closed-loop control architecture, the sensitivity matrices A and B can be easily
derived by evaluating the Jacobian matrices of the system state function f as follows:

A =
∂f
∂z

=

[
0 1

− 1
m (k + γ1)− 2 1

m caz1z2 − 1
m
(
c
(
az2

1 + b
)
+ γ2

) ] , (44)

B =
∂f
∂γ

=

[
0 0

− 1
m z1 − 1

m z2

]
, (45)

where A and B indicate respectively the state matrix and the input influence matrix obtained by
linearizing the system state function f around the current system state z and the current parameter
vector γ that defines the structure of the closed-loop controller. The closed-loop controller is a feedback
control scheme. The objective of the feedback control action is to reduce the entity of the mechanical
vibrations of the nonlinear oscillator without using a large amount of external energy associated with
the control actuator. To this end, the terminal cost function h and the current cost function g can be
readily defined employing the following quadratic forms:

h =
1
2

zTQTz =
1
2

QT,1z2
1 +

1
2

QT,2z2
2, (46)

g =
1
2

zTQzz +
1
2

uTQuu =
1
2

Qz,1z2
1 +

1
2

Qz,2z2
2 +

1
2

Qu(γ1z1 + γ2z2)
2, (47)

where QT , Qz, and Qu are diagonal matrices that describe the structure of the terminal cost function
h and the weights of the current cost function g. The numerical data used for the entries of the
weight matrices necessary for the design of the optimal feedback controller are QT,1 = QT,2 = 1,
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Qz,1 = Qz,2 = 5, and Qu = 1. Assuming the mathematical definitions of the terminal cost function
h and of the current cost function g, one can readily determine the sensitivity vectors η, ϕ, and ψ

associated with the feedback controller as follows:

η =
∂h
∂z

=
[

QT,1z1 QT,2z2

]
, (48)

ϕ =
∂g
∂z

=
[

Qz,1z1 + Qu (γ1z1 + γ2z2) γ1 Qz,2z2 + Qu (γ1z1 + γ2z2) γ2

]
, (49)

ψ =
∂g
∂γ

=
[

Qu (γ1z1 + γ2z2) z1 Qu (γ1z1 + γ2z2) z2

]
, (50)

where η is the perturbation vector of the terminal cost function h referred to the system state z, ϕ is
the perturbation vector of the current cost function g referred to the system state z, and ψ is the
perturbation vector of the current cost function g referred to the parameter vector γ that defines the
structure of the closed-loop controller. By using the sensitivity matrices and vector described above,
the adjoint equations for the optimal design of a feedback controller are analytically implemented
and numerically solved employing a computer program developed in MATLAB. The initial guess for
the feedback control parameters used in the parameter optimization algorithm based on the adjoint
approach are γ0

1 = 1 and γ0
2 = 1. Figure 6 shows the time law of the optimal feedback control force

resulting from the iterative numerical solution of the adjoint equations.
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Figure 6. Optimal feedback controller.

The optimal feedback controller represented in Figure 6 corresponds to the following optimal
vector of control parameters γ∗ obtained by means of the numerical implementation of the parameter
optimization procedure based on the adjoint approach:

γ∗ =
[

γ∗
1 γ∗

2

]T
=
[

1.753 3.010
]T

. (51)

Figure 7a,b respectively show the displacement and velocity time histories relative to the
mechanical oscillator used for testing the performance of the feedback control action.

In Figure 7a,b, the dashed lines represent the time responses of the nonlinear oscillator when the
control action is absent, whereas the solid lines represent the time responses of the mechanical oscillator
when the optimal feedback controller is active. The state-space representation of the dynamic evolution of
the mechanical oscillator subjected to the action of the closed-loop controller is shown in Figure 8.
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(a) Oscillator displacement.
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(b) Oscillator velocity.

Figure 7. Uncontrolled motion (dashed line) and feedback controlled motion (solid line).
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Figure 8. Uncontrolled state-space trajectory (dashed line) and feedback controlled state-space
trajectory (solid line).

In Figure 8, the dashed line represents the time response of the nonlinear oscillator when
the closed-loop control action is absent, whereas the solid line represents the time response of the
mechanical oscillator when the optimal closed-loop controller is active. As shown in Figures 7 and 8,
the feedback control action represented in Figure 6 leads to a considerable mitigation of the mechanical
vibrations of the nonlinear oscillator. In order to quantify the reduction of the mechanical vibrations,
the Root-Mean-Square (RMS) deviations of the dynamical responses from the zero reference trajectory
are computed with and without the action of the feedback controller and the numerical results obtained
are reported in Table 3.

Table 3. Performance of the Optimal Feedback Controller.

Uncontrolled Motion RMS Controlled Motion RMS Relative Reduction

Displacement 1.5752 0.6525 58.58 %

Velocity 2.0819 0.4752 77.16 %

Table 3 shows that the optimal closed-loop control action obtained by using the parameter
optimization procedure based on the adjoint approach effectively produces the requested
vibration attenuation.
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4. Conclusions

The research of the authors is mainly focused on the development and the improvement of
analytical methods and computational procedures for the nonlinear dynamic analysis of mechanical
systems, for performing the experimental parameter identification of structural systems, and for
the design of effective control strategies applicable to multibody systems [87–90]. For this purpose,
the relationship between three different disciplines are exploited, namely the theory of nonlinear
control, the numerical methods of applied system identification, and the analytical techniques of
multibody system dynamics [91–95].

This work represents a study on the analytical derivation and the computer implementation
of the adjoint method. The adjoint method can be effectively employed for constructing optimal
control actions suitable for solving the regulation and tracking problems of a large class of nonlinear
dynamical systems. In particular, the numerical solution of the nonlinear control problem addressed
in this investigation is focused on two adjoint-based control methodologies. To this end, the iterative
adjoint-based control algorithms discussed in this paper lead to the development of a nonlinear control
optimization procedure and to the construction of a nonlinear parameter optimization procedure.
The analytical derivation and the numerical implementation of the adjoint-based computational
algorithms are illustrated in detail in this work. Furthermore, a demonstrative example is used in
this paper for proving the effectiveness of the proposed method employing numerical experiments.
For this purpose, the vibration control problem of the nonlinear oscillations of a mechanical system
characterized by a generalized Van der Pol damping model is considered. The numerical results
presented in the paper show that both the optimal feedforward and feedback controllers designed
employing the proposed adjoint-based approach lead to a large reduction of the mechanical vibrations
of the nonlinear oscillator that serves as a simple illustrative example.

In the field of nonlinear control, several complex algorithms have been developed in the recent
years such as, for example, the methods based on the State-Dependent Riccati Equation (SDRE),
the feedback linearization method, the sliding mode control approach, and nonlinear control methods
based on the control-Lyapunov function. In general, the design of a nonlinear controller is a challenging
task that may require the use of an iterative procedure, which cannot be directly implemented in
real-time. This is also the case of the adjoint method developed in this investigation. However, for all
the nonlinear control methods mentioned before, the underlying idea is that the development of a given
control law can be performed offline by means of dynamical simulations. Subsequently, the control
strategy developed employing extensive dynamical simulations can be implemented and tested online
in a particular engineering application using an experimental test rig. By doing so, the computational
complexity of the selected control strategy does not represent an issue because this calculation is
performed only in advance in a virtual environment, which allows also to test the robustness and the
effectiveness of the nonlinear control design. This concept is well-known in the control engineering
community and represents one of the fundamental motivations behind the development of this
investigation. Therefore, the nonlinear control method proposed in this paper is effectively applicable
for solving actual engineering problems.

An important consideration that is worth emphasizing herein is the focus on the combined use of
a feedforward control law with a feedback control strategy. This concept is another key idea commonly
used in the control engineering community for the development of nonlinear controllers. Following
this approach, an open-loop controller is at first designed employing a nonlinear dynamical model
of a mechanical system that is the object of the control problem. Afterward, a closed-loop controller
is designed in order to cope with the uncertainties of the model, the unavoidable presence of noise,
and the incomplete measurement information on the state of the dynamical system. This approach
represents a robust control paradigm that is widely accepted and used for nonlinear control applications
and this paper is based on this background idea. Furthermore, this investigation proposes a complex
control algorithm that can be tested on simple dynamical systems in order to allow other researchers
to reproduce the numerical results proposed in the paper and compare the performance of the
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adjoint-based approach with the effectiveness of other viable control strategies.
An additional important aspect of the optimal control problem associated with nonlinear

mechanical systems concerns the process noise and the measurement uncertainties arising from
the interaction between the mechanical system and the external world modelled as a stochastic
environment. This challenging problem directly involves the use of a state estimator referred to as
an observer. This complex scenario can be handled with the methodology proposed in the paper
in conjunction with the mathematical tools of the modern optimal estimation and control theory.
To this end, the adjoint-based procedure can be effectively used to derive optimal control actions
for a nominal model of the mechanical system under examination. Subsequently, the nonlinear
behavior of the mechanical system can be linearized around the operational trajectory obtained from
the control action applied to the nominal system. Thus, an optimal controller together with an optimal
observer can be designed using the linearized dynamical model. For this purpose, several control and
estimation algorithms can be employed considering the linearized dynamical model. For example,
the Linear-Quadratic-Gaussian (LQG) control and estimation method based on the Kalman filtering
technique can be employed in order to effectively accomplish this task. By doing so, an optimal
compensation controller can be obtained in order to adjust the difference in the dynamical behavior
of the nominal dynamic model with respect to the actual mechanical system on which the controller
is implemented. Following this alternative approach suitable for handling practical engineering
problems, the combination of the nominal controller designed employing the adjoint-based procedures
with the compensation controller obtained using the LQG technique can lead to a robust control
strategy capable of coping with the power limit in the actuators, the presence of noise in the system
process and in the measurements, and the lack of information on the system state.

This paper represents a step further in a wider research plan devised by the authors and focused
on the use of the optimization approach for solving the nonlinear control problem in the case of the
dynamic behavior of mechanical systems. Future research efforts will be devoted to the development
of effective adjoint-based nonlinear control actions for differential-algebraic dynamical systems,
such as the multibody mechanical systems, by using advanced analytical techniques tested employing
numerical simulations. Moreover, the experimental validation of the numerical results obtained for
attenuating the nonlinear mechanical vibrations of complex dynamical systems commonly employed
in engineering applications such as machines and structures will be performed in future investigations.
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