
machines

Article

Decoupled Multi-Loop Robust Control for a Walk-Assistance
Robot Employing a Two-Wheeled Inverted Pendulum

Fu-Cheng Wang 1,* , Yu-Hong Chen 1, Zih-Jia Wang 1, Chi-Hao Liu 1, Pei-Chun Lin 1 and Jia-Yush Yen 1,2

����������
�������

Citation: Wang, F.-C.; Chen, Y.-H.;

Wang, Z.-J.; Liu, C.-H.; Lin, P.-C.;

Yen, J.-Y. Decoupled Multi-Loop

Robust Control for a Walk-Assistance

Robot Employing a Two-Wheeled

Inverted Pendulum. Machines 2021, 9,

205. https://doi.org/10.3390/

machines9100205

Academic Editor: Christoph M. Hackl

Received: 26 August 2021

Accepted: 19 September 2021

Published: 22 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan;
r08522819@ntu.edu.tw (Y.-H.C.); r04522829@ntu.edu.tw (Z.-J.W.); r06522815@ntu.edu.tw (C.-H.L.);
peichunlin@ntu.edu.tw (P.-C.L.); jyen@ntu.edu.tw (J.-Y.Y.)

2 Department of Mechanical Engineering, National Taiwan University of Science and Technology,
Taipei 10617, Taiwan

* Correspondence: fcw@ntu.edu.tw; Tel.: +886-233662680

Abstract: This paper develops a decoupled multi-loop control for a two-wheeled inverted pendulum
(TWIP) robot that can assist user’s with walking. The TWIP robot is equipped with two wheels driven
by electrical motors. We derive the system’s transfer function and design a robust loop-shaping
controller to balance the system. The simulation and experimental results show that the TWIP
system can be balanced but might experience velocity drifts because its balancing point is affected by
model variations and disturbances. Therefore, we propose a multi-loop control layout consisting of
a velocity loop and a position loop for the TWIP robot. The velocity loop can adjust the balancing
point in real-time and regulate the forward velocity, while the position loop can achieve position
tracking. For walking assistance, we design a decoupled control structure that transfers the linear and
rotational motions of the robot to the commands of two parallel motors. We implement the designed
controllers for simulation and experiments and show that the TWIP system employing the proposed
decoupled multi-loop control can provide satisfactory responses when assisting with walking.

Keywords: multi-loop control; robust control; decouple; inverted pendulum; TWIP

1. Introduction

Robot research has drawn much attention and resulted in many applications in in-
dustry [1] and services [2]. Biped robots and two-wheeled inverted pendulum (TWIP)
robots are frequently used as homecare robots [3] because they can feature humanoid
behaviors. This paper extends the one-dimensional control design of a TWIP robot in [4] to
a two-dimensional motion control to assist user’s with walking, where the balance control
and the steering control can be decoupled and independently designed.

Biped robots can perform complex movement patterns, such as jumping and climbing
stairs, but they also have a number of drawbacks, including slow movements, high costs,
complicated mechanisms, and sophisticated control designs [5–7]. A biped robot normally
has at least two degrees of freedom (DOF) in each leg and requires advanced control. For
instance, Medrano-Cerda and Akdas [8] built a model of a twelve-DOF biped robot and
designed linear quadratic regulator controllers to stabilize the robot. Lu et al. [9] developed
a twelve-DOF biped robot and applied the zero-moment point (ZMP) criterion for turning
and walking. Kim et al. [10] applied force-resisting balance control to a twelve-DOF walking
robot and used the ZMP stability region with genetic algorithms to attenuate disturbances.
The design of the joint mechanism can improve the locomotion and performance of biped
robots. For example, Aoustin and Hamon [11] controlled the locomotion of a biped robot
using a knee joint design based on a four-bar linkage. Hosoda et al. [12] proposed an
antagonistic muscle mechanism that regulated joint compliance to achieve three dynamic
locomotion modes in a biped robot. Joe and Oh [13] developed a balance control for a
humanoid robot that could walk on unknown and uneven terrain. Liu et al. [14] proposed
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a real-time balance control for a small-sized biped robot and applied a gyroscope and an
accelerometer to detect the robot inclination and balance it when being pushed. Xi and
Chen [15] applied inverse kinematics and reinforcement learning to balance a biped robot
on an oscillating platform.

By contrast, TWIP robots can achieve fast responses with a simple configuration and
low cost, so they are frequently considered for home applications [16]. Their parallel-wheel
structure allows for turning-on-the-spot. However, TWIP robots are naturally unstable and
have highly nonlinear dynamics. Therefore, advanced control strategies are usually applied
to TWIP robots to improve system performance. Three types of control are typically used
for TWIP systems: balance, velocity, and position control. For balance control, Dai et al. [17]
applied friction compensation and a Kalman filter to design a sliding mode controller for
upright balance. Zhou and Wang [18] introduced a robust integral sliding mode controller
for self-balancing and yaw motion of a TWIP. Unluturk and Aydogdu [19] developed
a neural-network-based adaptable switching controller to balance a TWIP system on
different surfaces. Kim and Kwon [20] discussed the influence of inertia and applied a
state-dependent Riccati equation to balance the TWIP system. Jamin et al. [21] applied a
fuzzy logic controller to a two-wheeled wheelchair with a movable payload, where the
control parameters were optimized by the spiral dynamic algorithm. S’anchez et al. [22]
developed a full-order observer without using the unavailable state variables. They applied
the algorithm to an inverted pendulum system and achieved a steady-state error of less
than 1◦. For velocity control, Grasser et al. [23] developed decoupled state-space controllers
to control a TWIP system at a speed of 1.5 m/s. Huang et al. [24] considered parameter
uncertainties and external disturbances and proposed a sliding mode control to track
velocity commands of up to 2 m/s. Bature et al. [25] proposed fuzzy logic control, neural-
network inverse model control, and an adaptive neuro-fuzzy inference system for the
speed tracking of a TWIP system. Oliveira et al. [26] proposed a bounded torque approach
for a TWIP system and achieve a settling time of 5.5 s with a maximum speed of 5.5 m/s.
For position control, Ha and Yuta [27] designed optimal controllers for a TWIP system
and achieved the desired position with acceptable steady-state errors by modifying the
velocity command. Chiu et al. [28] developed an adaptive output recurrent cerebellar
model articulation controller that allowed a TWIP system to stand upright and track
position commands. Herrera et al. [29] designed an LQR controller and optimized the
parameters by genetic algorithms to improve the reference tracking performance of a TWIP
system. Zhou et al. [30] applied sliding mode control and an extended Kalman filter to
enable a TWIP robot to track a reference position or velocity trajectory on uneven ground.
Jin and Ou [31] developed a learning method for a TWIP robot to guarantee path-following
and balance.

Many studies have focused on balance and tracking control of TWIP systems. How-
ever, the best way to adjust the balancing point is not clear, because the balancing point
might be influenced by model variations and disturbances during operations. That is, the
balancing point needs real-time adjustment to guarantee system stability. This paper ad-
dresses this issue and proposes a multi-loop control architecture that consists of the balance,
velocity, and position loops. The balance loop can stabilize the TWIP system, while the
velocity loop can adjust the balancing point in real-time and the position loop can achieve
position tracking. Furthermore, this paper develops a decoupled control structure that
allows the two parallel motors to independently control the linear and rotational motions
of the TWIP system. The simulation and experimental results show that the TWIP system
employing the proposed decoupled multi-loop control can provide satisfactory responses
for walking assistance. The main contributions of this paper include: (1) developing a
decoupled multi-loop control for a TWIP robot that can assist user walking; (2) presenting
a multi-loop control layout that is composed of the balance, velocity, and position control
loops; (3) proposing a decoupled control structure that can independently control the linear
and rotational motions of the robot.
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This paper is organized as follows: Section 2 introduces the TWIP system and derives
its dynamic model. Section 3 applies the model to design a robust loop-shaping controller.
The simulation and experimental results show that the system can be balanced but might
have drifting velocities because its balance point varies during motions. Therefore, in
Section 4, we propose a multi-loop control structure that comprises the velocity and
position loops. The velocity loop can adjust the balancing point in real-time to guarantee
static balance, while the position loop can track the position commands. The designed
control structure is then implemented for simulations and experiments. Section 5 develops
a decoupled control layout consisting of two independent loops for simultaneous control
of the linear and rotational motions by two parallel motors. Lastly, we draw conclusions
in Section 6.

2. System Description and Modeling

The TWIP system shown in Figure 1a equips the two wheels driven by direct current
(DC) motors [32] with absolute rotary encoders. We applied an inertial measurement unit
(IMU) [33] to measure the body motions and implemented the controllers on an Arduino
Due microcontroller with a sampling time of 0.025 s [34]. Each motor consumed an average
power of about 9 watts, so we implemented two 22.2 V/2600 mAh Li-Po batteries to
sustain the system operation for about 6 h. The system architecture is shown in Figure
1b, while the system specifications are illustrated in Table 1. Note that some parameters in
Table 1 were estimated by software packages. For example, the inertial moments Jψ and Jφ

were estimated by using Solidwork and SimMechanics. We drew the design in Solidwork
then converted it to a SimMechanics model, which could calculate the theoretical inertial
moments. The friction fbw was estimated from the steady-state responses. We assumed that
the motor output torque was equivalent to the friction torque in the steady-state responses,
so that we could calculate fbw by the input voltage and the angular velocity of the motor.
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Table 1. Specifications of the TWIP system.

Symbol Description Value

M Weight of the cart 13 kg
Jψ Pitch inertia moment of the cart 1.6 kgm2

Jφ Yaw inertia moment of the cart 0.3985 kgm2

l Distance of the the mass center 0.2 m
W Width of the cart 0.569 m
m Wheel weight (each wheel) 1.56 kg
Jw Wheel inertia moment (each wheel) 0.0014 kgm2

r Wheel radius 0.1524 m
R Motor resistance 0.065 Ω
L Motor inductance 0.138 mH
Kt Motor torque constant 0.068 Nm/A
Ke Motor back EMF constant 0.04 Vs/rad
Jm Motor inertia moment 0.0002 kgm2

n1 Gear ratio 15
fbw Friction between the motor and the body 0.45 Nms/rad

The mathematical model of the TWIP system is derived in Appendix A. Considering
the translational motion of the TWIP system, the block diagram of the model can be
illustrated in Figure 2, in which

Hc =
L
{ .

θm

}
L
{ .

ψ
} =

sθ̂m

sψ̂
=
−[(2m + M)r2 + 2Jw + 2Mrl + Ml2 + Jψ]s2 + Mgl

[(2m + M)r2 + Mrl + 2Jw]s2 (1)

Gm =
sψ̂

T̂ψ
=

[
(2m + M)r2 + Mrl + 2Jw

]
s

[(2m + M)r2 + 2Jw + 2n1
2 Jm]

[(
Ml2 + Jψ + 2n1

2 Jm
)
s2 −Mgl

]
− (Mrl − 2n1

2 Jm)
2s2

(2)

where f̂ (s) = L{ f (t)} represents the Laplace transform of f (t). ψ is the pitch angle of
the cart, θ is the wheels’ rotational angle, θm is the motor’s rotational angle, and T̂ψ is the
applied torque to the cart. Substituting the system parameters shown in Table 1, the system
transfer function from the motor voltage to the pitch angle of the cart can be described
as follows:

GS =
ψ̂

V̂ψ
=

−9106s
s4 + 473.8s3 + 4402s2 − 5994s− 3.423× 104 (3)
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3. Robust Loop-Shaping Control Design for System Stability

This section applies robust loop-shaping control to stabilize the TWIP system. The
model in Equation (3) represents a linear system, so we can regard system nonlinearities and
variations during operation as model uncertainties and apply robust control to cope with
these uncertainties. Suppose the transfer function GS of Equation (3) can be represented by
the following normalized left coprime factorization [35]:

GS = M̃−1Ñ (4)

in which M̃, Ñ ∈ RH∞ and M̃M̃∗ + ÑÑ∗ = I. A perturbed plant G∆ can be described
as follows:

G∆ =
(

M̃ + ∆M̃

)−1(
Ñ + ∆Ñ

)
(5)

where ∆M̃, ∆Ñ ∈ RH∞. The gap between the nominal plant GS and the perturbed plant G∆

is defined as [35]: The smallest value of ‖
[
∆M̃∆Ñ

]
‖∞ that perturbs Go

P into G∆
P is denoted

as δ(GS, G∆). The closed-loop system with a perturbed plant G∆ and a controller K can be
expressed as in Figure 3a. As system stability is independent of the input and output of
the system, we can rearrange the system block diagram, as in Figure 3b. From the Small
Gain Theorem [36], the closed-loop system is internally stable for all perturbations with
‖
[
∆M̃ ∆Ñ

]
‖∞ ≤ ε if, and only if,

‖
[

K
I

]
(I − GSK)−1M̃−1‖

∞
= ‖

[
K
I

]
(I − GSK)−1

[
I G S

]
‖

∞
<

1
ε

(6)

Hence, we can define the system’s stability margin b(GS, K) as follows [36]:

b(GS, K) = ‖
[

K
I

]
(I − GSK)−1

[
I G S

]
‖

∞

−1 (7)

The system is internally stable for all uncertainties ∆ with ‖∆‖∞ = ‖
[
∆M̃ ∆Ñ

]
‖∞ ≤ ε

if and only if b(GS, K) > ε. The philosophy of robust control design can be illustrated as in
Figure 3c for the design of a controller K for the nominal plant GS such that the stability
margin b(GS, K) is greater than the system perturbation ‖

[
∆M̃ ∆Ñ

]
‖∞. We consider the

model of (3) with the following variations: (i) friction fbw ∈ [0, 3] Nms/rad; (ii) height
of the center of gravity l ∈ [0.2, 0.4] m; and (iii) mass M ∈ [13, 15] kg. We divide each
variation into ten equivalent sections and calculate the system perturbation between these
113 models and the nominal model GS. The maximum system perturbation ‖

[
∆M̃ ∆Ñ

]
‖∞ is

found to be 0.180. Therefore, the designed robust controller should have a stability margin
greater than 0.180 to guarantee system stability during operations.
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system gains at the low-frequency ranges for disturbance rejection; (ii) decreasing system
gains at the high-frequency range for attenuating noises; (iii) limiting the slope of the
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magnitude plots around crossover frequencies less steep than −40 dB/decade for stability
considerations. Referring to the nominal plant of (3), we iteratively adjusted the weight-
ing functions and verified the system performance by experiments. That is, we set the
weighting functions and implemented the derived controllers for simulation and exper-
iments. Then, we checked the system performance, such as the overshoot, steady state
error, and settling time. The controller should be a compromise between these performance
considerations. Finally, we selected the following weighting function:

Wψ = 200
1

0.01s + 1
(8)

and applied the MATLAB command ncfsyn (ncfsyn designs an optimal controller that
provides the maximum stability margin for the weighted plant) to design the robust
controller, as follows:

Kψ
∞ =

−3.044s4 − 1804s3 + 1.905× 105s2 − 4.116× 106s + 4.584× 105

s4 + 705.9s3 + 1.36× 105s2 + 1.234× 107s− 1.506× 105 (9)

which gives a stability margin of b(WψGS, Kψ
∞) = 0.4018. As the stability margin is greater

than the system gap of 0.180, system stability can be guaranteed during operations. Note
that any parameter variation can be considered in a similar way. The designed controller
can cope with mixed parameter variations as long as the gap between the perturbed model
G∆ and the nominal plant GS is less than the stability margin, i.e., δ(GS, G∆) < 0.4018.

We implemented the designed controller WψKψ
∞ on MATLAB for simulation with a

fixed sampling time of 0.025 s. The balance loop control structure is shown in Figure 4a,
where the voltage saturation function was set as

∣∣Vψ

∣∣ ≤ 5 volts based on the hardware
constraints. We set the initial angle of ψ(0) = −9.5◦ and ψre f = 0◦, i.e., assuming the
balancing point was zero. The system responses are shown in Figure 4b,c, where both the
pitch angle ψ and the forward velocity approached zero when the system is balanced. The
corresponding control signal is illustrated in Figure 4d, where the saturation function was
activated before 0.25 s to balance the TWIP system from the initial position ψ(0) = −9.5◦.
Suppose the reference balancing point varied from 0◦ to 1◦ because of model variations
and disturbances; the system responses are shown in Figure 4e–g. Figure 4e showed
that the pitch angle ψ still approached zero because of the reference command ψre f = 0◦.
However, the forward velocity drifted because the real balancing point was changed
to 1◦. For example, the negative slope shown in Figure 4f indicated that the TWIP robot
moved backward in order to maintain balance. That is, the TWIP system cannot be
statically balanced if the reference ψre f differs from the system’s balance point, which might
vary during operations. Therefore, ψre f should be adjusted in real time according to the
operating conditions. Figure 4g showed that the control signal was saturated at the first
0.1 s because the TWIP robot needs to be balanced from ψ(0) = −9.5◦ to 0◦.

We also implemented the designed control on the microcontroller for experiments.
The experimental setting is shown in Figure 5a, where the TWIP was set to balance at
two locations from an initial angle of ψ(0) = −9.5◦. Considering the balance control loop
shown in Figure 4a with ψre f = 0◦, the experimental responses are illustrated in Figure 5.
At place 1, the pitch angle approached zero, but the velocity oscillated around zero when
the system was balanced. The situation was more noticeable at place 2, where the velocity
was drifting (see in Figure 5e) because the reference ψre f differed from the system’s balance
point. Figure 5f showed that the control signal was saturated at the first 0.1 s because the
TWIP robot needs to be balanced from ψ(0) = −9.5◦ to 0◦.
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The experimental setting is shown in Figure 5a, where the TWIP was set to balance at two 
locations from an initial angle of .(0) 9 5   . Considering the balance control loop 
shown in Figure 4a with 0  ref , the experimental responses are illustrated in Figure 5. 
At place 1, the pitch angle approached zero, but the velocity oscillated around zero when 
the system was balanced. The situation was more noticeable at place 2, where the velocity 
was drifting (see in Figure 5e) because the reference ref  differed from the system’s bal-
ance point. Figure 5f showed that the control signal was saturated at the first 0.1 s because 
the TWIP robot needs to be balanced from .(0) 9 5    to 0 . 

Figure 4. The balancing-loop control and system responses with ψre f = 0◦ (simulations): (a) The balancing loop control
structure; (b) ψ(t) response, balance point = 0◦; (c) Velocity response, balance point = 0◦; (d) control signal Vψ(t), balance
point = 0◦; (e) ψ(t) response, balance point = 1◦; (f) Velocity response, balance point = 1◦; (g) control signal Vψ(t), balance
point = 1◦.

Both simulation and experimental results (see Figures 4 and 5) suggest that the balanc-
ing point has changed because of model variations and disturbances. That is, the reference
command ψre f should be adjusted in real-time. Therefore, we propose a multi-loop control
structure in the next section to update the reference angle ψre f in real-time.



Machines 2021, 9, 205 8 of 21

Machines 2021, 9, 205 8 of 22 
 

 

Both simulation and experimental results (see Figure 4 and Figure 5) suggest that the 
balancing point has changed because of model variations and disturbances. That is, the 
reference command  ref  should be adjusted in real-time. Therefore, we propose a multi-
loop control structure in the next section to update the reference angle  ref  in real-time. 

 
(a) 

(b) (c) (d) 

(e) (f) (g) 

Figure 5. The experimental responses using the balancing loop control with 0  ref : (a) The experiments settings; (b) 

( ) t  response at place 1; (c) Velocity response at place 1; (d) control signal ( )V t  at place 1; (e) ( ) t  response at place 
2; (f) Velocity response at place 2; (g) control signal ( )V t  at place 2. 

  

Figure 5. The experimental responses using the balancing loop control with ψre f = 0◦: (a) The experiments settings; (b) ψ(t)
response at place 1; (c) Velocity response at place 1; (d) control signal Vψ(t) at place 1; (e) ψ(t) response at place 2; (f) Velocity
response at place 2; (g) control signal Vψ(t) at place 2.

4. The Multi-Loop Control Structure

This section proposes a multi-loop control structure to solve the velocity-drifting
problem of the TWIP system. The multi-loop structure is composed of a velocity loop and a
position loop. The velocity loop can regulate the forward velocity and adjust the reference
angle in real-time, while the position loop control can achieve position tracking. We design
the corresponding controllers and demonstrate the effectiveness of this control structure by
simulation and experiments.

4.1. The Velocity Loop Control

We apply a velocity loop control structure to adjust the reference angle ψre f , as shown
in Figure 6a. If the TWIP system is statically balanced, the pitch angle should approach the
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balancing point and the linear velocity should converge to zero. The following calibration
function Hv is derived in Appendix A:

Hv =
rsθ̂

ψ̂
=

r
[
−(Jψ + Ml2 + Mrl)s2 + Mgl

]
[(2m + M)r2 + Mrl + 2Jw]s

(10)
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We also implemented the velocity loop control for experiments. We applied the PI 
controller of Equation (15) to simplify hardware implementation, because it provided sim-
ilar responses to the standard robust controller but with a much simpler form. We set the 
TWIP system at the two locations (see Figure 5a) with an initial angle of .(0) 9 5    

Figure 6. The velocity-loop structure and simulation results with Vre f = 0 (a) The velocity loop control structure;
(b) Equivalent velocity control loop; (c) Online ψre f adjustment; (d) ψ responses; (e) control signal Vψ(t); (f) Velocity
responses v(t); (g) Position responses p(t).
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The block diagram of Figure 6a can be simplified as in Figure 6b, where

Gv =
Kψ

∞WψGS

1 + Kψ
∞WψGS

Hv (11)

We applied the modified plant Gv to design the velocity controller Cv by robust loop-
shaping techniques, where the weighting function was iteratively tuned and verified.
Finally, we selected the following weighting function:

Wv =
0.01

0.5s + 0.03
(12)

to derive the robust controller, as follows:

Kv
∞ =

2.358s7 + 1668s6 + . . . + 8.922× 109s + 5.708× 108

s7 + 708.3s6 + . . . + 1.401× 1010s + 1.36× 109 (13)

As the weighted controller Cv = WvKv
∞ was eighth-order and might increase the

difficulties of hardware implementation, we considered the following proportional-integral
(PI) control:

Cv = CPI
v = Kp +

Ki
s

= Kp
s + Ki/Kp

s
(14)

The values of Kp and Ki were tuned to provide similar responses to those of the
standard robust controller. Finally, we selected the following PI controller:

Cv = CPI
v = 0.0335

s + 1
s

(15)

We implemented the designed controllers on MATLAB for simulation. We set Vre f = 0
with a balancing point of 1◦ and applied the angle saturation function to limit the reference
angle as

∣∣∣ψre f

∣∣∣ ≤ 3◦. Suppose the initial angle is ψ(0) = −9.5◦; the simulations are shown
in Figure 6. First, the PI control achieved similar responses to the standard robust controller,
but with a much simpler form. Second, ψre f was successfully adjusted to the balancing
point (see Figure 6c), while the pitch angle ψ approached 1◦ (see Figure 6d). Third, the
corresponding control signal is shown in Figure 6e, where the saturation function was
activated before 0.2 s to balance the system from ψ(0) = −9.5◦ to ψre f . Fourth, the forward
velocity converged to zero, as illustrated in Figure 6f, i.e., the system was statically balanced
by the velocity loop. Lastly, Figure 6f showed that the displacements were oscillating, so
that we needed to add a position loop to improve position tracking.

We also implemented the velocity loop control for experiments. We applied the PI
controller of Equation (15) to simplify hardware implementation, because it provided
similar responses to the standard robust controller but with a much simpler form. We set
the TWIP system at the two locations (see Figure 5a) with an initial angle of ψ(0) = −9.5◦

and a reference velocity Vre f = 0. The experimental results are shown in Figure 7. First,
Figure 7a shows that the velocity loop adjusted the reference balance point in real-time,
while Figure 7b shows how the pitch angle ψ tracked the reference angle ψre f . Second,
the motor control signal Vψ was frequently saturated at the first two seconds, as shown
in Figure 7c, to balance the TWIP robot from the initial angel of ψ(0) = −9.5◦. Third, the
velocity approached zero, as shown in Figure 7d (i.e., the system was statically balanced).
However, Figure 7e shows that the TWIP was statically balanced at different positions,
which cannot be specified. This problem can be solved by the position loop control.
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Figure 7. The experimental responses for velocity control: (a) Online ψre f adjustment; (b) ψ(t) responses; (c) control signal
Vψ(t); (d)Velocity responses v(t); (e) Position responses p(t).

4.2. The Position Loop Control

The position-loop control structure is shown in Figure 8a, where the velocity command
Vre f can be adjusted according to the position error. We set a velocity saturation function∣∣∣Vre f

∣∣∣ ≤ 0.3 m/s to limit the maximum speed, considering the motor power. Figure 8a can
be further simplified as Figure 8b, where the modified plant Gp is:

Gp =
CvGv

(1 + CvGv)s
(16)

We also applied robust loop-shaping control to the position control, with the following
weighting function:

Wp =
0.8s+0.25

0.45s2+0.3s+0.1
(17)

The robust controller was designed as follows:

Kp
∞ =

5.115s12 + 1164s11 + . . . 1.611× 105s + 4703
s12 + 229.5s11 + . . . + 7.694× 105s + 2.406× 104 (18)

As the order of the robust controller Cp = WpKp
∞ was fourteen and might cause

difficulties in hardware implementation, we further considered the following proportional
controller for the position loop:

Cp = CP
p = 0.09 (19)
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This provided system responses similar to the standard robust controller but with a 
much simpler form. We implemented the designed control on MATLAB for simulation. 
We set 0r efP  with a balance point of 0° and an initial pitch angle .(0) 9 5   . The 
simulation results are shown in Figure 8. First, the responses employing the proportional 
control and the robust control are similar, allowing us to simplify the control implemen-
tation using the proportional control for the experiments. Second, Figure 8c shows that 
the reference velocity was adjusted in real-time, and the system was statically balanced. 
Third, the pitch angle   approached zero (see Figure 8d) with the corresponding con-
trol shown in Figure 8e. Finally, the linear velocity v approached zero (see Figure 8f) and 
the position p also converged to zero, as shown in Figure 8f, indicating that the TWIP can 
remain at specified places. Figure 8h shows the zoom-in position responses, which slightly 
oscillated before converging to zero. 
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in which e indicates the corresponding error, T=15 s, and st  is the settling time, when the 
error of the pitch angel is less than o0.475  (i.e., 5% of the step from 9.5   to 0 ) after-
wards. From the table, in place 1 and place 2, the rise time were 0.4 s, while the MAE and 
RMSE of  were less than 0.178° and 0.224°, respectively. The position responses con-
verge to zero with an MAE of less than 8.9 mm and an RMSE of less than 9 mm. That is, 
the TWIP system can be statically balanced at specified positions by the proposed multi-
loop control layout. 

Figure 8. The position loop structure and simulation results with Pre f = 0: (a) The position loop control structure;
(b) Simplification of the position loop structure; (c) Online Vre f adjustment; (d) ψ responses; (e) control signal Vψ(t);
(f) Velocity responses v(t); (g) Position responses p(t); (h) Zoom-in plot of (g).

This provided system responses similar to the standard robust controller but with a
much simpler form. We implemented the designed control on MATLAB for simulation.
We set Pre f = 0 with a balance point of 0◦ and an initial pitch angle ψ(0) = −9.5◦. The
simulation results are shown in Figure 8. First, the responses employing the proportional
control and the robust control are similar, allowing us to simplify the control implementa-
tion using the proportional control for the experiments. Second, Figure 8c shows that the
reference velocity was adjusted in real-time, and the system was statically balanced. Third,
the pitch angle ψ approached zero (see Figure 8d) with the corresponding control shown in
Figure 8e. Finally, the linear velocity v approached zero (see Figure 8f) and the position p
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also converged to zero, as shown in Figure 8f, indicating that the TWIP can remain at
specified places. Figure 8h shows the zoom-in position responses, which slightly oscillated
before converging to zero.

We also implemented the designed control on a microcontroller for experimental
verification. We applied the P controller of (19) to simplify hardware implementation,
because it provided similar responses to the standard robust controller but with a much
simpler form. We set Pre f = 0 with an initial angle ψ(0) = −9.5◦, and we set the saturation

functions
∣∣∣ψre f

∣∣∣ ≤ 3◦ and
∣∣∣Vre f

∣∣∣ ≤ 0.3 m/s. The experimental results are shown in Figure 9.
First, the position loop adjusted the reference velocity Vre f in real-time, as illustrated
in Figure 9a. Second, Figure 9b shows that the angle ψ approached to the balancing
point. Third, the corresponding control signal is shown in Figure 9c, where the motors
continuously regulated the velocity and position of the TWIP robot. Fourth, the forward
velocity approached zero (see Figure 9d), while the TWIP remained at the starting place
(see Figure 9e). Figure 9f shows the zoom-in position responses after settling, where the
TWIP robot oscillated within about ±1 cm. Finally, the statistical data are shown in Table 2,
where the mean absolutely error (MAE) and the root mean square error (RMSE) after the
settling time are defined as

MAE ≡ 1
T − ts

∫ T

t=ts
|e(t)|dt (20)

RMSE ≡
(

1
T − ts

∫ T

t=ts
|e(t)|2dt

)1/2

(21)

in which e indicates the corresponding error, T = 15 s, and ts is the settling time, when the
error of the pitch angel is less than 0.475o (i.e., 5% of the step from −9.5◦ to 0◦) afterwards.
From the table, in place 1 and place 2, the rise time were 0.4 s, while the MAE and RMSE of
ψ were less than 0.178◦ and 0.224◦, respectively. The position responses converge to zero
with an MAE of less than 8.9 mm and an RMSE of less than 9 mm. That is, the TWIP system
can be statically balanced at specified positions by the proposed multi-loop control layout.Machines 2021, 9, 205 14 of 22 
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Table 2. Balancing analyses using the position loop control.

Location Place 1 Place 2
Response ψ P ψ P

Rise time 0.40 s — 0.40 s —
Settling time 2.84 s — 4.91 s —
Overshoot
maximum 0.97◦ 11 mm 1.52◦ 52 mm

MAE 0.178◦ 8.9 mm 0.174◦ 3.3 mm
RMSE 0.216◦ 9.3 mm 0.224◦ 5.0 mm

5. Decoupled Control Loops

The TWIP system consists of two control loops: the balance loop and the steering loop.
The balance control loop stabilizes the system, while the steering control loop regulates
the movement direction, as illustrated in Figure 10a. This section proposes a method to
decouple these two control loops. From Appendix A, the transfer function matrix from
the motor voltages (Vr and Vl) to the balancing angle ψ and the steering angle φ can be
represented as follows: [

ψ
φ

]
= G

[
Vr
Vl

]
=

[
G21 G22
G31 G32

][
Vr
Vl

]
(22)

where G22 = G21 and G31 = −G32. Suppose the system of Figure 10a can be rearranged as
Figure 10b with

C = Dc

[
Cψ 0
0 Cφ

]
, Dc =

[
D11 D12
D21 D22

]
, (23)

by a suitable Dc. That is, the transfer function matrix from input motor voltages (Vψ and
Vφ) to the output angles (ψ and φ) are as follows:[

ψ
φ

]
= G

[
Vr
Vl

]
= GDc

[
Vψ

Vφ

]
=

[
G21 G22
G31 G32

][
D11 D12
D21 D22

][
Vψ

Vφ

]
=

[
D11G21 + D21G22 D12G21 + D22G22
D11G31 + D21G32 D12G31 + D22G32

][
Vψ

Vφ

] (24)

Therefore, the system can be decoupled if the following two off-diagonal terms
are zeros:

Vψ(D11G31 + D21G32) = 0 (25)

Vφ(D12G21 + D22G22) = 0 (26)

As G22 = G21 and G31 = −G32, we can set D21 = D11 = 0.5 and D12 = −D22 = −0.5
to decouple the two control loops. Furthermore, we define Gψ = G21 = G22 and
Gφ = G32 = −G31, which represent the balance sub-model and the steering sub-model,
respectively. Substituting Equations (25)–(26) into Equation (24) gives:

ψ = (D11G21 + D21G22)Vψ = GψVψ (27)

φ = (D12G31 + D22G32)Vφ = GφVφ (28)

as shown in Figure 10c. That is, the balancing loop and the steering loop can be decoupled
and independently controlled.
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Therefore, the system can be decoupled if the following two off-diagonal terms are 
zeros: 

 11 31 21 32 0  V D G D G  (25) 

 12 21 22 22 0  V D G D G  (26) 

As 22 21G G  and 31 32 G G , we can set 
21 11 0 5  .D D  and 

12 2 2 0 5    .D D  
to decouple the two control loops. Furthermore, we define 

21 22  G G G  and 

32 31   G G G , which represent the balance sub-model and the steering sub-model, re-
spectively. Substituting Equations (25)–(26) into Equation (24) gives: 

 11 21 21 22      D G D G V G V  (27) 

 12 31 2 2 32      D G D G V G V  (28) 

as shown in Figure 10c. That is, the balancing loop and the steering loop can be decoupled 
and independently controlled. 
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Figure 10. The block diagram of decoupling process: (a) The feedback control system of TWIP; (b) 
Block diagram of the TWIP system with decoupling matrix; (c) Block diagram of the TWIP system 
combining decoupling matrix. 

We can further integrate the balancing loop with the aforementioned velocity and 
position loops, as shown Figure 11. Substituting the parameters of Table 1, the balancing 
sub-model is 

  sG G , as shown in Equation (3), while the steering sub-model is: 

4

2 3 23
2 117 10

474 2 2955 








.
.s s

G G
s

 (29) 

Similarly, we applied robust loop-shaping control to G  and selected the following 
weighting: 

10
0.01 1  

W
s

 (30) 

The robust controller 
  C W K  was derived, where 

2

2

2 278 253 2724
147 4 6209




  





.
.

s s
s

K
s
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Figure 10. The block diagram of decoupling process: (a) The feedback control system of TWIP;
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We can further integrate the balancing loop with the aforementioned velocity and
position loops, as shown Figure 11. Substituting the parameters of Table 1, the balancing
sub-model is Gψ = Gs, as shown in Equation (3), while the steering sub-model is:

Gφ = G32 =
−2.117× 104

s3 + 474.2s2 + 2955s
(29)

Similarly, we applied robust loop-shaping control to Gφ and selected the
following weighting:

Wφ =
10

0.01s + 1
(30)
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The robust controller Cφ = WφKφ
∞ was derived, where

Kφ
∞ =

−2.278s2 − 253s− 2724
s2 + 147.4s + 6209

(31)

We implemented the designed controllers in Figure 11 to demonstrate the position
tracking of the TWIP system. Suppose the TWIP is balanced and then given a target on the
forward left, with an angle of 45◦ and a distance of 1 m; the system responses are shown
in Figure 12. First, the system remains balanced during the tracking process, as shown
in Figure 12a. Second, the velocity and position responses are illustrated in Figure 12b,c,
respectively. Third, the steering response is shown in Figure 12d and is much faster than the
position/velocity/balance responses because the steering loop is independently controlled.
The motor voltages, Vψ and Vφ, are illustrated in Figure 12e,f, where the TWIP robot made
a swift turn at t = 10 then moved forward until it reached the target position and settled
there according to the control loop.
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Walking Assistance by the TWIP Robot

We applied the TWIP robot to assist users with walking. The TWIP provides physical
support to the user during motion, while the user gives commands based on visual
feedback. We implemented two force sensors [38] on the handrail, as shown in Figure 13a,
so that the users can control the direction of the TWIP robot by applying forces to the
handrail. Suppose Fl and Fr represent the measured forces on the left and the right sensors,
respectively. The applied force F and torque T are estimated as:

F =

{
Fl + Fr, if min{|Fl |, |Fr|} ≥ 2N
0, otherwise

(32)

T = Fr · d− Fl · d (33)

where d is the distance between the force sensors and the center of the handrail. We set a
threshold of 2 N to filter disturbances when estimating the user’s intention. The force F is
then transferred to an motion error eP by a function MP, while the torque T is transferred
to an rotational command by the function Mφ, as shown in Figure 13b. We set MP = 0.007
so that the TWIP robot moves at a speed of about 0.4 m/s when the applied force F is about
15 N. Similarly, we set Mφ = 0.1 so that the TWIP robot rotates at an angular velocity of
about 15 degree/s when the applied torque T is about 0.5 Nm.
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We conducted experiments to demonstrate the walking assistance function of the
TWIP robot. The user was asked to walk in a straight line and then turn 90◦ to the right [39].
The system responses are illustrated in Figure 14. First, the TWIP robot remained stable
during the whole process of assisting with walking, as shown in Figure 14a. That is, the
designed robust controller can cope with the system uncertainties and disturbances during
motion. Second, when the force sensors detected the applied force (see Figure 14c), the
robot began to move forward and remained stable using the designed decoupled multi-
loop control. Lastly, the robot allowed a right turn (see Figure 14b) when a torque of
about −0.5 Nm was estimated at around 11 s, as shown in Figure 14d, indicating that the
user intended to make a right turn. Note that the applied force was estimated as zero,
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because the right sensor force Fr was less than 2N. Therefore, the parallel-wheel structure
allowed the robot to turn on the spot, as illustrated in Figure 14e,f. The corresponding
motor control voltages, Vψ(t) and Vφ(t), are shown in Figure 14g,h to assist the motions of
the TWIP robot.
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6. Conclusions

This paper proposed a decoupled multi-loop controller for a TWIP system. We derived
its model and applied robust loop-shaping control to balance the system. The designed
controller was then implemented for simulation and experiments. The results showed that
the robot might experience velocity drifting because the balancing point is influenced by
model variation and disturbances. Therefore, we proposed a multi-loop control structure,
which consisted of a velocity control loop and a position control loop. The former achieved
static balance, while the latter accomplished position tracking in real-time. Finally, we
proposed a decoupled control layout for the TWIP robot, where the balance control loop and
the steering control loop can be independently designed. We implemented the designed
controllers and demonstrated that the TWIP robot employing the proposed decoupled
multi-loop control can effectively assist users with walking. In the future, the TWIP system
can be integrated with extra sensor, such as the Kinect camera and IMU sensors, for user
tracking [40], obstacle avoidance [41], and falling detection [42].
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Appendix A. Modelling of the TWIP System

The model derivation of TWIP system are available at: http://140.112.14.7/~sic/
PaperMaterial/TWIP_Appendix.pdf
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