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Abstract: Due to the ubiquitous dynamics of industrial processes, the variable time lag raises great
challenge to the high-precision industrial process monitoring. To this end, a process monitoring
method based on the dynamic autoregressive latent variable model is proposed in this paper. First,
from the perspective of process data, a dynamic autoregressive latent variable model (DALM) with
process variables as input and quality variables as output is constructed to adapt to the variable time
lag characteristic. In addition, a fusion Bayesian filtering, smoothing and expectation maximization
algorithm is used to identify model parameters. Then, the process monitoring method based on
DALM is constructed, in which the process data are filtered online to obtain the latent space distri-
bution of the current state, and T2 statistics are constructed. Finally, by comparing with an existing
method, the feasibility and effectiveness of the proposed method is tested on the sintering process of
ternary cathode materials. Detailed comparisons show the superiority of the proposed method.

Keywords: process monitoring; dynamics; variable time lag; dynamic autoregressive latent variables
model; sintering process

1. Introduction

To ensure production safety and product quality, process monitoring technology
has become an indispensable ingredient for industrial processes in recent years. It is
commonly divided into model-based methods and data-driven methods. Compared with
the former ones, the later ones can take advantage of the routine measurement and do not
rely on process prior knowledge and precise mechanism models, which are unavailable
or cost-intensive to obtained at times [1,2]. Therefore, they are widely used in modern
industrial process.

During the past decades, many data-driven process monitoring methods have been
published [3–6]. Kim et al. [7] proposed a probabilistic PCA to monitoring industrial
processes, which firstly extracts redundant information from the variables and constructs fea-
ture distribution for monitoring, but it only extracts features of the input space. Zhao et al. [8]
proposed the probabilistic PLSR process monitoring method to monitor quality-related
faults, which can simultaneously consider the fault characteristics of the input and output
spaces for monitoring. Furthermore, Chen et al. [9] proposed a probability-related PCA
method for detecting incipient faults, which can greatly improve the detection ability of
minor faults. Probabilistic framework modeling can overcome process noise [10]. However,
the process monitoring methods currently proposed are all static methods, and the actual
production processes are dynamical featured with variable time lag [11,12].

Process dynamics could refer to the mutual influence before and after the current
sampling [13]. To deal with the dynamics of process, Ku et al. [14] built an augmented
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matrix and extended the static PCA model to the dynamic PCA (DPCA) for process
monitoring. However, the introduction of augmented matrix increases the parameter
dimensions called the curse of dimensionality [15]. Motivated by DPCA, Li et al. [16]
proposed a dynamic latent variable model for monitoring the Tennessee Eastman process.
In this model, the autoregressive model is used to extract data dynamic information, and
PCA is performed to reduce redundancy between variables. It divides variable order
reduction and dynamic information extraction into two stages, which makes the system
complex and not easy to tune. In addition, compared with process variables, quality
variables also contain useful fault information [17]. For this reason, Ge et al. [18] proposed
a supervised linear dynamic system model process monitoring method. This method uses
a first-order autoregressive equation to simulate the first-order dynamic [19] but does not
take the variable time lag into account.

Variable time lag refers to the delay between the effects of variables [20]. The existing
monitoring methods considering time lag are usually divided into two categories [21]. One
is to find the time lag between variables and translate the data to eliminate the time lag
and then establish a static process monitoring model for the processed data. For example,
Wang et al. [22] proposed a spatial reconstruction method to identify system time lag, then
aligned the data and established a monitoring model, but the alignment operation will
destroy the data structure and cause data loss. The other idea is to use time lag as an
unknown parameter of the process monitoring model and identify the parameters through
a data-driven method. For example, Huber et al. [23] proposed to take the time lag as a
parameter of a high-order state space system model and then solve it uniformly with the
model parameters, but this method relies on the setting of the time lag parameter and the
parameter identification method.

From the above discussions, it can be observed that the variable time lag characteristic
of a process makes the previous work unfavorable. However, this characteristic is common
in industrial processes [24,25]. To deal with this problem, this paper proposes a process
monitoring method based on a dynamic autoregressive latent variable model. Firstly, from
the data point of view, a linear dynamic model is constructed between process variables
and quality variables, and the dynamic information of process input and process output is
compressed to latent variables, and then a dynamic autoregressive latent variable model
(DALM) is constructed for latent variables to extract variable time lag information. In
addition, a fusion Bayesian filtering, smoothing and expectation maximization algorithm is
used to identify model parameters. Then, the DALM is applied to the industrial monitoring
process. The process variables are filtered through improved Bayesian filtering technology
to obtain the latent space distribution of the current state, and the T2 statistics of the latent
space are constructed and monitored [26] to realize the process monitoring task. The
main contribution can be concluded as (1) a process monitoring method based on dynamic
autoregressive latent variable model is proposed in this paper; (2) a dynamic autoregressive
latent variable model (DALM) is developed to extract variable time lag information; (3) a
fusion Bayesian filtering, smoothing and expectation maximization algorithm is improved
to identify model parameters; (4) based on the DALM, the T2 statistics of the latent space
are constructed to realize the process monitoring task.

The main structure of the paper is arranged as follows. In the second section, a
dynamic autoregressive latent variable model is proposed, and the parameter identification
algorithm of the model is derived in detail. A process monitoring method based on DALM
is proposed in the third chapter. The fourth section uses the monitoring method to monitor
the sintering process of the ternary cathode material to verify the monitoring performance
of the proposed method. Finally, the last section concludes.

2. Modeling Method Based on Dynamic Autoregressive Latent Variable Model

This section proposes a dynamic autoregressive latent variable modeling method for
the accurate modeling of dynamical industrial processes. Bayesian filtering and smoothing
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inference were used to obtain the spatial distribution of latent variables, and the parameters
of the model were identified by combining with the EM algorithm.

2.1. Dynamic Autoregressive Latent Variable Model Structure

In order to consider the dynamic characteristics of the process, the traditional proba-
bility latent variable model [27] establishes the relationship between the current moment
and the previous moment data, as shown in (1).

zt = Azt−1 + ηz
t ,

xt = Bxzt + ηx
t ,

yt = Byzt + η
y
t ,

(1)

where the structure consists of a linear Gaussian dynamic equation and two linear Gaussian
observation equations, zt is the latent variable of the process state at time t; xt and yt are
the process variable and quality variable at time t, respectively; A, Bx and By are their own
load matrix. The Gaussian dynamic equation is used to describe the dynamic relationship
of the process data. The observation equation compresses the information of the process
data into low-dimensional latent variables. Therefore, an accurate mathematical model can
be established for the dynamic process, but the structure does not consider the time lag
characteristics of the process.

In order to further consider the characteristics of process time lag, on the basis of
dynamic probabilistic latent variable model (DPLVM) [13], the trend similarity analysis
algorithm [22] was first used to obtain the time lag coefficient L of the current process,
and then an autoregressive equation was constructed for the latent variables to describe
the variable time lag information. Among them, the autoregressive equation models
the process dynamics and time lag characteristics, and the linear observation equation
models the cross-correlation of data. The probability graph model of the model is shown in
Figure 1, and the mathematical expression is shown in (2).

zt = Aht−1 + ηz
t ,

xt = Bxzt + ηx
t ,

yt = Byzt + η
y
t ,

(2)

where zt ∈ Rd represents the latent variable of the process state at time t, ht−1 =

[ zt−1
T zt−2

T · · · zt−L
T ]

T ∈ RdL is the augmented state variable containing the la-
tent variables at time L in the past, xt ∈ Rv is the observed value of the process variable
at time t, yt ∈ Rk is the observed value of the quality variable at time t and d, v, k, re-
spectively, correspond to the dimensions of latent variables, process variables and quality
variables. A ∈ Rd×dL is the state transition matrix, L is the time lag value of the process, and
Bx ∈ Rv×d, By ∈ Rk×d are the state divergence matrices. ηz

t ∈ Rd, ηx
t ∈ Rv, and η

y
t ∈ Rk

are Gaussian noise terms of latent variables, process variables and quality variables, respec-
tively. Assuming that the noises are independent of each other, the distributions obeyed are
ηz

t ∼ N(0, Σz), ηx
t ∼ N(0, Σx) and η

y
t ∼ N(0, Σy), respectively. Latent variables represent

the current state of the process, and this model is an extension of the traditional DPLVM.
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2.2. Parameter Identification Based on EM Algorithm

Since only xt and yt can be observed in the process, and latent variables are abstracted
to describe the state of the process and are unobservable, the EM algorithm was used to
identify the parameters of the model [28]. Each iteration of the EM algorithm consisted
of two steps: E step, seeking expectation (exception); M step, seeking maximization
(maximization). This section uses Bayesian filtering and smoothing to infer the spatial
distribution of latent variables, so as to solve the difficult problem of calculating latent
variable statistics.

Under the framework of probability, the model assumed that the latent variables at
the initial moment obeyed a Gaussian distribution with mean u0 and variance V0, that is,
z0, z−1, · · · , z1−L ∼ N(u0, V0). From the knowledge of probability theory [16], it is easy
to get that the distribution of the latent variable zt, the process variable xt and the quality
variable yt obey the Gaussian distribution, as shown in (3).

zt|zt−1, zt−2, · · · , zt−L ∼ N(A1zt−1 + A2zt−2 + · · ·+ ALzt−L, Σz),

xt|zt ∼ N(Bxzt, Σx),

yt|zt ∼ N(Byzt, Σy).

(3)

The parameters that needed to be identified were denoted as Θ =
{

A, Bx, By, u0, V0, Σz, Σx ,
Σy
}

, of which A = [A1, A2, · · · , AL]. According to the naive what you see is what you get
thought, the parameter identification problem was transformed into the maximum ob-
servation data x1:T , y1:T . The log-likelihood function on the parameter Θ is shown in (4),
where x1:T represents the observation sequence of the process variable x1, x2, · · · , xT , y1:T
represents the observation sequence y1, y2, · · · , yT of the quality variable, where T is the
total number of training samples, namely,

Θnew = arg max
Θ

log P(x1:T , y1:T |Θ). (4)

The EM algorithm [29] was used to solve the optimization problem of Equation (4). In
the E step of the EM algorithm, the log-likelihood function log P(x1:T , y1:T , z1−L:T |Θ) of the
complete data had to be calculated with respect to the conditional expectation of the latent
variable z1−L:T to obtain the objective cost function (Q function), as shown in (5).

Q
(

Θ|Θold
)
= Ez1−L:T | (x1:T ,y1:T ,Θold){log P(x1:T , y1:T , z1−L:T |Θ)}. (5)

Actually, the likelihood function can be formulated by the application of the product
rule of probability. From the model structure, the log-likelihood function of the complete
data was expanded, as expressed by (6).

log P
(

x1:T , y1:T , z(−L+1):T |Θ
)

= log
{

P(z0, z−1, · · · , z−L+1)
T
∏

t=1
P(zt|zt−1, zt−2, · · · , zt−L)P(xt|zt)P(yt|zt)

}
= log P(z0, z−1, · · · , z−L+1) +

T
∑

t=1
log P(zt|zt−1, zt−2, · · · , zt−L) +

T
∑

t=1
log P(xt|zt)

+
T
∑

t=1
log P(yt|zt).

(6)

For clear writing, we denote EzT ( f (xt, yt, zt)) = Ez1−L:T | (x1:T ,y1:T ,Θold)( f (xt, yt, zt)), then
the expectation of the complete data likelihood function log P(x1:T , y1:T , z(−L+1):T |Θ) with
respect to the latent variable distribution P(z(−L+1):T |x1:T , y1:T , Θold) is shown in (7).
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Q
(

Θ|Θold
)
= EzT{log p(x1:T , y1:T , z1−L:T |Θ)}

= − 1
2

log |V0|+ EzT


 z0

...
z−L+1


T

V−1
0

 z0
...

z−L+1


− 2EzT


 z0

...
z−L+1


TV−1

0 u0 + uT
0 V−1

0 u0


− 1

2

T log |Σz|+
T
∑

t=1

EzT

(
zT

t Σ−1
z zt

)
− 2EzT


 zt−1

...
zt−L


T

ATΣ−1
z zt

+ EzT


 zt−1

...
zt−L


T

ATΣ−1
z A

 zt−1
...

zt−L






− 1
2

{
T log |Σx|+

T
∑

t=1

{
xT

t Σ−1
x xt − 2EzT

(
zT

t
)
Bx

TΣ−1
x xt + EzT

(
zT

t Bx
TΣ−1

x Bxzt
)}}

− 1
2

{
T log |Σy|+

T
∑

t=1

{
yT

t Σ−1
y yt − 2EzT

(
zT

t
)
By

TΣ−1
y yt + EzT

(
zT

t By
TΣ−1

y Byzt

)}}
+ cons tan t.

(7)

Appendix A provides a detailed update of all parameters at step M. From (7), the related

statistics of latent variables in the Q function include EzT (zt), EzT

(
ztzT

t
)

and EzT

(
ztzT

t−i

)
, where

t = 0, 1, · · · , T, i = 1, 2, · · · , L, in fact, these statistics can be passed. The posterior probability
distribution of the latent variables obtained in the E step of the EM algorithm was obtained. The
calculation results of these statistics are shown in (8). The detailed derivation process is shown in
Appendix B.

EzT (zt) = E
(

zt|x1:T , y1:T , Θold
)
= m1

t

EzT

(
ztzT

t
)
= E

(
ztzT

t |x1:T , y1:T , Θold
)
= M11

t + m1
t
(
m1

t
)T

EzT

(
ztzT

t−i

)
= E

(
ztzT

t−i|x1:T , y1:T , Θold
)
= M1(i+1)

t + m1
t

(
m(i+1)

t

)T

EzT

(
ztzT

t−L
)
= E

(
ztzT

t−L|x1:T , y1:T , Θold
)
=

L
∑

i=1
Ai

(
MiL

t−1 + mi
t−1
(
mL

t−1
)T
)

, (8)

where mt and Mt are the mean and covariance of the posterior probability distribution of the latent
variable. Therefore, through E step and M step iterative update until the parameters converge, the
optimized parameter set Θopt =

{
A, Bx, By, u0, V0, Σz, Σx, Σy

}
can be obtained.

3. Process Monitoring Method Based on Dynamic Autoregressive Latent
Variable Model

In this section, the established dynamic autoregressive latent variable model is used for indus-
trial process monitoring. At first, DALM was used to model the process data so that the current state
information was reflected in the latent variables, and then the latent space at the current time was
obtained by filtering the process data distribution, constructing statistics and monitoring them. Let
us introduce the monitoring process in detail below.

Although the latent space was unobservable, the establishment of a data-driven DALM model
based on the characteristics of the process data extracted the information of the process variables
to the spatial distribution of the latent variables. The process input X = [x1, x2, · · · , xN ] and output
Y = [y1, y2, · · · , yN ] needed to be pre-processed by the normalization method, as shown in (9).

Xq = (x− ux)·std−1
x ,

Yq = (y− uy)·std−1
y ,

(9)

where ux and uy are the means of the variables X and Y, stdx and stdy are the variances of the
variables X and Y. Preprocessed data were filtered through the filtering algorithm to obtain the
spatial distribution of the latent variables, as shown in (10).

zt
q, zt−1

q, · · · , zt−L+1
q|x1:t

q, y1:t
q ∼ N(ut

q, Vt
q) = N


 u1

t
q

...
uL

t
q

,


V11

t
q · · · V1L

t
q

...
. . .

...

V(L)1
t

q · · · VLL
t

q


. (10)
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Among them, ut
1q and Vt

11q are the mean and variance of the latent space distribution, respec-
tively, which were obtained from (11). The detailed derivation process is shown in (A12)–(A16).

ut
1q = g1

t +
[

G1(L+1)
t G1(L+2)

t

][ G(L+1)(L+1)
t G(L+1)(L+2)

t

G(L+2)(L+1)
t G(L+2)(L+2)

t

][
xt − gL+1

t
yt − gL+2

t

]
,

Vt
11q =

[
G11

t · · · G1L
t
]
−
[

G1(L+1)
t G1(L+2)

t

][ G(L+1)(L+1)
t G(L+1)(L+2)

t

G(L+2)(L+1)
t G(L+2)(L+2)

t

]−1


G1(L+1)
t G1(L+2)

t
...

...

GL(L+1)
t GL(L+2)

t


T

.

(11)

It can be seen from (A24) that the information of the data Xt
q = [xq

1, xq
2, · · · , xq

t ] and Yt
q =

[yq
1, yq

2, · · · , yq
t ] at the current and previous moments was filtered into the current latent variable, and

the latent variable distribution at the current moment is shown in (12).

zt
q|x1:t

q, y1:t
q ∼ N(u1

t
q, V11

t
q). (12)

Because the latent space contains the current state of the process dynamics and variable time
lag information, the process statistic T2 was constructed for the current latent variable at time t, as
shown in (13).

T2
t,q = E(zt

q|x1:t
q, y1:t

q)Tcovariance(zt
q|x1:t

q, y1:t
q)−1E(zt

q|x1:t
q, y1:t

q). (13)

Among them, the mathematical expectation and variance of the latent variables on the observa-
tion data at the current moment are shown in (14).

E(zt
q|x1:t

q, y1:t
q) = u1

t
q,

covariance(zt
q|x1:t

q, y1:t
q) = V11

t
q.

(14)

The probability of the latent variable obeyed the Gaussian distribution. Therefore, according
to the definition of chi-square distribution, this statistic obeyed the chi-square distribution χ2

α(d)
after data preprocessing. Then, combining to the latent variable dimension d of the model and the
significance level α required by the industry, the control threshold T2

lim of the process monitoring
method was obtained, and then the statistics of each time data were calculated online and compared
with the control threshold, to determine whether the process deviated from the normal state. The
process monitoring logic is determined by (15).

T2
t,q < T2

lim = χ2
α(d). (15)

Too large an α value will lead to a high false alarm rate, and too low an α will lead to a high false
alarm rate; therefore, in practice, it is a balance between false alarms and missed alarms. This paper
chose α as 0.01, which means that the false positive rate of normal data was 0.01. If T2

t,q < T2
lim, the

system was in a normal state. Otherwise, the process located in a fault state, and further diagnosis
and identification of the fault was required for process maintenance. The process of DALM modeling
and online process monitoring is shown in Figure 2.

The main steps of the process monitoring method based on the DALM model were as follows:
Step 1: Collect process data, divide the training and test data sets and standardize them.
Step 2: Use the training data set to learn the parameters of the DALM model.
Step 3: Build the model and determine the control threshold.
Step 4: Filter the process data online to get the latent space distribution at the current moment.
Step 5: Calculate statistics and compare with the control threshold to determine whether the

process is abnormal.
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4. Case Study on the Sintering Process of Ternary Cathode Materials
In this section, the proposed process monitoring method based on the dynamic autoregressive

latent variable model is used to monitor the sintering process of ternary cathode materials to verify
the effectiveness of the method. First the sintering process technology of the ternary cathode material
was introduced, then the model structure and parameter determination were introduced in detail,
and finally the performance of the model was evaluated.

4.1. Introduction to the Sintering Process of Ternary Cathode Materials
The rapid development of the new energy industry has led to an extremely urgent demand

for high-quality ternary cathode materials, and the sintering process of battery materials is the core
and key process of battery preparation. This process consists of a series connection of a heating
section, a constant temperature section and a cooling section, as shown in Figure 3. The optimal
production state of a single temperature section cannot guarantee that the product performance
indicators of the entire sintering process are within the optimal range; at the same time, changes
in the sintering process, such as environmental humidity or temperature, also affect the stability of
product performance indicators. In order to ensure the stability of product performance indicators as
much as possible, while reducing energy consumption and material consumption, it is necessary to
adjust the sintering parameters of the kiln according to the sintering state in real time, which leads to
many variables in each temperature zone and series coupling, which makes the process data present
complex process characteristics [29].
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The temperature field in the sintering process has a significant effect on the material properties.
Over-firing will cause changes in the material morphology and internal structure, and under firing
will not provide sufficient activation energy for chemical reactions. However, the decomposition
reaction that occurs in the heating section is an endothermic process and requires sufficient heat
supply, otherwise a reverse reaction will occur, resulting in inefficient water removal, which will
affect the subsequent oxidation reaction. Therefore, the state of the heating section is very important
to the sintering process. At the same time, the residual lithium content can directly reflect the quality
of the product. In order to monitor the process status in real time, a monitoring model is established
for the temperature and residual lithium content of the heating section.

Huang et al. [30] established a temperature field monitoring model based on the PBF equip-
ment equation to monitor the dynamic sintering process of parts, but this method requires precise
grinding tool structure parameters and can only monitor uniformly distributed temperature fields.
Egorova et al. [31] tried to combine neural networks and PCA diagnosis method monitor and di-
agnose the sintering process. This method can locate the fault and diagnose the cause of the fault.
However, the introduction of neural networks increases the time and space complexity of the system
and ignores the system dynamic and time lag problems.

Due to the severe temperature interval coupling, the process variables exhibit complex charac-
teristics, making the traditional static monitoring methods unable to achieve accurate monitoring
results. The dynamic autoregressive latent variable model proposed in this section considers the
dynamic and time lag information of the process at the same time, so it is more in line with the
sintering process.

4.2. Determination of Model Parameters
This section establishes a monitoring model for the temperature and product quality in the

heating section of the sintering process. The heating section contained seven temperature zones, and
each temperature zone had two upper and lower temperature measuring points, but the temperature
changes in the 4th to 7th temperature zones were not obvious. The temperature of the first three
temperature zones was selected as the process variable xt of the model. At the same time, the residual
lithium content of the product reflects the quality of the battery, as does the quality variable yt of the
model, Table 1 lists the physical meaning of these variables.

Table 1. Selected variables in the sintering process.

No. Measured Variables

1 Below temperature of 1st zone
2 Upper temperature of 1st zone
3 Below temperature of 2nd zone
4 Upper temperature of 2nd zone
5 Below temperature of 3rd zone
6 Upper temperature of 3rd zone
7 Lithium loss coefficient

To test the monitoring effect of the model under different faults, a total of 2200 continuous time
data samples were collected on site with a sampling period of five minutes. The process included
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a total of three types of faults such as over-temperature, under-temperature and shutdown. For
detailed status information, see Table 2.

Table 2. Process data description.

Date Types Data Description Time Durations

Normal Normal data 1st–1000th

Fault 1 Normal samples in 1001st–1200th and abnormal samples of 3rd zone
temperature rise in 1201st–1400th 1001st–1400th

Fault 2 Normal samples in 1401st–1600th and abnormal samples of 3rd zone
temperature drop in 1601st–1800th 1401st–1800th

Fault 3 Normal samples in 1801st–2000th and abnormal samples of
downtime fault in 2001st–2200th 1801st–2200th

First, analyze the dynamics of the data and the time lag characteristics of the variables from the
data point of view. Figure 4 shows the autocorrelation and cross-correlation diagrams of process data.
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Figure 4. Correlation plots for the first four process variables.

Figure 4 shows the correlation and cross-correlation between the first four process variables.
The value at time 0 in each figure represents the cross-correlation between variables; the value at
non-zero time shows the autocorrelation between variables under different time lags. It is worth
mentioning that the cross-correlation index can measure the redundancy of variable information, and
the autocorrelation index can indirectly measure the dynamic and time delay information between
variables. It can be seen that the cross-correlation performance between the variables was above 0.5,
indicating that there was strong redundant information between the variables. At the same time,
even if there was a difference of 10 sampling times, the autocorrelation between the variables was
still very high, indicating that there were time lags and dynamic characteristics between the variables.
Therefore, the establishment of a DALM model for the process can be considered. The emission
equation of the model extracts the redundant information of the data, and the autoregressive equation
of the model extracts the dynamic and time lag information of the variables. This paper uses the
trend similarity algorithm, which constructs the trend similarity function according to the time lag
feature and solves it, to determine the time lag coefficient, that is, L = 3.

To verify the rationality of the time lag coefficient, under different time lag coefficients, a
dynamic autoregressive latent variable monitoring model was established respectively. Note: In order
to avoid the latent variable dimension from interfering with the selection of the time lag coefficient the
latent variable dimension selected by Akaike information criterion (AIC) was temporarily used [32].
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The false alarm rate (false alarm rate, FAR) and fault detection rate (fault detection rate, FDR) were
defined to evaluate and monitor performance indicators, as defined in (16).

FAR =
NFAR

Nn
FDR =

NFDR
N f

. (16)

NFAR represents the number of normal samples that were mistakenly detected as abnormal by
the monitoring method, and Nn is the number of all normal samples. NFDR represents the number
of fault samples correctly monitored by the monitoring method, N f is the number of all abnormal
samples. Therefore, the closer the FAR is to the significance level, the better, and the closer the FDR is
to 1, the better. The significance level of this work was set to 0.01.

The first 1000 normal samples were selected to train the model, and the data type fault 1 was
used to test the monitoring effect of the model. Table 3 shows the indicators of the monitoring results
of the new method under different time lag coefficients.

Table 3. FAR and FDR under different time lag.

Time Lag 2 3 4 5

FAR 0.165 0.050 0.270 \
FDR 0.665 1.000 0.905 \

The model did not converge when the time lag coefficient was 5, and when the model time lag
coefficient was 3, the error and false alarm rate of the model were the best. Therefore, when the time
lag coefficient was 3, the model gave the best performance. In order to visually see the monitoring
results of the model, Figure 5 shows the monitoring T2 diagram when the model’s time lag coefficient
was 2, 3 and 4.
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It can be seen from Figure 5 that when the model time lag coefficient was 2 and 4, it was easy to
misclassify the sample. Especially in the fault interval of 201st–400th: the divided normal samples
and abnormal samples were close to the monitoring threshold, which shows that the robustness of
the model with this time lag is low; when the model had a time lag coefficient of 3, it is insensitive to
the noise and the false alarms are the smallest. Hence, its NFAR and NFDR were the best. Therefore,
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the time lag coefficient obtained by the trend similarity identification algorithm enabled the model to
obtain a better monitoring effect.

Next, the latent variable dimension was determined. The latent variable dimension is the result
of comprehensively considering the complexity and accuracy of the model. The root mean square
error (RMSE) is an indicator to measure the accuracy of the model. The expression is shown in (17).

RMSE =

√√√√ N

∑
i=1

|yi − ŷi|
N

, (17)

where N is the number of test samples, ŷi is the prediction of the true value yi and yi is the mean
value of the true value of the test sample. Samples from the 1st to the 600th were used to train the
model, and samples from the 601st to the 1000th were used as the test set. Table 4 shows the root
mean square error of model prediction under different latent variable dimensions.

Table 4. RMSE under different latent variable dimensions.

Number of Latent Variables 1 2 3 4 5

RMSE 0.123 0.08 0.045 0.042 0.042

Table 4 shows that the prediction performance of the model tends to be stable after the latent
variable dimension increased to 3, which was the balance point between model complexity and
accuracy. It is worth mentioning that under the time lag coefficient, the latent variable dimension
selected by the AIC algorithm was also 3, so the latent variable dimension was determined to be 3.

4.3. Model Performance Test
This section verifies the effect of the proposed monitoring method, and constructs a first-order

dynamic process monitoring method: DPLVM [18] and static process monitoring method: PPLSR [33],
which were used to compare with the proposed method. The latent variable dimensions of the model
were adjusted to 3.

The first 1000 normal samples were used to train the parameters of the model, and the trained
model was monitored for three types of different fault samples. In order to distinguish between
normal and abnormal samples, the first 200 samples of each type of failure test set were normal
samples, and the last 200 samples were their respective failure samples. Table 5 shows the FAR and
FDR of different monitoring methods under different failure test sets, and the last line calculates the
average value of different indicators.

Table 5. FAR and FDR of the three methods under different fault cases.

Faults
PPLSR DPLVM DALM

FAR FDR FAR FDR FAR FDR

Fault 1 0.240 0.120 0.210 0.795 0.050 1.000
Fault 2 0.100 0.350 0.155 0.810 0.045 1.000
Fault 3 0.315 0.980 0.080 0.770 0.045 1.000

Average 0.218 0.483 0.148 0.792 0.047 1.000

It can be seen from Table 5 that the monitoring performance of the proposed method was
better than that of the static model PPLSR and the first-order dynamic model DPLVM. Therefore,
the detection performance was greatly improved after the autoregressive equation was added to
the model to extract the dynamic and time lag information. Compared with the basic first-order
dynamic DPLVM fault detection method, DALM considered the time lag characteristics, so the model
performance was further improved. The detailed monitoring results of the three methods for the
three types of faults are shown in Figures 6–8.
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Figure 6. Monitoring results of fault 1. (a) T2 of PPLSR in fault 1; (b) T2 of DPLVM in fault 1; (c) T2 of
DALM in fault 1.
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Figure 7. Monitoring results of fault 2. (a) T2 of PPLSR in fault 2; (b) T2 of DPLVM in fault 2; (c) T2 of
DALM in fault 2.

For each type of fault test set, the first 200 samples were in a normal state, and the last
200 samples were fault samples. It can be seen from Figure 8 that the static model PPLSR eas-
ily mistakenly classified normal samples into faulty samples, and it also easily classified faulty
samples into normal samples. The error rate of the first-order dynamic model DPLVM was reduced a
lot. Furthermore, the FAR based on the DALM fault detection method proposed in this paper was
close to the significance level and the FDR was close to 1, verifying that its monitoring performance
was greatly improved.
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Figure 8. Monitoring results of fault 3. (a) T2 of PPLSR in fault 3; (b) T2 of DPLVM in fault 3; (c) T2 of
DALM in fault 3.

5. Conclusions
A process monitoring method based on the dynamic autoregressive latent variable model was

proposed in this paper. Compared with the traditional DPLVM monitoring method, this method
not only considered the dynamic characteristics of the process but also considered the complex time
lag characteristics, integrated the time lag information into the model, and greatly improved the
monitoring performance of the model in the time lag process. First, from the point of data, this
method established a dynamic autoregressive latent variable model to adopt the characteristics
of dynamics and variable time lag. Then a fusion Bayesian filtering, smoothing and expectation
maximization algorithm was used to identify model parameters. Then, on the basis of the identified
model, the improved Bayesian filtering technique was used to infer the latent variable distribution of
the process state, and the T2 statistic was constructed for the latent space and online monitoring is
performed. Finally, the proposed method was applied to the monitoring of the sintering process of
ternary cathode materials. Through industrial case studies, the modeling and monitoring results of
the proposed method show that the DALM model was better than the static and first-order dynamic
modeling process monitoring methods.

An important issue for process monitoring application in industrial processes is the multi-
sampling rate problem. The method proposed in this paper assumed that the input and output
data had the same sampling rate. If the sampling rate was inconsistent, some data were deleted by
down-sampling. However, a more worthwhile way to try would be to combine semi-supervised
learning methods, which can train data on unbalanced input and output data, thereby improving
data utilization. Another practical problem is the non-linear relationship between process data,
which is very common in industrial processes. How to effectively deal with this problem is worthy
of further research in the near future to make the monitoring method more applicable.
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Appendix A. Detailed Derivation of the M-Step

According to the EM algorithm, all the parameters of the DALM model can be updated in M

steps. By maximizing the cost function Q
(

Θ|Θold
)

, the estimated value Θnew of the next iteration
parameter was determined, which is shown in (A1).

Θnew = argmax
Θ

Q(Θ|Θold). (A1)

The Q function was applied to the partial derivative of the model parameters and the derivative
was set to zero.

∂Q(Θ|Θold)

∂Θ
= 0. (A2)

The updated value of the model parameter Θnew was obtained, as shown in (A3)–(A10).
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t

)]−1

, (A8)

Σnew
z =

1
T

T

∑
t=1

(
xtxT

t − 2Bnew
x EzT (zt)xT

t + Bnew
x EzT

(
ztzT

t

)
Bnew

x
T
)

, (A9)

Σnew
y =

1
T

T

∑
t=1

(
yty

T
t − 2Bnew

y EzT (zt)yT
t + Bnew

y EzT

(
ztzT

t

)
Bnew

y
T
)

. (A10)

The updated parameter set Θnew =
{

Anew, Bnew
x , Bnew

y , unew
0 , Vnew

0 , Σnew
z , Σnew

x , Σnew
y

}
, E steps

and M steps were iterated until the parameter Θ matrix converged, that is, satisfied (A11), where ς is
a sufficiently small constant, and the model parameter identification was completed.

||Θnew −Θold|| < ς. (A11)
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Among them, Θold is the parameter of the last iteration, and Θnew is the parameter after this
round of iteration. Only when the parameters obtained by two adjacent identifications converged
did the algorithm stop calculating. Therefore, the parameter convergence can be guaranteed by the
EM algorithm itself.

Appendix B. Detailed Derivation of the E-Step

In order to determine the statistics EzT (zt), EzT

(
ztzT

t
)

and EzT

(
ztzT

t−i

)
, the forward and back-

ward algorithm were employed. This is an iterative calculation method, which includes the forward
filtering and backward correction step.

In the Bayesian filtering stage, the goal was to calculate the posterior probability of the latent
variable [zt, zt−1, · · · , zt−L+1] with respect to the variable x1:t, y1:t at time t, given the posterior distri-
bution zt−1, zt−2, · · · , zt−L|x1:t−1, y1:t−1 ∼ N(ut−1, Vt−1) of the latent variable [zt−1, zt−2, · · · , zt−L]
at the previous time t − 1 on the variable x1:t−1, y1:t−1, as shown in (A12) where 1 ≤ t ≤ T,

zt, zt−1, · · · , zt−L+1|x1:t, y1:t ∼ N(ut, Vt) = N


 u1

t
...

uL
t

,

 V11
t · · · V1L

t
...

. . .
...

VL1
t · · · VLL

t


. (A12)

The joint probability distribution of the latent variables [zt, zt−1, · · · , zt−L+1] and xt, yt with
respect to the variable x1:t−1, y1:t−1 is shown in (A13).

zt, zt−1, · · · , zt−L+1, xt, yt|x1:t−1, y1:t−1 ∼ N(gt, Gt)

= N




g1
t
...

gL+2
t

,


G11

t · · · G1(L+2)
t

...
. . .

...

G(L+2)1
t · · · G(L+2)(L+2)

t


.

(A13)

The parameters of (A13) can be calculated by (A15)

g1
t = E

(
zt|x1:t−1, y1:t−1

)
= Aut−1

gi
t = E

(
zt−i+1|x1:t−1, y1:t−1

)
= ui−1

t−1

gL+1
t = E

(
xt|x1:t−1, y1:t−1

)
= Cg1

t

gL+2
t = E

(
yt|x1:t−1, y1:t−1

)
= Pg1

t

, (A14)



G11
t = cov

(
zt, zt|x1:t−1, y1:t−1

)
= Aut−1AT + Σz

G1i
t = cov

(
zt, zt−i+1|x1:t−1, y1:t−1

)
= A


V1(i−1)

t−1
...

VL(i−1)
t−1


Gi1

t =
(

G1i
t

)T

Gij
t = cov

(
zt−i+1, zt−j+1|x1:t−1, y1:t−1

)
= V(i−1)(j−1)

t−1

G(L+1)k
t = cov

(
xt, zt−k+1|x1:t−1, y1:t−1

)
= BxG1k

t

G(L+1)k
t =

(
Gk(L+1)

t

)T

G(L+2)k
t = cov

(
yt, zt−k+1|x1:t−1, y1:t−1

)
= ByG1k

t

G(L+2)k
t =

(
Gk(L+2)

t

)T

G(L+1)(L+1)
t = cov

(
xt, xt|x1:t−1, y1:t−1

)
= BxG11

t Bx
T + Σx

G(L+1)(L+2)
t = cov

(
xt, yt|x1:t−1, y1:t−1

)
= BxG11

t By
T

G(L+2)(L+1)
t =

(
G(L+2)(L+1)

t

)T

G(L+2)(L+2)
t = cov

(
yt, yt|x1:t−1, y1:t−1

)
= ByG11

t By
T + Σy

, (A15)
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where i = 2, 3, · · · , L; j = 2, 3, · · · , L; k = 1, 2, · · · , L, therefore, according to the knowledge of
conditional probability [34] and Appendix C, the mean value and variance of the latent variable filter
distribution zt, zt−1, · · · , zt−L+1|x1:t, y1:t ∼ N(ut, Vt) were calculated as shown in (A16).

ut =

 g1
t
...

gL
t

+


G1(L+1)

t G1(L+2)
t

...
...

GL(L+1)
t GL(L+2)

t


[

G(L+1)(L+1)
t G(L+1)(L+2)

t

G(L+2)(L+1)
t G(L+2)(L+2)

t

]−1[
xt − gL+1

t
yt − gL+2

t

]
,

ut =


G11

t · · · G1L
t

...
. . .

...
GL1

t · · · GLL
t

−


G1(L+1)
t G1(L+2)

t
...

...

GL(L+1)
t GL(L+2)

t


[

G(L+1)(L+1)
t G(L+1)(L+2)

t

G(L+2)(L+1)
t G(L+2)(L+2)

t

]−1


G1(L+1)
t G1(L+2)

t
...

...

GL(L+1)
t GL(L+2)

t


T

.

(A16)

In the Bayesian smoothing stage, the goal was to calculate the posterior probability
zt+1, zt, · · · , zt−L+2|x1:T , y1:T ∼ N(mt+1, Mt+1) of the latent variable [zt+1, zt, · · · , zt−L+2] with
respect to the variable x1:T , y1:T at time t + 1 to calculate the posterior probability of the latent variable
[zt, zt−1, · · · , zt−L+1] with respect to the variable x1:T , y1:T at time t, as shown in (A17).

zt, zt−1, · · · , zt−L+1|x1:T , y1:T ∼ N(mt, Mt) = N


 m1

t
...

mL
t

,

 M11
t · · · M1L

t
...

. . .
...

ML1
t · · · MLL

t


, (A17)

where 0 ≤ t ≤ T, T, there is mT = uT , MT = VT . In order to calculate the distribution, first, the
posterior distribution of the latent variable [zt+1, zt, · · · , zt−L+1] was calculated with respect to the
variable x1:t, y1:t, as shown in (A18).

zt+1, zt, · · · , zt−L+1|x1:t, y1:t ∼ N(dt, Dt) = N




d1
t
...

dL+1
t

,


D11

t · · · D1(L+1)
t

...
. . .

...

D(L+1)1
t · · · D(L+1)(L+1)

t


. (A18)

The parameter calculation of (A18) is shown in (A19)–(A20).

d1
t = E(zt+1|x1:t, y1:t) = Aut

di
t = E(zt−i+2|x1:t, y1:t) = ui−1

t

D11
t = cov(zt+1, zt+1|x1:t, y1:t) = AVtAT + ΣQ

D1i
t = cov(zt+1, zt−i+2|x1:t, y1:t) = A


V1(i−1)

t
...

VL(i−1)
t


Di1

t =
(

D1i
t

)T

Dij
t = cov

(
zt−i+2, zt−j+2|x1:t, y1:t

)
= V(i−1)(j−1)

t

, (A19)

where i = 2, 3, · · · , L + 1; j = 2, 3, · · · , L + 1, and then the following distribution was calculated.

P(zt−L+1|zt+1, zt, · · · , zt−L+2, x1:T , y1:T) = P(zt−L+1|zt+1, zt, · · · , zt−L+2, x1:t, y1:t) = N(rt, Rt). (A20)
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According to the knowledge of conditional probability [34] and Appendix C. The calculation of
its mean and variance is shown in (A21).

rt = dL+1
t +


D1(L+1)

t
...

DL(L+1)
t


T

D11
t · · · D11

t
...

. . .
...

DL1
t

... DLL
t


−1

zt+1 − d1
t

...
zt−L+2 − dL

t

,

Rt = D(L+1)(L+1)
t −


D1(L+1)

t
...

DL(L+1)
t


T D11

t · · · D11
t

...
. . .

...
DL1

t · · · DLL
t


−1

D1(L+1)
t

...

DL(L+1)
t

.

(A21)

The posterior probability of the latent variable [zt+1, zt, · · · , zt−L+1] was obtained with respect
to the variable x1:T , y1:T as shown in (A22).

P(zt+1, zt, · · · , zt−L+1|x1:T , y1:T)

= P(zt+1, zt, · · · , zt−L+2|x1:T , y1:T)P(zt−1|zt+1, zt, · · · , zt−L+2, x1:T , y1:T)

= N(ht, Ht) = N




h1
t
...

hL+1
t

,


H11

t · · · H1(L+1)
t

...
. . .

...

H(L+1)1
t · · · H(L+1)(L+1)

t


.

(A22)

The mean and variance of the distribution were calculated as shown in (A23).

ht =


mt+1

K


m1

t+1 − d1
t

...
mL

t+1 − dL
t

+ dL+1
t

 ,

Ht =

[
Mt+1 Mt+1KT

KMt+1 KMt+1KT + Rt

]
where K =


D1(L+1)

t
...

DL(L+1)
t


T

D11
t · · · D11

t
...

. . .
...

DL1
t

... DLL
t


−1

.

(A23)

According to the Bayesian smoothing rule [31], the smooth distribution of the latent variable
was obtained, as shown in (A24).

zt, zt−1, · · · , zt−L+1|x1:T , y1:T ∼ N(mt, Mt). (A24)

The calculation of its mean and variance is shown in (A25).

mt =


h2

t
...

hL+1
t

 Mt =


H22

t · · · H2(L+1)
t

...
. . .

...

H(L+1)2
t · · · H(L+1)(L+1)

t

. (A25)

Appendix C. Properties of Gaussian Distribution

Definition A1. (Gaussian distribution) A random variable x ∈ Rn has a Gaussian distribution with mean
m ∈ Rn and covariance P ∈ Rn×n if its probability density has the form.

N(x|m, P) =
1

(2π)n/2|P|1/2
exp

(
−1

2
(x−m)TPT(x−m)

)
, (A26)

where |P| is the determinant of the matrix P.

Lemma A1. (Joint distribution of Gaussian variables) If random variables x ∈ Rn and y ∈ Rm have the
Gaussian probability distributions.

x ∼ N(m, P),
y|x ∼ N(Hx + u, R).

(A27)
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then the joint distribution of x,y and the marginal distribution of y are given as (A28).(
x
y

)
∼ N

((
m

Hm + u

)
,
(

P PHT

HP HPHT + R

))
,

y ∼ N(Hm + u, HPHT + R).
(A28)

Lemma A2. (Conditional distribution of Gaussian variables) If the random variables x and y have the joint
Gaussian probability distribution.(

x
y

)
∼ N

((
a
b

)
,
(

A C
CT B

))
. (A29)

then the marginal and conditional distributions of x and y are given as follows:

x ∼ N(a, A),

y ∼ N(b, B),

x|y ∼ N(a + CB−1(y− b), A−CB−1CT),

y|x ∼ N(b + CTA−1(x− a), B−CTA−1C).

(A30)
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