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Abstract: In model order reduction and system theory, the cross-gramian is widely applicable.
The cross-gramian based model order reduction techniques have the advantage over conventional
balanced truncation that it is computationally less complex, while providing a unique relationship
with the Hankel singular values of the original system at the same time. This basic property of
cross-gramian holds true for all symmetric systems. However, for non-square and non-symmetric
dynamical systems, the standard cross-gramian does not satisfy this property. Hence, alternate
approaches need to be developed for its evaluation. In this paper, a generalized frequency-weighted
cross-gramian-based controller reduction algorithm is presented, which is applicable to both symmetric
and non-symmetric systems. The proposed algorithm is also applicable to unstable systems even if
they have poles of opposite polarities and equal magnitudes. The proposed technique produces an
accurate approximation of the reduced order model in the desired frequency region with a reduced
computational effort. A lower order controller can be designed using the proposed technique, which
ensures closed-loop stability and performance with the original full order plant. Numerical examples
provide evidence of the efficacy of the proposed technique.
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1. Introduction

The practical systems that occur in nature are mostly represented by higher order mathematical
models. The analysis required for these large-scale systems to design and implement a controller is
cumbersome because the controller design methods yield controllers of order at least equal to the
original system, if not greater. Model order reduction (MOR) techniques simplify this problem by
constructing a reduced order model (ROM), which enables a reduced order controller design for higher
order plants that is practically feasible for implementation [1].

Moore [2] presented a MOR technique based on an internally balanced state-space realization of
the full order model (FOM). The controllability and observability gramians of a balanced state-space
realization are equal and diagonal. Each state in a balanced realization is equally controllable
and observable. The ROM in balanced truncation is then obtained by discarding the weakly
controllable and observable states. Balanced realization only exists if the original FOM is stable and
minimal. For non-minimal systems or even systems with nearly uncontrollable or unobservable states,
the computation of balanced realization suffers ill-conditioning [3,4]. Resultantly, the approximation
error in balanced truncation is increased if the system is close to non-minimality. This numerical

Machines 2019, 7, 48; doi:10.3390/machines7030048 www.mdpi.com/journal/machines

http://www.mdpi.com/journal/machines
http://www.mdpi.com
http://dx.doi.org/10.3390/machines7030048
http://www.mdpi.com/journal/machines
https://www.mdpi.com/2075-1702/7/3/48?type=check_update&version=2


Machines 2019, 7, 48 2 of 18

difficulty in balanced truncation can be avoided by using a balancing free algorithm [4] based on
Schur-decomposition, which does not require the original system to be minimal and constructs an
approximate balanced-realization of FOM.

The cross-gramian has been the focus of many researchers in MOR and system theory for
large-scale systems where computational complexity and simulation time is a challenge. Since its
inception by Fernando and Nicholsen [5], for stable single-input-single-output (SISO) systems, many
questions arose for its applicability towards practical systems, which may be multi-input-multi-output
(MIMO) (symmetric and non-symmetric), and/or even unstable systems. This has opened new avenues
for the calculation of a more general cross-gramian. Laub, Silverman, and Verma [6] and Fernando [7]
extended the cross-gramian for symmetric MIMO systems. The cross-gramian introduced in [6,7] can
only be computed for symmetric systems. The property that makes cross-gramian useful in MOR is
that it contains conjoined information of both controllability and observability gramian. Thus, two
Lyapunov Equations that define the controllability and observability gramians can be replaced with a
single Sylvester Equation and thus the computational cost can significantly be reduced [8]. There also
exists some methods in the literature that expand the scope of cross-gramian to non-symmetric systems
such as [9–12]. Aldhaheri in Reference [13] presented a cross-gramian-based algorithm for finding
Moore’s balanced realization [2] ROM, which does not require the original system to be minimal.
However, this algorithm is restricted to SISO and symmetric MIMO systems.

Generally, two approaches are used to design a lower order controller for a full order plant:
Plant reduction and compensator reduction [14]. In plant reduction, an ROM of the original full
order plant is obtained using MOR techniques such that if a lower order controller is designed for the
reduced plant, it satisfies the closed-loop performance criteria with the full order plant. In compensator
reduction, first, a higher order controller is designed for the full order plant and then MOR is applied to
obtain a reduced order controller which satisfies the closed-loop performance criteria with the original
plant. The compensator reduction approach is more accurate than the plant reduction approach,
and hence it is preferred [15]. Plant reduction requires some knowledge of the controller to be designed
in advance for its implementation. Since the approximation is done before the controller design,
its accuracy is inferior to compensator reduction, wherein both the plant and controller are known
before the reduction. However, in situations where it is difficult or impossible to design a controller for
a high order plant beforehand, plant reduction is a good design tool. Despite the importance of plant
reduction, it has been mostly ignored in the control system literature. In power system literature, it is
customary to reduce the plant before designing a damping controller to mitigate inter-area oscillations,
however, most of the researchers completely ignore the closed-loop performance in the reduction
process; see References [16–18] for an instance. This is against the motivation of both the plant and
compensator reduction as a lower order controller cannot be obtained by simply picking any MOR
technique and applying it to the plant/controller. A MOR technique that incorporates the closed-loop
performance in its reduction criteria is feasible for the plant/compensator reduction.

Various closed-loop performance criteria can be written as frequency-weighted approximation
criteria. Enns in [19] generalized Moore’s balanced truncation [2] and presented frequency-weighted
balanced truncation (FWBT) by introducing frequency weights which ensures the accuracy of ROM
over the frequency range emphasized by the frequency weights. FWBT can thus be used for both plant
and compensator reduction problems. Later, Zulfiqar proposed a frequency-weighted cross-gramian
based FWBT algorithm for SISO system in Reference [8]. This algorithm is applicable to non-minimal
systems as well. A common issue in plant/compensator reduction is that frequency weights, which
define the closed-loop performance criteria, become unstable if the plant has transmission zeros in the
right half of the s-plane. Both the algorithms of FWBT in References [19] and [8] only work if both the
plant and the frequency weights are stable. This limits their applicability to many plant/compensator
reduction problems.

As mentioned earlier, plant reduction did not get its due coverage in the literature despite being
an important problem. Recently, a cross-gramian -based plant reduction algorithm is presented in
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Reference [20], which is less computational than Enns’ plant reduction algorithm (EPRA) [19]. The
algorithm has also shown quicker convergence than Reference [19] and it is less prone to ill-conditioning
due to the use of cross-gramian for the reasons discussed earlier in this section. This algorithm, however,
is only applicable to stable SISO systems. In this paper, we generalize this algorithm to extend its
applicability to a wide range of systems. We propose a unifying framework that extends the applicability
of the algorithm in Reference [20] to the stable, unstable, symmetric, and non-symmetric MIMO systems.
The unifying framework is based on the developments made in the literature to extend the definition of
cross-gramian for non-symmetric MIMO systems and unstable systems. We generalize the definition
of frequency-weighted cross-gramian given in Reference [8] to include the aforementioned classes
of systems.

The paper is organized as follows. Section 2 provides the necessary background and survey of
the cross-gramian, frequency-weighted model reduction, and controller reduction problem. Section 3
presents the main results of the paper. Section 4 shows the experimental results and comparisons.
Section 5 discusses the results obtained, whereas Section 6 concludes the paper.

2. Preliminaries

Consider a continuous time full order stable system

.
x(t) = Agx(t) + Bgu(t)

y(t) = Cgx(t) + Dgu(t)

The transfer function (TF) can be represented as

G(s) = Cg
(
sI −Ag

)−1
Bg + Dg

where Ag ∈ Rn×n, Bg ∈ Rn×m, Cg ∈ Rp×n, Dg ∈ Rp×m.

2.1. Cross-Gramian for Symmetric Systems

It is assumed that the system is square and symmetric i.e., GT(s) = G(s), and the number of inputs
(m) is equal to the number of the outputs (p). The controllability Cc, observability Oo and cross Zco

gramians [5] are defined as

Cc =

∫
∞

0
eAgτBgBT

g eAT
gτdτ, Oo =

∫
∞

0
eAT

gτCT
g CgeAgτdτ, Zco =

∫
∞

0
eAgτBgCgeAgτdτ (1)

which satisfy the following respective Lyapunov and Sylvester Equations:

AgCc + CcAT
g + BgBT

g = 0, AT
g Oo + OoAg + CT

g Cg = 0, AgZco + ZcoAg + BgCg = 0 (2)

For SISO and symmetric MIMO systems, the cross-gramian possess a unique relation [5] with
Hankel singular values σi of the original system

Z2
co = CcOo∣∣∣λi(Zco)

∣∣∣ = √
λi(CcOo) = σi (3)

where i = 1, 2, . . . , n. This property holds true for all SISO systems because all SISO systems are
symmetric. However, for non-symmetric MIMO systems, the above property does not hold in general.
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2.2. Cross-Gramian for Non-Symmetric Systems

The non-symmetric MIMO systems are an important category of control systems. Many physical
dynamical systems are non-symmetric in nature. The problem with such systems is that they do not
preserve the basic property of cross-gramian defined in Equation (3). In the literature, many extensions
exist to broaden the scope of cross-gramian for non-symmetric systems [9–12]. There is some abuse in
the usage of mathematical variables in the following subsections. However, the context clearly shows
the difference.

2.2.1. Symmetrizer Based Approach

The symmetrizer -based approach [10,11,21] finds an approximate cross-gramian for
non-symmetric systems. The idea is based on finding a symmetrizer [21] U = UT to embed a
non-square or non-symmetric square system into a symmetric system [10,11]. The relation between U
and the state system matrix is given by AgU = UAT

g . The augmented system obtained from embedding
is given by
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The approximate cross-gramian is then defined as 

𝑍௖௢ = න 𝑒஺೒௧𝐵෰𝐶ም𝑒஺೒௧ஶ
଴ 𝑑𝑡  

which satisfies the following Sylvester Equation 𝐴௚𝑍௖௢ + 𝑍௖௢𝐴௚ + 𝐵෰𝐶ም = 0 (5) 

This approximate cross-gramian does not satisfy the basic property (3) but approximates it. 

2.2.2. Average Cross-Gramian Using System Decomposition  

A non-symmetric MIMO system can be partitioned into SISO systems based on the concepts of 
decentralized control to compute an average cross-gramian for these systems [12]. Let the state-space 
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and 𝐶௚ = [𝑐ଵ 𝑐ଶ ⋯ 𝑐௣]், where 𝑐௟ ∈ ℝଵ×௡ and 𝑙 = 1,2, ⋯ , 𝑝.  

Definition 1. The average cross-gramian is the sum of all 𝑚 × 𝑝 SISO subsystem’s cross gramians. 

𝑍෰௖௢ = ෍ ෍ 𝑍௖௢௞௟௣
௟ୀଵ

௠
௞ୀଵ   

𝑍෰௖௢ satisfies the following Sylvester Equation 

𝐴𝑍෰௖௢ + 𝑍෰௖௢𝐴 + ෍ 𝑏௞௠
௞ୀଵ ෍ 𝑐௟௣

௟ୀଵ = 0 (6) 

2.3. Enns’ FWBT 

In this subsection, Enns’ FWBT [19] technique is discussed. Define the input and output weights 
as 

Wതതത௜(𝑠) =  𝐶௣(𝑠𝐼 − 𝐴௣)ିଵ𝐵௣ + 𝐷௣  and  Wതതത௢(𝑠) =  𝐶௤(𝑠𝐼 − 𝐴௤)ିଵ𝐵௤ + 𝐷௤ (7) 
respectively. The objective of frequency-weighted MOR (FWMOR) problem is to find a ROM 𝐺̅௟(s) 𝐺̅௟(𝑠) = 𝐶̅௟(𝑠𝐼 − 𝐴̅௟)ିଵ𝐵ത௟ + 𝐷ഥ௟ (8) 
of order 𝑟 ≪ 𝑛 such that (9) is small. ฮWതതത௢(𝑠)൫𝐺(𝑠) − 𝐺̅௟(𝑠)൯Wതതത௜(𝑠)ฮஶ (9) 

Let the augmented system 𝐺(𝑠)Wതതത௜(𝑠) and Wതതത௢(𝑠)𝐺(𝑠) be represented as 

(4)

The approximate cross-gramian is then defined as

Zco =

∫
∞

0
eAgtB̆C̆eAgtdt

which satisfies the following Sylvester Equation

AgZco + ZcoAg + B̆C̆ = 0 (5)

This approximate cross-gramian does not satisfy the basic property (3) but approximates it.

2.2.2. Average Cross-Gramian Using System Decomposition

A non-symmetric MIMO system can be partitioned into SISO systems based on the concepts of
decentralized control to compute an average cross-gramian for these systems [12]. Let the state-space
matrices of a MIMO system

(
Ag, Bg, Cg, Dg

)
with m-inputs and p-outputs be decomposed as

Bg =
[

b1 b2 · · · bm
]
, where bk ∈ Rn×1 and k = 1, 2, · · · , m

and
Cg =

[
c1 c2 · · · cp

]T
, where cl ∈ R1×n and l = 1, 2, · · · , p.

Definition 1. The average cross-gramian is the sum of all m× p SISO subsystem’s cross gramians.

Z̆co =
m∑

k=1

p∑
l=1

Zkl
co

Z̆co satisfies the following Sylvester Equation

AZ̆co + Z̆coA +
m∑

k=1

bk

p∑
l=1

cl = 0 (6)
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2.3. Enns’ FWBT

In this subsection, Enns’ FWBT [19] technique is discussed. Define the input and output weights as

Wi(s) = Cp
(
sI −Ap

)−1
Bp + Dp and Wo(s) = Cq

(
sI −Aq

)−1
Bq + Dq (7)

respectively. The objective of frequency-weighted MOR (FWMOR) problem is to find a ROM Gl(s)

Gl(s) = Cl
(
sI −Al

)−1
Bl + Dl (8)

of order r� n such that (9) is small.

‖Wo(s)
(
G(s) −Gl(s)

)
Wi(s)‖∞ (9)

Let the augmented system G(s)Wi(s) and Wo(s)G(s) be represented as

G(s)Wi(s) = Ĉi
(
sI − Âi

)−1
B̂i + D̂i and Wo(s)G(s) = Ĉo

(
sI − Âo

)−1
B̂o + D̂o (10)

where  Âi B̂i

Ĉi D̂i

 =


Ag BgCp BgDp

0 Ap Bp

Cg DgCp DgDp

 and

 Âo B̂o

Ĉo D̂o

 =


Aq BqCg BqDg

0 Ag Bg

Cq DqCg DqDg


The controllability and observability gramians of the augmented systems are defined as

Pic =

[
Pe P12

PT
12 Pv

]
, Q jo =

[
Qw QT

12
Q12 Qe

]
which satisfy the following Lyapunov Equations:

ÂiPic + PicÂT
i + B̂iB̂T

i = 0 (11)

ÂT
o Q jo + Q joÂo + ĈT

o Ĉo = 0 (12)

The blocks of Equations (11) and (12) corresponding to Ag can be written as

AgPe + PeAT
g + BgCpPT

12 + P12CT
p BT

g + BgDpDT
p BT

g = 0 (13)

AT
g Qe + QeAg + CT

g BT
q QT

12 + Q12BqCg + CT
g DT

q DqCg = 0 (14)

The transformation matrix T f is computed as T−1
f PeT−T

f = TT
f QeT f = diag

{
σ1, σ2,..., σn

}
where

σg ≥ σg+1 and g = 1, 2, . . . , n − 1. Here σg are the frequency-weighted Hankel singular values. The
transformed state-space realization becomes

{Atr, Btr, Ctr, Dtr} =
{
T−1

f AgT f , T−1
f Bg, CgT f , Dg

}
(15)

Atr =

[
Al A12

A21 A22

]
, Btr =

[
Bl
B2

]
, Ctr =

[
Cl C2

]
(16)

where
{
Al, Bl, Cl, Dg

}
is the ROM of G(s).
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2.4. Cross-Gramian Based FWMOR

In [20], a frequency-weighted cross-gramian based MOR algorithm is presented for SISO systems
which requires only the solution of one Sylvester Equation instead of two Lyapunov Equations. The
algorithm is less computational than Enns’ FWBT and the ROM is as accurate as obtained from FWBT.
Let the augmented system Wo(s)G(s)Wi(s) be represented with the following state-space realization
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2.4. Cross-Gramian Based FWMOR 

In [20], a frequency-weighted cross-gramian based MOR algorithm is presented for SISO 
systems which requires only the solution of one Sylvester Equation instead of two Lyapunov 
Equations. The algorithm is less computational than Enns’ FWBT and the ROM is as accurate as 
obtained from FWBT. Let the augmented system Wതതത௢(𝑠)𝐺(𝑠)Wതതത௜(𝑠) be represented with the following 
state-space realization 

൤𝐴௔௨௚ 𝐵௔௨௚𝐶௔௨௚ 𝐷௔௨௚൨ = ⎣⎢⎢⎢
⎡ 𝐴௚ 𝐵௚𝐶௣ 0 𝐵௚𝐷௣0 𝐴௣ 0 𝐵௣𝐵௤𝐶௚ 𝐵௤𝐷௚𝐶௤ 𝐴௤ 𝐵௤𝐷௚𝐷௣𝐷௤𝐶௚ 𝐷௤𝐷௚𝐶௤ 𝐶௤ 𝐷௤𝐷௚𝐷௣⎦⎥⎥⎥

⎤
 (17) 

The cross-gramian of the augmented system 𝑍௔௨௚ satisfies the following Sylvester Equation 𝐴௔௨௚𝑍௔௨௚ + 𝑍௔௨௚𝐴௔௨௚ + 𝐵௔௨௚𝐶௔௨௚ = 0 (18) 𝑍௔௨௚ can be partitioned according to the state-space realization in Equation (17) as 

𝑍௔௨௚ = ቎𝑍̅௖௢ 𝑍ଵଶ 𝑍ଵଷ𝑍ଶଵ 𝑍௣ 𝑍ଶଷ𝑍ଷଵ 𝑍ଷଶ 𝑍௤ ቏  

The frequency-weighted cross-gramian 𝑍̅௖௢ solves the following Sylvester Equation 𝐴௚𝑍̅௖௢ + 𝑍̅௖௢𝐴௚ + 𝐵௚𝐶௣𝑍ଶଵ + 𝑍ଵଷ𝐵௤𝐶௚ + 𝐵௚𝐷௣𝐷௤𝐶௚ = 0 (19) 

The similarity transformation in frequency-weighted cross-gramian based FWMOR is computed 
as 𝑇௙ି ଵ𝑍̅௖௢𝑇௙ = 𝑑𝑖𝑎𝑔{𝜎തଵ, ⋯ , 𝜎ത௡} where 𝜎ത are the eigenvalues of the 𝑍̅௖௢, which are directly related to the 
frequency-weighted Hankel singular values. The original system (𝐴௚, 𝐵௚, 𝐶௚, 𝐷௚) is thus transformed 
using the similarity transformation 𝑇௙ and then truncated to obtain an ROM, as in FWBT. 

(17)

The cross-gramian of the augmented system Zaug satisfies the following Sylvester Equation

AaugZaug + ZaugAaug + BaugCaug = 0 (18)

Zaug can be partitioned according to the state-space realization in Equation (17) as

Zaug =


Zco Z12 Z13

Z21 Zp Z23

Z31 Z32 Zq


The frequency-weighted cross-gramian Zco solves the following Sylvester Equation

AgZco + ZcoAg + BgCpZ21 + Z13BqCg + BgDpDqCg = 0 (19)

The similarity transformation in frequency-weighted cross-gramian based FWMOR is computed
as T−1

f ZcoT f = diag{σ1, · · · , σn} where σ are the eigenvalues of the Zco, which are directly related to the

frequency-weighted Hankel singular values. The original system
(
Ag, Bg, Cg, Dg

)
is thus transformed

using the similarity transformation T f and then truncated to obtain an ROM, as in FWBT.

3. Main Work

In this section, we present a plant reduction algorithm based on the frequency-weighted
cross-gramian. A brief version of this algorithm appeared in [20] wherein it was only applicable to
SISO systems that are stable. In this paper, we present a unifying framework to extend the applicability
of the algorithm to unstable and/or non-symmetric systems. The proposed plant reduction algorithm is
also an iterative algorithm like EPRA [19], but it converges faster than EPRA. The proposed algorithm is
less computational as it uses cross-gramian based FWMOR instead of FWBT. It is also computationally
more stable as cross-gramian based FWMOR is less prone to ill-conditioning particularly when the
system is non-minimal or nearly non-minimal. Moreover, the proposed algorithm can also handle
unstable plants. Since the compensator reduction is more accurate than the plant reduction, we propose
to reduce the order of plant in the plant reduction only to an extent that the controller design package
can easily handle this reduced plant. The controller obtained may still be of a high order, but this
can be further reduced with much accurate compensator reduction. It is evident from the simulation
results in Section 4 that the controller obtained with this hybrid approach yields a better loop shape
despite being compact.

Consider a stable realization of the full order plant of order n

P(s) = C(sI −A)−1B + D
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where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The objective is to find a controller Kr(s) of order
r (r� n) such that some closed-loop performance criterion with P(s) is achieved. Let Pr(s) be an rth

1
order ROM of the full order plant P(s) such that r1 is low enough for the controller design package to
handle. Let K(s) be a stabilizing controller designed for Pr(s) and the closed-loop TF with Pr(s) and
K(s) is given by

Ĥl,r(s) = Pr(s)K(s)[I + Pr(s)K(s)]
−1 (20)

The closed-loop system Ĥl (s) with P(s) and K(s) can be represented as in Figure 1 where

δ(s) = P(s) − Pr(s)

and
Ĥl(s) = P(s)K(s)[I + P(s)K(s)]−1 (21)

Machines 2019, 7, 6 of 24 

Machines 2019, 7 www.mdpi.com/journal/machines 

3. Main Work 

In this section, we present a plant reduction algorithm based on the frequency-weighted  

cross-gramian. A brief version of this algorithm appeared in [20] wherein it was only applicable to 

SISO systems that are stable. In this paper, we present a unifying framework to extend the 

applicability of the algorithm to unstable and/or non-symmetric systems. The proposed plant 

reduction algorithm is also an iterative algorithm like EPRA [19], but it converges faster than EPRA. 

The proposed algorithm is less computational as it uses cross-gramian based FWMOR instead of 

FWBT. It is also computationally more stable as cross-gramian based FWMOR is less prone to  

ill-conditioning particularly when the system is non-minimal or nearly non-minimal. Moreover, the 

proposed algorithm can also handle unstable plants. Since the compensator reduction is more 

accurate than the plant reduction, we propose to reduce the order of plant in the plant reduction only 

to an extent that the controller design package can easily handle this reduced plant. The controller 

obtained may still be of a high order, but this can be further reduced with much accurate compensator 

reduction. It is evident from the simulation results in Section 4 that the controller obtained with this 

hybrid approach yields a better loop shape despite being compact. 

Consider a stable realization of the full order plant of order 𝑛 

𝑃(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷  

where 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, 𝐶 ∈ ℝ𝑝×𝑛, 𝐷 ∈ ℝ𝑝×𝑚 . The objective is to find a controller 𝐾𝑟(𝑠) of order 

𝑟 (𝑟 ≪ 𝑛) such that some closed-loop performance criterion with 𝑃(𝑠) is achieved. Let 𝑃𝑟(𝑠) be an 𝑟1
𝑡ℎ 

order ROM of the full order plant 𝑃(𝑠) such that 𝑟1 is low enough for the controller design package 

to handle. Let 𝐾(𝑠) be a stabilizing controller designed for 𝑃𝑟(𝑠) and the closed-loop TF with 𝑃𝑟(𝑠) 

and 𝐾(𝑠) is given by 

𝐻̂𝑙,𝑟(𝑠) = 𝑃𝑟(𝑠)𝐾(𝑠)[𝐼 + 𝑃𝑟(𝑠)𝐾(𝑠)]−1 (20) 

The closed-loop system 𝐻̂𝑙 (𝑠) with 𝑃(𝑠) and 𝐾(𝑠) can be represented as in Figure 1 where 

𝛿̅(𝑠) = 𝑃(𝑠) − 𝑃𝑟(𝑠)  

and 

𝐻̂𝑙(𝑠) = 𝑃(𝑠)𝐾(𝑠)[𝐼 + 𝑃(𝑠)𝐾(𝑠)]−1 (21) 

 

Figure 1. Block diagram of closed-loop system 𝐻̂𝑙(𝑠) [20]. 

According to the stability robustness theorem [14], 𝐾(𝑠) is also a stabilizing controller for 𝑃(𝑠) if 

either 𝐸̅3 or 𝐸̅4 is satisfied, i.e., 

𝐸̅3 = ‖[𝐼 + 𝐾(𝑠)𝑃𝑟  (𝑠)]
−1 𝐾(𝑠)𝛿̅(𝑠)‖

∞
< 1 

or 

𝐸̅4 = ‖𝛿̅(𝑠)𝐾(𝑠)[𝐼 + 𝑃𝑟  (𝑠)𝐾(𝑠)]−1‖
∞

< 1 

It is evident from 𝐸̅3 and 𝐸̅4 that plant reduction is a FWMOR problem, i.e., 

𝐸̅3 = ‖W̅̅̅𝑜(𝑠)[𝑃(𝑠) − 𝑃𝑟(𝑠)]W̅̅̅𝑖(𝑠)‖∞
 and 𝐸̅4 = ‖W̅̅̅𝑜(𝑠)[𝑃(𝑠) − 𝑃𝑟(𝑠)]W̅̅̅𝑖(𝑠)‖∞

 

with the following frequency weights 

W̅̅̅𝑜(𝑠) = [𝐼 + 𝐾(𝑠)𝑃𝑟(𝑠)]
−1𝐾(𝑠), W̅̅̅𝑖(𝑠) = 𝐼 and W̅̅̅𝑖(𝑠) = 𝐾(𝑠)[𝐼 + 𝑃𝑟(𝑠)𝐾(𝑠)]−1, 

W̅̅̅𝑜(𝑠) = 𝐼 
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According to the stability robustness theorem [14], K(s) is also a stabilizing controller for P(s) if
either E3 or E4 is satisfied, i.e.,

E3 = ‖[I + K(s)Pr (s)]
−1 K(s)δ(s)‖

∞
< 1

or
E4 = ‖δ(s)K(s)[I + Pr (s)K(s)]

−1
‖∞ < 1

It is evident from E3 and E4 that plant reduction is a FWMOR problem, i.e.,

E3 = ‖Wo(s)[P(s) − Pr(s)]Wi(s)‖∞ and E4 = ‖Wo(s)[P(s) − Pr(s)]Wi(s)‖∞

with the following frequency weights

Wo(s) = [I + K(s)Pr(s)]
−1K(s), Wi(s) = I and Wi(s) = K(s)[I + Pr(s)K(s)]

−1, Wo(s) = I

respectively. Since Wi(s) and Wo(s) depend both on Pr(s) and K(s) which are not known a priori,
some mathematical manipulation is required to incorporate them in the approximation criteria of
MOR procedure. The loop shaping controller design procedures help in removing the dependence on
K(s) because the loop TF Li(s) or Lo(s) is known a priori, i.e., Li(s) = K(s)Pr(s) or Lo(s) = Pr(s)K(s).
Consider E3 first, and E4 can be done similarly by analogy. Let the desired closed-loop TF for the
loop shaping be U(s) = [I + Li(s)]

−1Li(s) = [I + K(s)Pr(s)]
−1K(s)Pr(s). Wo(s) can be represented

independently of K(s) as Wo(s) = U(s)P−1
r (s).

The weight Wo(s) still depends on Pr(s) which is not known a priori, and thus the plant reduction
problem under consideration becomes an iterative problem. Pr(s) is initialized with P(s) initially and
the reduced plant is obtained using cross-gramian based FWMOR. If P(s) has transmission zeros
in the right half of the s-plane, Wo(s) becomes unstable, and the frequency-weighted cross-gramian
cannot be computed for (A, B, C, D) even if P(s) is a SISO system. Similarly, if P(s) is unstable,
the frequency-weighted cross-gramian cannot be computed for (A, B, C, D) even if P(s) is a SISO
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system. Inspired by References [22] and [23], we generalize the computation of frequency-weighted
gramians for unstable systems. Let the state-space realizations of Wo(s) and Wo(s)P(s) be

Wo(s) = Cq
(
sI −Aq

)−1
Bq + Dq

Wo(s)P(s) = Ĉo
(
sI − Âo

)−1
B̂o + D̂o (22)
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If
(
Âo, B̂o

)
is stabilizable, a symmetric matrix Xy exists which solve the following Riccati Equation

XyÂo + Âo
TXy −XyB̂oB̂T

o Xy = 0 (23)

Xy can be partitioned according to Âo, i.e.,

Xy =

[
Xy,11 Xy,12

Xy,21 Xy,22

]
.

Define Ao,n and As as

Ao,n = Âo − B̂oB̂oXy =

[
∗ ∗

∗ As

]
=⇒ As = A− BBTXy,12 − BDTBT

q Xy,22 (24)

when A and Aq are Hurwitz, Âo is Hurwitz and Xy = 0. However, when A and/or Aq are
not Hurwitz, Âo is not Hurwitz, but Ao,n is Hurwitz. Now there can be two cases, i.e., either
(Ao,n, B̂o, Ĉo, D̂o) is a symmetric or a non-symmetric system. If (Ao,n, B̂o, Ĉo, D̂o) is a symmetric system,
the frequency-weighted cross-gramian Zco for the realization (A, B, C, D) of P(s) can be computed by
solving the following Sylvester Equation

Ao,n

[
∗ ∗

∗ Zco

]
+

[
∗ ∗

∗ Zco

]
Ao,n + B̂oĈo = 0 (25)

where Zco is the block of (25) corresponding to As.
If (Ao,n, B̂o, Ĉo, D̂o) is a non-symmetric system, the frequency-weighted cross-gramian can be

obtained by either using the symmetrizer based approach of [10,11] or decentralized control based
approach of [12]. Consider the symmetrizer-based approach first and let the eigenvalue decomposition
of Ao,n be Ao,n = J Λ J−1. Then, the frequency-weighted cross-gramian Zco for the realization (A, B, C, D)

of P(s) can be computed by solving the following Sylvester Equation

Ao,n

[
∗ ∗

∗ Zco

]
+

[
∗ ∗

∗ Zco

]
Ao,n + B̌oČo = 0 (26)

where B̌o =
[

JĈT
o B̂o

]
and Čo =

 Ĉo

B̂T
o J−1

.
If Ao,n is not diagonalizable, the above-mentioned approach may not work. In that case,

the decentralized control-based approach can be used to obtain the frequency-weighted cross-gramian
Zco, which solves the following Sylvester Equation

Ao,n

[
∗ ∗

∗ Zco

]
+

[
∗ ∗

∗ Zco

]
Ao,n +

=
Bo

=
Co = 0 (27)
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where
=
Bo and

=
Co are the sums of the columns and rows of B̂o and Ĉo, respectively.

Let Tm be the transformation matrix, which diagonalizes Zco such that eigenvalues are arranged
according to their magnitude in descending order on the principal diagonal, i.e.,

T−1
m ZcoTm = MT =

[
MT11 0

0 MT22

]
(28)

where MT11 is an r1 × r1 matrix and MT22 is an (n− r1)× (n− r1) matrix. Tm and T−1
m can be partitioned

as follows, i.e.,

T−1
m =

[
Q11

Q21

]
and Tm =

[
R11 R12

]
The ROM Pr(s) of P(s) can be computed as Pr(s) = Cr1

(
sI −Ar1

)−1
Br1 + D where

Ar1 = Q11AR11, Br1 = Q11B, and Cr1 = CR11 (29)

such that Ar1 ∈ Rr1×r1 , Br1 ∈ Rr1×m, Cr1 ∈ Rp×r1 .
If E3 < 1, then Pr(s) is the desired ROM of the plant. If not, then Wo(s) is set as Wo(s) = U(s)P−1

r (s)
and the above process is repeated. E3 may become unbounded if the plant and/or weight are unstable.
In that case, E3 should be decomposed into stable and unstable part using additive decomposition, and
E3 < 1 is checked using its stable part. Once Pr(s) is obtained which ensures that E3 < 1, a controller K(s)
is designed for Pr(s) using any loop shaping procedure such that the loop shape i.e., Li(s) = K(s)Pr(s)
is achieved. K(s) thus achieved is a stabilizing controller for both P(s) and Pr(s).

A rth order ROM Kr(s) (r� n) of K(s) can be found such that Kr(s) has the same number of
poles in the open right half plane as K(s) and (K(s) −Kr(s)) is bounded on the imaginary axis. The
closed-loop system Hl,r(s) with P(s) and Kr(s) is shown in Figure 2 where

δ(s) = Kr(s) −K(s)

and
Hl,r(s) = P(s)Kr(s)[I + P(s)Kr(s)]

−1 (30)
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𝑇𝑚
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Kr(s) is also a stabilizing controller for P(s) if

E5 = ‖[K(s) −Kr(s)]Ŵi(s)‖∞ < 1 or E6 = ‖Ŵo(s)[K(s) −Kr(s)]‖∞ < 1

where
Ŵi(s) = P(s)[I + K(s)P(s)]−1 and Ŵo(s) = [I + P(s)K(s)]−1P(s)

Again, the compensator reduction is a FWMOR problem, and thus K(s) can be reduced using
cross-gramian -based FWMOR. Let’s take E6 < 1 first, and E5 < 1 can be achieved on similar lines by
analogy. Let K(s) and Ŵo(s) be represented as the following state-space realizations, i.e.,

K(s) = Ck
(
sI −Ak

)−1
Bk + Dk and Ŵo(s) = Ĉh

(
sI − Âh

)−1
B̂h + D̂h
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respectively. The augmented system is defined by

Ŵo(s)K(s) = Co
(
sI −Ao

)−1
Bo + Do

[
Ao Bo

Co Do

]
=


Âh B̂hCk

0 Ak

B̂hDk

Bk

Ĉh D̂hCk D̂hDk


If

(
Ao, Bo, Co, Do

)
is a symmetric system, its cross-gramian Ẑo solves the following Sylvester Equation

AoẐo + ẐoAo + BoCo = 0

Ẑo can be partitioned according to Ak, and the frequency-weighted Zkco can be extracted from Ẑo as the
block corressponding to Ak in Ẑo, i.e.,

Ẑo =

 Ẑ11 Ẑ12

Ẑ21 Zkco

.
moreover, Zkco solves the following Sylvester Equations

AkZkco + ZkcoAk + Ẑ21B̂hCk + BkD̂hCk = 0 (31)

AkẐ21 + Ẑ21Âh + BkĈh = 0 (32)

Again, if
(
Ao, Bo, Co, Do

)
is a non-symmetric system, the frequency-weighted cross-gramian can

be obtained by either using the symmetrizer based approach of [10,11] or decentralized control
based approach of [12]. Consider the symmetrizer-based approach first and let the eigenvalue
decomposition of Ao be Ao = Jk Λk J−1

k . Then the frequency-weighted cross-gramian Zkco for the

realization
(
Ak, Bk, Ck, Dk

)
of K(s) can be computed by solving the following Sylvester Equation

Ao

 Ẑ11 Ẑ12

Ẑ21 Zkco

+  Ẑ11 Ẑ12

Ẑ21 Zkco

Ao + B̌koČko = 0 (33)

where B̌ko =
[

JkC
T
o Bo

]
and Čko =

 Co

B
T
o J−1

k

.
If Ak is not diagonalizable, the above-mentioned approach may not work. In that case,

the decentralized control-based approach can be used to obtain the frequency-weighted cross-gramian
Zkco, which solves the following Sylvester Equation

Ao

 Ẑ11 Ẑ12

Ẑ21 Zkco

+  Ẑ11 Ẑ12

Ẑ21 Zkco

Ao +
=
Bko

=
Cko = 0 (34)

where
=
Bko and

=
Cko are the sums of the columns and rows of Bo and Co, respectively.

Let Tk be the transformation matrix, which diagonalizes Zkco such that eigenvalues are arranged
according to their magnitude in descending order on the principal diagonal, i.e.,

T−1
k ZkcoTk = M̂T =

 M̂T11 0
0 M̂T22

 (35)
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where M̂T11 is an r× r matrix. Tk and T−1
k can be partitioned as follows:

T−1
k =

 Q̂11

Q̂21

 and Tk =
[

R̂11 R̂12

]
The ROM Kr(s) of K(s) can be computed as Kr(s) = Ckr

(
sI −Akr

)−1
Bkr + Dk where

Akr = Q̂11AkR̂11, Bkr = Q̂11Bk, and Ckr = CkR̂11 (36)

The proposed approach is summarized in Algorithm 1.

Algorithm 1: Proposed Technique

Input: P(s) = C(sI −A)−1B + D, r1, r and Li(s).

Output: Kr(s) = Ckr
(
sI −Akr

)−1
Bkr + Dk

1: Select the desired loop TF Li(s) = Kr(s)Pr(s) such that Li(s) has a high gain in the low-frequency region
wherein disturbance attenuation is required, and a small gain in the high-frequency region wherein
uncertainties in the plant are present.
2: The desired closed-loop is U(s) = [I + Li(s)]

−1Li(s).
3: Initialize Pr(s) as P(s).

4: while E3 > 1, do set Wo(s) = U(s)P−1
r (s) = Cq

(
sI −Aq

)−1
Bq + Dq.

5: Construct the augmented system Wo(s)P(s) = Ĉo
(
sI − Âo

)−1
B̂o + D̂o from Equation (22).

6: Compute Xy from Equation (23).
7: Compute Ao,n from Equation (24).
8: If P(s) is a SISO system, compute Zco from Equation (25).
9: If P(s) is a MIMO system, compute Zco from Equations (26) or (27).
10: Transform Zco into ordered real Schur form Ms, i.e.,

VTZcoV = Ms =

[
Ms11 Ms12

0 Ms22

]
where Ms11 is an r1 × r1 matrix.

11: Calculate the matrix F by solving the following Sylvester Equation
Ms11F− FMs22 + Ms12 = 0.

12:
[

Ir1×r1 F
0 I(n−r1)×(n−r1)

]
block diagonalises Ms into MT.

13: V can be partitioned as
[
V(n×r1) V(n×n−r1)

]
.

14: R11 = V(n×r1) and Q11 = VT
(n×n−r1)

− FVT
(n×n−r1)

.

15: Compute Pr(s) using Equation (29).
16: end while
17: Design K(s) using any loop shaping technique such that the loop shape Li(s) is achieved.
18: If K(s) is a SISO system, compute Zkco from Equations (31), (32).
19: If K(s) is a MIMO system, compute Zkco from Equation (33) or (34).
20: Transform Zkco into ordered real Schur form Mks

V
T

ZkcoV = Mks =

[
Mks11 Mks12

0 Mks22

]
where Mks11 is an r× r matrix.
21: Calculate the matrix F by solving the following Sylvester Equation
Mks11F− FMks22 + Mks12 = 0

22:
[

Ir×r F
0 I

]
block diagonalizes Mks into M̂T.

23: V can be partitioned as
[
V(n×r) V(n×n−r)

]
.

24: R̂11 = V(n×r) and Q̂11 = V
T
(n×n−r) − FV

T
(n×n−r).

25: Compute Kr(s) using Equation (36) such that E6 < 1.
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4. Numerical Examples

In this section, the proposed technique is validated on various benchmark control problems. The
proposed algorithm is compared with EPRA [14] which is based on FWBT. We have changed the
stopping criteria of EPRA to E3 < 1 as in the proposed technique for a fair comparison. Furthermore,
the controller obtained using EPRA is further reduced following the hybrid approach of the proposed
algorithm for a fair comparison. The H∞ controllers K(s) are designed for the reduced plants Pr(s)
using loop shaping procedure in References [24–26] and their loop shapes with the original plant P(s)
are shown.

Example 1. Symmetric System: Consider the 84th order SISO dynamic system represented by partial differential
Equations taken from [27]. A 13th order reduced plant model is obtained using EPRA, and the proposed
algorithm by setting r1 = 13. Table 1 shows a comparison between both techniques in terms of the weighted error
Wo(s)[P(s) −Pr(s)]. The simulation time in seconds (s) yielded by both techniques are compared to check their
computational efficiency. Figure 3 shows the weighted error Wo(s)[P(s) −Pr(s)]. The H∞ controllers K(s) are
designed for the reduced plants Pr(s) using the loop shaping procedure in [24–26]. Figure 4 shows the loop shape
K(s)P(s) achieved using both techniques. The order of controllers obtained for 13 order reduced plants using
EPRA, and the proposed algorithm is 14. The controller is further reduced to obtain a more compact controller
Kr(s) of order 6 using FWBT and cross-gramian based FWMOR (steps 18–25 of Algorithm 1). Table 2 shows an
error comparison in terms of weighted error Wo(s)[K(s) −Kr(s)] for a 6th order controller. Figure 5 shows the
weighted error Wo(s)[K(s) −Kr(s)]. Figure 6 shows the loop shape Kr(s)P(s) achieved with this 6th order
controller.

Example 2. Non-symmetric System: Consider the international space station model in [27] which is a 270th
order system with 3-inputs and 3-outputs. The model is a square but non-symmetric MIMO system. A 100th
order reduced plant model is obtained using EPRA and Algorithm 1. Table 1 shows a comparison between both
techniques in terms of the weighted error Wo(s)[P(s) −Pr(s)]. The simulation time in seconds (s) yielded
by both techniques are compared to check their computational efficiency. Figure 7 shows the weighted error
Wo(s)[P(s) −Pr(s)]. The H∞ controllers K(s) are designed for the reduced plants Pr(s) using the loop shaping
procedure in [24–26]. Figure 8 shows the loop shape K(s)P(s) achieved using both techniques. The orders
of controllers obtained for 100th order reduced plants using EPRA and the proposed technique are 246 and
248, respectively. The controller is further reduced to obtain a more compact controller Kr(s) of order 20 using
FWBT and cross-gramian based FWMOR (steps 18–25 of Algorithm 1). Table 2 shows an error comparison in
terms of weighted error Wo(s)[K(s) −Kr(s)] for the 20th order controller. Figure 9 shows the weighted error
Wo(s)[K(s) −Kr(s)]. Figure 10 shows the loop shape Kr(s)P(s) achieved with this 20th order controller.

Example 3. Unstable System: Consider an 8th order unstable model P(s). Such that it contains a pair of
eigenvalues (+1 and −1). Due to the presence of a set of eigenvalues with an equal magnitude but opposite sign,
the solution of the standard Lyapunov and Sylvester Equation is not possible. Hence, well-known techniques
such as [2,12,13,19] are not applicable to such systems. The proposed technique can be used to derive the 4th
order reduced plant model (Algorithm 1). Table 1 shows the weighted error Wo(s)[P(s) −Pr(s)] and simulation
time in seconds (s) yielded by the proposed technique. The H∞ controller K(s) is designed for the reduced plants
Pr(s) using the loop shaping procedure in [24–26]. Figure 11 shows the loop shape K(s)P(s) achieved using the
proposed technique. The order of controller obtained for 4th order reduced plant is 8. The controller is further
reduced to obtain a more compact controller Kr(s) of order 5 using cross-gramian based FWMOR (steps 18–25
of Algorithm 1). Table 2 shows the weighted error Wo(s)[K(s) −Kr(s)] for 5th order controller. Figure 12
shows the loop shape Kr(s)P(s) achieved with this 5th order controller.



Machines 2019, 7, 48 13 of 18

A =



−0.2625 −5.1234 0 0 0 0 0 0
5.1234 0 0 0 0 0 0 0
−0.1679 −3.2777 −0.0594 −2.4376 0 0 0 0

0 0 2.4376 0 0 0 0 0
−0.1679 −3.2777 −0.0368 −1.5084 −0.0076 −0.8738 0 0

0 0 0 0 0.8738 0 0 0
0 0 0 0 0 1.1444 0 1
0 0 0 0 0 0 1 0


,

B =



1
0
1
0
1
0
0
1


, C =

[
0 0 0 0 0 0 0 −2.1182

]

Table 1. Comparison of weighted error Wo(s)[P(s) − Pr(s)] and simulation time.

Example Order of Pr(s)
EPRA Proposed Technique

Error Time (s) Error Time (s)

1 13 0.0010 0.0207 2.6 × 10−10 0.0097

2 100 0.2544 0.1269 0.4463 0.0481

3 4 - - 0.5468 0.0003

Table 2. Comparison of weighted error Wo(s)[K(s) −Kr(s)].

Example Order of Kr(s) EPRA Proposed Technique

1 6 1.0009 3.0 × 10−6

2 20 4583.30 262.59

3 5 - 0.5676
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5. Discussion

Tables 1 and 2 show that the proposed algorithm is not only more accurate but also computationally
efficient than EPRA. It can be seen from Figure 3 that the proposed technique is more accurate in the
low and medium frequency region wherein the crossover frequencies lie. Figure 4 shows that the
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loop shape obtained for the 14th order controller using the proposed technique is similar to EPRA
if not better. Additionally, it can be observed from Figure 6 that the controller obtained using the
proposed algorithm exhibits a superior loop shape and good performance characteristics than EPRA
despite being compact. In Example 2, the error yielded by the proposed technique is slightly more than
EPRA, but still maintains its computational efficiency. Figure 7 shows the error comparison plot of the
weighted error. Figure 8 shows that the loop shape obtained using the proposed technique is similar to
EPRA if not better. A 20th order reduced controller Kr(s) is obtained for Example 2 using EPRA and
proposed technique and the loop shape is shown in Figure 10. The weighted error Wo(s)[K(s) −Kr(s)]
is > 1 (as shown in Table 2), but still, a stabilizing controller is obtained where all the poles of the
closed-loop system lie in the left half of s-plane. This is due to the fact that the satisfaction of criteria
E6 < 1 is a sufficient and not necessary condition for closed-loop stability. Analysis shows that if Kr(s)
of order 184 is designed instead of 20 then the resulting stabilizing controllers obtained for EPRA
and the proposed technique yield the weighted error E6 = 84.6631 and E6 = 0.1378 respectively. E6

drastically increases after that, and the sufficient condition is not met. Since 184 is still a high order
controller, we reduced the controller to 20th order and included the results for this controller. The
performance of the reduced controller can be observed by the error analysis in Figures 5 and 9, and it
can be noted that the desired loop shape is acceptable. In Example 3, it is interesting to note that
EPRA is not applicable, since the solution of standard Lyapunov Equations are not possible. However,
by using the proposed technique, not only a stabilizing controller is obtained for the unstable plant,
but also a much reduced/compact controller can be designed which preserves the closed-loop stability
and performance criteria with the full order plant. Figures 11 and 12 show the loop shape obtained
using the proposed technique, and it can be noted that the loop gain is high in the low and medium
frequency ranges.

6. Conclusions

In this paper, a controller reduction technique based on generalized frequency-weighted
cross-gramian is proposed to design a compact reduced order controller for higher order plants.
The scope of applicability is extended from stable SISO systems to unstable systems non-symmetric
MIMO systems. The proposed algorithm does not require the original plant to be minimal, and it is
computationally stable since a balancing free algorithm is used, which avoids ill-conditioning. The
proposed algorithm yields a significantly lower-order controller for high order plants.
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