
machines

Article

New FMEA Risks Ranking Approach Utilizing Four Fuzzy
Logic Systems
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Abstract: Process equipment and plant maintenance problems are complex in the oil refinery business,
since effective maintenance needs to ensure the reliability and availability of the plant. Failure Mode
and Effects Analysis (FMEA) is a risk assessment tool that aims to determine possible failure modes,
and to reduce the ratio of unknown failure modes, by identifying business-critical systems and the
risks of their failures. For the identified failure modes, FMEA determines risk mitigation action(s). The
goal is to prevent failure and keep assets and plants running at peak performance by providing fully
integrated operations, maintenance, turnarounds, modifications, and asset integrity solutions, during
all phases of the asset life cycle. This research was based on FMEA use/application in refineries’
units, and proposes the new fuzzy FMEA risk quantification approach method: “four fuzzy logic
system”. The model included a pre-assessment, by sets of fuzzy logic systems, that examined the
input parameters that affected the variables of severity, occurrence, and detectability. The proposed
model prioritized risks better and addressed the drawbacks of the conventional FMEA method.

Keywords: FMEA; fuzzy logic; RPN

1. Introduction

What is a risk? A risk is an effect of uncertainty on an objective, as defined by ISO
31000:2009. Organizations of all types and sizes are faced with internal and external
factors and influences that make it uncertain whether and when they will achieve their
objectives [1]. One of the basic building blocks of a facility integrity management program
is the ability to comprehend and manage risk effectively. The aim is to establish a balance
between taking risks and the benefits that are obtained from a particular activity. The
process of understanding risk implies not only the specific causes of risk, but also the
possible effects that are relevant to them. This can be manifested in the form of safety,
health, environment, business impacts, damage to equipment, or a combination of the
above. An understanding of risk also ought to include an overall, or at least a general,
knowledge of the intended process of assessing risk [2]. Thus, risk assessment can be
defined as the general process of identifying, analyzing and evaluating risk. Risks can be
assessed at the level of organization, department, project, or activity, or they can be rather
specific, hence requiring different and various tools and techniques in terms of managing
risks in different contexts [3].

Risk is a subjective concept that takes into account both the uncertainty and limitations
of the existing know-how, as well as the attempts to predict a reliable outcome of an event.
It cannot be measured physically, but presents an estimate of how likely an event and its
consequences would be. Mathematically speaking, a risk is the product of the likelihood or
probability of the occurrence of an undesired event and its consequences [2].

Failure Mode and Effects Analysis (FMEA) is essential in supporting reliability pro-
grams in almost every industry throughout the globe. Regardless of what industry one
is involved in: aerospace, medical, appliances, electronics, automotive, chemical, energy,
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services, information, and so on, FMEA is a crucial instrument, as it is highly reliable,
ensures safety, and assists in achieving customer satisfaction. Reliability-Centered Main-
tenance (RCM) is the analytical process that many companies use to establish the terms
of preventive maintenance (PM) and to ensure the safe and feasible operation of any sys-
tem. The core of any RCM project is an FMEA on selected manufacturing or operational
equipment [4].

In a paper published in the Machines journal, S. Okwuobi et al. [5] emphasized the
importance of the application of reliability-centered maintenance (RCM) for improved
productivity via establishing optimal and efficient preventive maintenance (PM) programs,
using FMEA as a tool. Drawbacks were discovered regarding the reporting of malfunctions
by the workshop floor when the causes of a malfunction could not be determined on a piece
of equipment (input from the workshop floor on failure causes that are not determined on
the machine). Lacking data, the research did not result in a more detailed failure analysis.
The conventional approach of performing an FMEA analysis was applied.

FMEA is defined as a method designed to: identify and comprehend potential failure
modes with their specific causes, as well as the consequences of system failure; assess
the risk associated with the established failure modes, effects, and causes, and prioritize
corrective activities; identify and implement corrective actions to mitigate risks [4]. FMEA
also is used in the reliability and safety evaluations of complex systems to determine the
effects of component failures on system operation. This risk assessment tool assumes
a failure mode that happens in a system/component through some failure mechanism;
after this, the failure effect is evaluated. The Risk Priority Number (RPN) is the FMEA
ranking system that prioritizes mitigation actions for every one of the identified failure
modes. RPN is a result of the multiplication of the probability of severity (S), occurrence
(O) and detectability (D).

Traditional FMEA has been criticized for having several drawbacks in practical ap-
plications, especially in risk assessment which is carried out through RPN. Therefore, the
literature mentions many alternative approaches to solve some of the shortcomings of the
conventional RPN method, to improve the success of FMEA. A detailed and comprehensive
literature review was reported by a group of authors H. C. Liu, L. Liu, and N. Liu [6],
where they studied 75 FMEA papers that were published in international journals, and
categorized them according to the approaches that were used to manage the drawbacks
of the conventional RPN method. The paper indicated the current trends in research,
and serves as a useful guideline for further research, addressed to identify shortcomings
connected to the traditional FMEA. The paper summarizes all the deficiencies of FMEA
analysis: the relative importance among S, O and D is not taken into consideration; different
combinations of S, O and D may result in exactly the same value of RPN, yet their hidden
risk implications might differ; it is challenging to evaluate the three risk factors precisely;
the mathematical formula for calculating RPN is open to doubt; the conversion of scores is
different for the three risk factors; the RPN cannot be utilized for measuring the success
ratio of corrective actions; the model fails to take into account the interdependencies among
different failure modes and their consequences; the mathematical formula for calculating
the RPN is highly sensitive to variations in risk factor evaluations.

The failure mode prioritization method approach, according to the reviewed literature,
can be generally placed into one of five main categories, namely: (1) multi-criteria decision
making (MCDM) [7–12]; (2) mathematical programming (MP) [13]; (3) artificial intelligence
(AI) [14–21]; (4) hybrid approaches [22,23]; (5) cost-based models as an additional factor in
decision making [24,25]. From the literature, the input parameters for the proposed models
have used the conventional approach of FMEA analysis, taking into account the uncertainty
of the assessment of risk variables by experts [15–17,25,26]. Most papers analyze the weight
values of each variable [11,13,27], and the estimates of three or more field experts are then
taken into account. In principle, most papers use a combination of expert analysis, fuzzy
set, and fuzzy logic to bridge the uncertainty of the input parameters for calculating RPN
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factors. Fuzzy logic systems prioritize risks better in the case of the same RPN values, due
to taking into consideration the influence of individual variables in risks assessment.

Fuzzy logic has a wide application. For example, it is used to model traders’ knowl-
edge and how they make trades, according to the market conditions. A. Hernandez-Aguila
et.al. have created a market prediction model using multi-agent and fuzzy systems, with
the goal to simulate the interactions that provoke changes in the price [28]. Another ex-
ample is based on the economic and technical development of modern society, which has
resulted in the mass construction of high-rise buildings, with complex functions within a
very dense population in a small area. In a high-rise building, fire represents an immediate
threat to human life and property. The traditional assessment methods for fire safety are
incompetent for the handling of the complex influencing factors. The research of authors
M. Xu and D. Peng [29] provides an example of the application of artificial intelligence
(AI) in fire safety assessments, combining the fuzzy logic inference system and radial basis
function neural network (RBFNN) into an intelligent assessment method that mimicks the
nonlinear inference process of fire safety experts. Fuzzy logic is also used in the medical
sciences to diagnose the risk of the detection of heart disease and various other diseases.
Building on those grounds, J. Kaur and B. S. Khehra [30] have suggested fuzzy logic sys-
tems to be applied to obtain an output that indicates the stages of patients in terms of their
health: if they are healthy, if their condition or sickness is in the first/second stage, or if it
is in critical stage.

Yet, some doubts remain in regard to how applicable the fuzzy rule-based system is to
real-life circumstances, i.e., in defining the numbers of rules and the membership functions
that are required by this methodology. The main aim of the research presented here was
to improve FMEA analysis for refinery applications by overcoming the shortcomings of
conventional FMEA, through the proposal of a new approach that utilizes four fuzzy
logic systems’ blocks. This model could help standardize the FMEA procedure and make
it more user-friendly. It would also mitigate the impact of subjective assessment when
making critical decisions, by establishing clear rules that are connected with the business
risk matrix.

To boost the operational availability and to reduce the unplanned shutdowns of
refineries, it is crucial to identify the root causes of possible events with adequate preven-
tive/mitigating barriers. There are three ways to mitigate risk: (1) reducing the failure
mode severity; (2) lowering the probability of failure; (3) installing adequate process control
systems. Integrity maintenance management should be set up through the identification of
business-critical systems and the mitigation of the risk of their failure through mitigation
actions. Our aim was to prioritize mitigation actions and allocate the budget according to
initial risks. This enabled sites to make sure that all mitigation actions which served to
reduce high risk were budgeted, as resources are always limited.

This research was based on the example of a conventional FMEA application for
refinery units, and proposes a new fuzzy FMEA risk quantification approach method
that utilizes four fuzzy logic systems. When compared to previous research, the model
was applied to examine the input parameters of RPN variables (severity, occurrence and
detectability) which has not been typically performed so far. For each variable, a fuzzy
logic system was set up and those results served as inputs for the calculation of risk
quantification (fuzzy RPN). Mitigation actions could be better prioritized according to the
calculated fuzzy RPN and the aim was that all high risks would be recognized.

2. Materials and Methods
2.1. FMEA and RPN

The FMEA is a method of inductive analysis; it is an iterative, systematic, and docu-
mented process that is performed to identify basic failure/faults at the component level,
and to determine their effects on the proper functioning of a system. Criticality analysis
within FMEA helps to develop the priorities, risk, and mitigation actions and it is an
opportunity for the continuous improvement of a system or process unit. This analysis
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can be performed, utilizing either actual failure modes from prior field data or hypothe-
sized failure modes that are derived from design analysis, reliability prediction activities,
and experience with how parts fail [31]. The purpose of the FMEA is to identify critical
components concerning reliability and availability.

Before FMEA analysis is even attempted, it is vital to understand the basic processes of
the system and how the system works. In this respect, building a functional block diagram
and specifying the required functions of the system are very important [32]. In addition, the
quality of the analysis will deeply depend on the team members who are conducting it. The
traditional execution of an FMEA engineering analysis is carried out by a cross-functional
team of subject matter experts who thoroughly analyze refinery processes. The FMEA
teams consisted of a moderator, who offered methodological knowledge, and the FMEA
team members, who offered technical knowledge that concerned the process or equipment
that was analyzed. Detailed guidelines regarding the team members who are useful in
performing a successful analysis are described by book The Basics of FMEA [33], which
was used as a reference point.

It would be well worth mentioning that, though it is desirable for the FMEA team
members to have some basic know-how in regards to teamwork (consensus-building
techniques, team project documentation, and idea-generating techniques, such as brain-
storming) as well as to have an understanding of the basics of the FMEA process before
embarking on a project, the training itself is easily conducted by a versed team leader
or moderator as the FMEA on a real project is being performed; thus, the team member
benefits from the most effective form of skill-honing, which is real-life experience. Team
members should be comfortable using continuous improvement problem-solving tools,
such as flowcharts, data analysis, root cause analyses, and graphing techniques.

The first order of business on the new FMEA team’s agenda needs to be the appointing
or choosing of the previously mentioned FMEA team leader or moderator, as he or she is
responsible for coordinating the team and process, facilitating the progress and leading the
FMEA process towards its conclusion. Another important role is that of a scribe, who is
responsible for taking the minutes of meetings and archiving the FMEA records, the former
most commonly being a task that rotates among team members, excluding the team leader.
Next, there is the process expert, an essential role, since this is a person with expertise in
the process being analyzed, someone who can clarify the process to the team and, in that
way, either help establish a faster pace or slow down the FMEA process.

Though there have been many variations of FMEA, the terminology used in refinery
issues includes:

• Failure mode. Failure modes are, in essence, categories of failure. A failure mode de-
scribes how some product or process would not be able to perform its desired function
(in terms of design or requirements), based on what the end-users or end-customers
need and expect from it. Examples of failure modes include fatigue, collapse, perfor-
mance deterioration, deformation, obsolescence, corroded, binding, seizure, buckling,
sagging, looseness, misalignment, leaking, vibrations, burning, etc.

• Potential cause(s) of failure. Every failure mode has a potential cause of failure
that is linked to it. Some of the most common causes of failure are the use of the
wrong material, poor welding, corrosion, error in assembly or dimension, exposure
to too much stress, overheating, overcooling, poor maintenance, damage, error in
heat treatment, material impurity, formation of cracks, imbalance, tooling marks,
eccentricity, etc.

• Effect. An effect is a negative consequence that the end-customer or end-user sees
or feels.

• Severity. Severity is an assessment of the seriousness of the consequences of the
potential failure mode on the customer/user.

• Occurrence. Occurrence is how frequently a cause arises and causes failure modes. In
a best-case scenario, past occurrence data is used to determine occurrence.
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• Detection. The ability of the existing control to detect and consequently prevent a
certain cause.

In the process of FMEA, the FMEA team must conduct assessments of the risk variables
S, O and D for the corresponding failure modes. Using available data, expert knowledge
and relevant experience with some process or product, each potential failure mode, and its
respective effect are rated in all three variables (S, O and D) on a scale from 1 to 10, i.e., from
low to high. The Risk Priority Number (RPN) is the FMEA ranking system that prioritizes
mitigation actions for every one of the identified failure modes. RPN is the result of the
multiplication of the probability of S, O and D, Equation (1). RPN has a range from 1 to
1000 for each failure mode. The RPN value is used to rank how necessary corrective action
is to eliminate or reduce the risk of potential failure modes. The failure modes that hold
the highest RPN values need to be addressed first, bearing in mind that those with a high
severity ranking are deserving of special attention, regardless of their RPN [33].

RPN = S×O× D (1)

The traditional RPN method does not consider the relative importance among risk
variables. Additionally, identical RPN values for different sets of risk variables can be
generated. The traditional FMEA method is not able to manage situations in which the
information about risk variables weights is only partially known, so for a subject matter
expert, it is not easy to exactly quantify his or her assessment as a crisp value in real-life
circumstances. Therefore, the goal of this research was to improve FMEA with a fuzzy logic
system. This will allow FMEA analysis to become a recognizable and widely applicable
technique for analyzing the safety and reliability of refinery systems, by taking into account
a set of key parameters, linguistic variables in the place of unavailable data and, perhaps
most importantly, by mimicking human logical reasoning in the process of assessing risk,
with minor errors.

2.2. Fuzzy Logic

The term “fuzzy logic system” was coined by Lotfi A. Zadeh in the 1960s. Fuzzy logic
evades binary and/or opposing categories such as on/off, true/false and one/zero, etc.
Instead, it relates to “shades of grey”, more diversified categories and nuances, such as
large/very large, etc. Fuzzy logic is a process of characterizing knowledge in the context
of rule bases and fuzzy sets. To elaborate, there are one or more “fuzzified” input values,
which get assessed using rule bases and are then again “defuzzified” for the outputs [34].

It is precisely this sensitivity to imprecision and uncertainty that enables the creation of
the uniquely human ability to understand slightly noisy speech data, the defects of natural
language, interrupted and gapped texts and speech, summarizing and paraphrasing, as
well as recognizing and grouping pictures, figures, or any sort of images. With fuzzy logic,
we can specify mapping rules in the form of vocabulary rather than numbers. This compre-
hensive tool provides a flexibility in decision making and considers inaccuracy, subjectivity,
uncertainty, and imprecision; therefore, it was applied for the precise determination of S, O
and D variables.

The greatest benefit of fuzzy theory applications in risk assessment is that the resulting
system assessment is qualitative and operational with linguistic variables, as it must be
admitted that certain events simply cannot be described only in numbers. Since fuzzy logic
deals with subjective, incomplete, or unreliable knowledge bases, it is well-equipped to
establish the key points of any system with ease and precision. It takes risk factor levels
and evaluates them at the same time, one against the other, to provide information on
how they commonly contribute to risk indicators, in regard to their respective operational
activities. This, in turn, helps in establishing corrective measures and procedures to reduce
risks. The Fuzzy Inference System is a formulation process of the input data to output data
using fuzzy logic [15].

The most widespread Fuzzy Inference System (FIS) is the Mamdani method. Owing
to the simplicity of its structure, it stands out as more intuitive and easier to understand,
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which makes it better-suited to expert system applications that are based on human expert
knowledge. Mamdani FIS is commonly used in solving all general-purpose decision-
making issues and challenges, which is the main reason why it was selected for this
research; it perfectly corresponds to its purpose. The following outline the steps of the
Mamdani FIS that was performed [35]:

• Step 1: Fuzzify the input.

Lingvistic variable =< x, T(x), U, σ, M > (2)

The linguistic variable is defined by Equation (2) in which

� x is the name of the variable.
� T(x) is a set of terms, the set of names of linguistic values of x with each value

being a fuzzy number defined on U.
� U is the universe of discourse.
� σ is a syntax rule for generating the names of the values of x.
� M is the semantic rule for associating with each value its meaning.

The fuzzy set contains elements that satisfy imprecise properties for a membership
function. Membership function µA quantifies the degree of belongingness of x to set
A, Equation (3), where x represents input, y is output and A and B are fuzzy sets of it.

AFUZZY = {(x, µA(x))|xεX, µA(x)ε[0, 1]} (3)

BFUZZY = {(y, µB(y))|yεY, µB(y)ε[0, 1]} (4)

• Step 2: Find and evaluate the antecedent and consequence of each rule

pi = x is Ai (5)

qi = y is Bi (6)

Rule i : pi → qi i = 1, 2, . . . , N (7)

IF x is Ai THEN y is B(i) i = 1, 2, . . . , N (8)

• Step 3: Aggregate the consequents.

µAGG(x, y) = max
{

min
{

µA1(x), µB1(y)
}

, . . . , min
{

µAN (x), µBN (y)
} }

(9)

• Step 4: Defuzzify the results with the centroid method, where the defuzzified value
yCOG is given by Equation (10).

yCOG =

∫
yµAGG(x, y)dy∫
µAGG(x, y)dy

(10)

3. Results

The proposed model consisted of four separate fuzzy logics and included the initial
assessment of the input parameters that influenced the variables of severity, occurrence,
and detectability for the identified failure modes in the refinery production process. After
the setup of the fuzzy severity, the fuzzy occurrence and the fuzzy detectability systems
results from these fuzzy systems, respectively, were inserted into the fuzzy FMEA system.
Figure 1 presents the hierarchy of the model that was constructed by using Simulink®,
to assess the quantity of the failure mode risk, i.e., fuzzy RPN value. Fuzzy algorithms
were developed by the MATLAB® program package Fuzzy logic toolbox R2018a, where
Mamdani model for FIS was selected.
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3.1. Fuzzification of Model

This research contains four FIS, consuctedfor each of the fuzzy set ups; for each input
parameter and variable, every detail is described in the Tables and Figures below.

For the failure modes’ severity evaluations, five fuzzy sets (very low, low, moderate,
high, very high) were defined for the input criteria of assets, people, environment, and
reputation (Table 1) while for the output fuzzy severity variable there were ten fuzzy sets
(dangerous without warning, dangerous with a warning, very high, high, medium, low,
very low, weak, very weak, weak, none (Table 2)). The same principles were then applied
to the remaining variables and the risk quantification’s fuzzy RPN value, seen in Tables 3–5.
For each fuzzy set, a value that defined the linguistic meaning of the set was determined.
The same values were adopted to define the universe of discourse for each variable S,
O, and D [1, 10] (Table 2), due to the inputs for the uzzy FMEA system being based on
conventional FMEA. The rank of output for the fuzzy RPN variable was defined by interval
set [1, 1000] (Table 4), with the objective of a simpler comparison of the results achieved by
applying the model with a conventional RPN calculation.

Apart from the number of fuzzy sets, it was vital to identify the membership function.
Based on the expert judgment, engineering know-how and the quality of information
available, triangular and trapezoid membership functions were selected for each linguistic
variable value assigned (Figures 2 and 3).
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Table 1. Selection criteria for failure modes severity evaluation.

Criteria Fuzzy Set Description Fuzzy Numbers

Assets

VL Slight damage (<10 kUSD) (0 0 2 3)
L Minor damage (10–100 kUSD) (2 3 4 5)
M Local damage (0.1–1 mUSD) (4 5 6 7)
H Major damage (1–10 mUSD) (6 7 9 10)

VH Extensive damage (>10 mUSD) (9 10 10)

People

VL Slight injury or health effect (0 0 2 3)
L Minor injury or health effect (2 3 4 5)
M Serious injury or health effect (4 5 6 7)
H Single fatality or disability (6 7 9 10)

VH Multiple fatalities (9 10 10)

Environment

VL Slight effect (0 0 2 3)
L Minor effect (2 3 4 5)
M Local effect (4 5 6 7)
H Major effect (6 7 9 10)

VH Massive effect (9 10 10)

Reputation

VL Slight impact (0 0 2 3)
L Limited impact (2 3 4 5)
M Considerable impact (4 5 6 7)
H National impact (6 7 9 10)

VH International impact (9 10 10)

Table 2. Fuzzy set of output variables after the first stage of fuzzy logic systems that represent inputs
to fuzzy RPN FIS.

Ranking Fuzzy Severity Fuzzy Detectability Fuzzy Occurrence

10 Dangerous without warning Absolute uncertainty Extremely high

9 Dangerous with warning Very remote Very high

8 Very high Remote High

7 High Very low Frequent

6 Medium Low Moderately frequent

5 Low Moderate Randomly

4 Very low Moderately high Not frequently

3 Weak High Rarely

2 Very weak Very high Very rarely

1 None Almost certain None

Table 3. Selection criteria for failure modes detectability evaluation.

Criteria Ranking Fuzzy Set Description Fuzzy Numbers

PROCES/CONTROL

1 No Nothing available. (0 0 1 2)
2 Experts No diagnostic is available or feasible, controlled by experts. (1 2 3)
3 OS Operator staff provides the supervision. (2 3 4)
4 OS + LAB Operator staff and/or diagnostic systems (trends, lab checks). (3 4 5)
5 I + LS Field instruments are available. (4 5 6)

6 I + LS + Signal Field instruments are available and/or diagnostic systems
(trends, lab checks) (5 6 7)

7 I + DCS The process control system and/or the real-time diagnostic. (6 7 8)

8 I + DCS + Failure
The process control system and/or the real-time diagnostic
will detect the signs of a potential cause/mechanism (e.g.,

inter lock, AutoStart).
(7 8 9)

9 SIS Safety Instrumented System. (8 9 9 10)



Machines 2021, 9, 292 9 of 22

Table 3. Cont.

Criteria Ranking Fuzzy Set Description Fuzzy Numbers

DECESION

0 No Act No mitigation action (0 0 1)
1 SME Measurement requires an SME engineer to observe. (0 1 2)
2 STAFF The intervention is made by the staff. (1 2 3)
3 AUTO The intervention is made automatically. (2 3 3)

DATA/READING

0 No Data Nothing available (0 0 1)
1 S/D Measurement is conducted during shutdown (S/D). (0 1 2)

2 OFFLINE Off-line diagnostics and condition monitoring conducted
during operation. (1 2 3)

3 ON LINE Real-time diagnostics and condition monitoring conducted
during operation (2 3 3)

Table 4. Selection criteria for failure modes occurrence evaluation.

Frequency Ranking Linguistic Ranking Description Fuzzy Numbers

Daily 10 Extremely
high

The failure is almost inevitable.
Occurs every day (even more than once). (0 0 3 4)

9 Very high Happens (almost) every day. (3 4 7 8)

Weekly
8 High Repeated failures.

Occurs (sometimes more than) once per week. (7 8 31 32)

7 Frequent It takes more time than a week for one occurrence,
but it happens every month.

Monthly

6 Moderately
frequent

Failures occur relatively frequently.
Occur every three months at least. (30 32 90 93)

5 Randomly Failures appear infrequently.
Occur once per six months. (90 93 180 186)

4 Not frequently Failure happens once per 12 months. (180 186 365 366)

Yearly
3 Rarely One occurrence per 1–3 years.

(e.g., two failures per TA cycle) (360 365 1000 1095)

2 Very rarely One occurrence per 3–5 years.
(e.g., one failure per TA cycle) (1000 1095 1800 1825)

TA cycle 1 None One occurrence in more than 5 years.
(e.g., one failure per more than one TA cycle) (1800 1825 2000 2025)

Table 5. Identified variables and the fuzzy set for fuzzy RPN quantification.

Fuzzy Variables 2nd Fuzzy Set Fuzzy Numbers

Severity

Very low (0 0 2 3)
Low (1 2 4 5)

Medium (4 5 6 7)
High (6 7 8 9)

Very high (8 9 10 10)

Occurrence

Rare (0 0 1 2)
Unlikely (1 2 4 5)
Possible (4 5 6 7)
Likely (6 7 8 9)

Frequent (8 9 10 10)

Detectability

Very low (8 9 10 10)
Low (6 7 8 9)

Medium (4 5 6 7)
High (2 3 4 5)

Very high (0 0 2 3)

RPN

Very low (0 0 2 4)
Low (6 30 100 200)

Medium (6 160 300 400)
High (80 400 600 800)

Very high (360 600 1000 1000)
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Table 4. Selection criteria for failure modes occurrence evaluation. 

Fre-
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10 

Extremely  

high 
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Occurs every day (even more than once). 
(0 0 3 4) 
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Figure 3. The input of the process control membership function plot.

A membership degree µ = 1 was connected to the typical fuzzy set of the joined input
and output variables. The triangular membership function “trimf” was defined by the
parameters [a b c], where a represents the left-side function section, with the membership
a = 0, b is the central peak or the typical value, with the membership µ = 1, while c is the
right-hand function section, with the membership µ = 0 [21]. The trapezoid membership
function “trapmf”, however, requires four parameters, the left-most point µ = 0, the start of
the plateau µ = 1, the end of plateau µ = 1, and rightmost point µ = 0. Based on the scale
of 1 to 10, the pre-assessment of the variables severity, detectability, and occurrence of the
failure mode was performed to measure those variables, and for each of the membership
functions, their domains were determined and the shape presented can be seen in Table 2.
The last fuzzy system had the role of quantifying the risk value, and the fuzzy set for the
fuzzy RPN is described in Table 5.

3.2. Fuzzy Inference Systems

The fuzzy inference structure of the input criteria that determined the variables’
severity and detectability is shown in Figure 4.
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3.3. Aggregation of Fuzzy Logic Systems

The process of aggregation is the process of combining fuzzy results using a set of rules,
thus obtaining a final fuzzy result, which then undergoes the process of “defuzzification”.
The fuzzy “If then” rule, or fuzzy conditional statements, are the expression of the form “If A
then B”, where A and B are the labels of fuzzy sets that are characterized by an appropriate
membership function. The MATLAB Rule Editor helps to add rules in linguistics terms.
A list of rules for the risk quantification fuzzy RPN value was added in Table A1. In the
case of the determination of fuzzy severity, it established 625 rules; for the fuzzy RPN that
number was 125, while for the other variables a smaller number of rules were defined.

3.4. Defuzzification of Fuzzy Logic Systems

Defuzzification is the process of converting a fuzzy set into numerical values. It
becomes ongoing if even the smallest alteration in the input variable fails to cause a rapid
change in one of the output variables. Hence, a group of authors J. Bonato, M. Badurina,
and J. Dobrinić [21] chose the centroid method for its following advantages: it is well
balanced, takes into account the height and width of the fuzzy output, and lastly, its results
are consistent. The centroid method is defuzzified by finding a point that represents the
center of gravity of the aggregated fuzzy set, and this method was also applied in this
study. The calculation of the numerical value linguistic output is shown in Figure 5, which
describes the model inference diagram.
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The RPN risk quantification assessment was carried out by setting up a fourth fuzzy
logic system. The input variables were defined by the triangular and trapezoid functions,
as well as the output variable. The 3D responding function and the FIS rules resulted in
the RPN risk value that was quantified depending on the input fuzzy variables S, O and
D (Figure 6). What distinguishes the presented model from previous approaches is that
pre-assessment was made for the input variables by defining the criteria for the evaluation
and generation of fuzzy sets for them.
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3.5. Analysis of Variance (ANOVA)

The statistical technique analysis of variance (ANOVA) was used to compare the
means of the “S” and “D” values of the subject matter expert’s assessment, as well as the
fuzzy calculated variables that were associated with ten failure modes, seen in Table A2.
The subject matter experts were sourced from the process and technology, maintenance
management department, and process control and instrumentation fields. INA refinery
experts validated the model through its use on onsite failure modes, and have supported
our research with their knowledge and skills. With the error α, the differences between the
arithmetic group mean for “S” and “D” were not statistically significant (F < Fcrit), with
results of the ANOVA presented in Tables 6 and 7. The variable “O” was not taken into
consideration by an analyst with ANOVA, because it is based on quantitative data that is
available in maintenance databases.

Table 6. ANOVA: single Factor for fuzzy severity.

SUMMARY

Groups Count Sum Average Variance

Expert 1 10 63 6.3 3.566667
Expert 2 10 64 6.4 3.377778
Expert 3 10 65 6.5 2.944444
FUZZY “S” 10 61 6.1 3.6

ANOVA

Source of Variation SS df MS F p-value F crit

Between Groups 0.875 3 0.291667 0.086491 0.966993 2.866266
Within Groups 121.4 36 3.372222

Total 122.275 39
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Table 7. ANOVA: single Factor for fuzzy detectability.

SUMMARY

Groups Count Sum Average Variance

Expert 1 10 35 3.5 4.944444
Expert 2 10 35 3.5 4.944444
Expert 3 10 36 3.6 5.6
FUZZY “D” 10 39.88 3.988 5.165262

ANOVA

Source of
Variation SS df MS F p-value F crit

Between Groups 1.61708 3 0.539027 0.104391 0.956973 2.866266
Within Groups 185.8874 36 5.163538

Total 187.5044 39

4. Discussion

The initial idea for the FMEA application was to detect as many as possible unknown
failures within refinery systems. Generally speaking, this method describes the systematic
analysis of the components of the system that is conducted in order to identify major failure
modes and their importance for the performance of the entire system. FMEA’s strongest
point lies in the very fact that it provides a systematic overview of the major failures in the
system, which in turn forces management or any other authorities to (re)evaluate exactly
how reliable the product unit system is. Furthermore, FMEA represents a strong foundation
for future, all-encompassing quantitative analyses, such as a fault tree analysis, an event
tree analysis, a root cause analysis, etc. Any systematic review, such as the one offered by
FMEA, will most likely reveal the greatest number of weaknesses in the system that result
from specific component failures. However, one must be aware that an FMEA grants no
warranty, when claiming that all critical failures have been identified. Also, an FMEA could
be unsuitable for systems entailing a high level of redundancy (for instance, with more
components that operate with the same function, and where the failure of one unit does
not result in system failure). In such systems, the analysis of individual component failures
is not a matter of interest, as the functioning of the system is not compromised. Although
then, the interest shifts to the combinations of events which jointly might contribute to
system failures [36].

FMEA is used to identify key component failures which might lead to an accident,
injury, and/or property loss. The major objectives of any FMEA are: to improve system
safety, to make assets more reliable and readily available through evaluating what effects
component failures would have on overall system performance, to determine those compo-
nents that are vital to the safety of personnel and equipment, and, last but not least, to offer
improvements to the system in general. Obviously, with safety being a major topic of any
FMEA, its objectives in that area include: a system analysis to establish what effects and
consequences component failures have on the performance of the system in its entirety, and,
more narrowly, on safety: identifying those components that are essential to safety (where
component failure might endanger system operation, cause injuries, property damage, or
other losses), as well as (re)designing the system itself to enhance ‘passive’ reliability and,
with it, safety in general.

An integrity maintenance management system should be set up based on the identified
business critical systems and the risk of their failure. For high risks, it is necessary to
determine risk mitigation actions and prioritize them according to the risk quantification,
seen in Tables 8 and A3. The classification of mitigating actions that result from the FMEA
analysis is as follows:

• Modification/ capital expenditures (new equipment installation to increase redun-
dancy or detectability, replacement of existing equipment, new material used in the
construction of any part, new by-pass line, etc.);
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• Modification/ operative expenditures (new material used in the construction of any
part, new by-pass line, etc.);

• Safety spare parts;
• Operation (start-up and shut-down instructions, monitoring, checking routes, cleaning, etc.);
• Preventive maintenance (maintenance instructions, autonomous works, diagnostics,

time-based maintenance, usage-based maintenance, inspection, etc.);
• Maintenance execution (assembly instruction, contractor competencies, and capabili-

ties, tools, etc.);
• Quality assurance (receiving goods, technical supervision, manufacturing checks,

technical standard compliance, etc.).

Table 8. FMEA results for high risks observed system.

No Equipment Risk
Unmitigated Risk Mitigation Action Proposed Fuzzy

S O D RPN RPN

1 P-001
F101 A/B

Loss of T-101 Bottom
pump around
line capacity

8 9 4 288 Installation of larger/capacity/filters 464

2 CLC001
CFC003

Loss of Heavy Coker Gas
Oil stripper bottom
level control

9 4 7 252 More reliable measurement. 464

3 CLC020
CFC040

Loss of Heavy Coker Gas
Oil stripper bottom
level control

9 4 6 216
More reliable measurement. Continuous
monitoring the transmitter/controller with
self-diagnostic status in control room.

464

4 P1 draw-off pan
Loss of Heavy Coker Gas
Oil product draw-off
pan level

9 2 6 108 Review inspection plan and repair/assembly
instruction with hydrotest. 464

5 P2 draw-off pan
Loss of Heavy Coker Gas
Oil product draw-off
pan level

9 2 6 108 Review inspection plan, WPS and
repair/assembly instruction with hydrotest. 464

6 E-002 A/B/C
Loss of Heavy Coker Gas
Oil -Fresh feed
exchanger capacity

8 2 7 112 Check and clean at turnaround the tube bundle. 464

7
T-102
Pipeline T101-T102
Pipeline T102-T101

Loss of Heavy Coker Gas
Oil product
stripper integrity

8 2 7 112 Turnaround: Replace to new one. 464

8 CTC000
Loss of Light Catalytic
Gas Oil air cooler (EA100)
temperature control

5 4 6 120 More reliable measurement. 214

9 CLC002 Loss of D-006 sump
level control 5 3 7 105

More reliable measurement. Continuous
monitoring the transmitter/controller with
self-diagnostic status in control room.

214

10 C-101 Loss of Wet
Gas compressor 6 6 4 144 C-101 alternative (electric) drive. 214

11 E-101
High Fractionator
overhead condensator
outlet temperature

5 5 6 150 Define: external cleaning cycle and the
corresponding regular cleaning. 214

12 P-015
F101 A/B

Loss of anti-sediment
additive dosing. 8 2 7 112 Expert have to investigate need for application

the anti-sediment agent. 464

13 P-104
Loss of Heavy Coker Gas
Oil product
pump capacity

8 2 6 96 P-104 New type more reliable pump. 464

14 P-105
Loss of Light Catalytic
Gas Oil product
pump capacity

8 2 6 96 P-105 New type more reliable pump 464

15
Pipeline T101-P106
Pipeline P106-E109
Pipeline E109-T101

Loss of Heavy Coker Gas
Oil pump around integrity 9 1 8 72 Review the extinguishing system. 464

This comprehensive exploration introduces, besides the adopted FMEA analyses for
application within refinery complex systems, the pre-assessment of the input variables
of FMEA analyses, which leads to the elimination of the influence of the deciding factors
which are related to the knowledge and experience of the refinery’s experts. This pre-
assessment of input variables also utilizes a fuzzy logic system. The four fuzzy logic
system model is based on a business risk matrix, processed data, and experts’ knowledge
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and experience. This setup model bridges the uncertainty of the input variable used for
calculating the RPN value.

Applying the fourth set of fuzzy logic in this research has found an extraordinary
importance of the weight of the variables S, O, and D in the calculation of risk quantity
and its prioritization. Thus, due to the contribution of fuzzy logic, it was possible to
improve the understanding of the dynamics of complex problems, which are characterized
by inaccurate and subjective information, and took into consideration experts’ knowledge
and the major influence of severity concerning the other parameters of failure modes.
That being said, this approach has not only solved FMEA’s limitations of the conventional
approach, but has also made it possible to accurately analyze risk, as well as quantify
it. While FMEA allows for the computing of RPN directly by multiplying S, O and D, it
is not possible to match RPN values with evaluation criteria, using the traditional RPN.
Fuzzy FMEA allows the assignmentof fuzzy sets of values to each level of S, O, and D; the
combination of those sets is made through knowledge rules that systematically enhance
the scale of RPN. As such, the value of the fuzzy model is derived fromthe strategies that
specialists use to express their needs and obtain a response, according to what they have as
a priority [37].

Fuzzy RPN was determined using five fuzzy sets (shown in Table 5), having been
categorized according to the risk response. The five risk response categories imply the
following: insofar that the risk level is “very low” then the risk is negligible, i.e., existing
measures are acceptable. For the “low” risk level, the risk is acceptable, existing measures
are acceptable, and are manageable by routine procedures, however, further controls could
be considered for continuous improvement. For a “medium” risk, the hazard must be
eliminated, or other hazard controls must be implemented in due time, to reduce risk to a
lower level. A risk level of “high” is intolerable, and risk must be addressed with a high
priority. The hazard must be eliminated or other hazard controls must be implemented as
soon as reasonably possible, with a high priority to reduce risk to a lower level. A risk level
of “very high” is unacceptable, and in this case, the hazard must be eliminated, or other
hazard controls must be implemented without delay and with top priority, to reduce risk
to a lower level. From the previously defined rules, a staircase-shaped fuzzy RPN model
was obtained, as shown in Figure 6d. The model is robust, relevant to minor changes in
input parameters, and contains a significant characteristic of a response to quantified risk,
unlike conventional RPN, where the scale is from 1 to 1000, and prioritizes exclusively
according to RPN; potentially high-risk faults could be left out.

A large number of failures have the same RPN values. For example, three failure
modes with the same RPN number were analyzed, seen in Table 9. According to the
conventional FMEA method, neither of the three cases would be considered because their
respective RPNs were less than 100, so they would not be included on the list of significant
risks for which mitigation activities should be defined. By applying the four fuzzy logic
model, it became evident that the influence of individual variables significantly affected
the prioritization of risks.

Table 9. Example of risk prioritization.

No Examples of Failure Mode S O D RPN Fuzzy RPN Priority

1 Break of feed pump P1 cause of the unit shutdown 8 2 5 80 464 1

2 Fouling and plug of heat exchanger cause the decreasing
the temperature in the vessel (referent temp 100 ◦C) 2 5 8 80 86.7 3

3
Operation issue, gasoline in water causes environmental
pollution, constantly product flow to the acid torch, not to
the sulfur production plant.

5 8 2 80 214 2

Where this paper differs from the paper by a group of authors J. Bonato, M. Badurina,
and J. Dobrinić [21] is in the application of additional sets of fuzzy logic systems, which
enabled a more precise determination of the input parameters for the calculation of the
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fuzzy RPN-a. Additionally, there is a difference in the obtained fuzzy RPN results; the
previous paper stated that a fuzzy conclusion does not allow for the appearance of identical
RPN values for different risk factor sets. The obtained fuzzy RPN results presented in
this paper group quantified risk according to the risk response, thus aligning it with the
business risk matrix.

In future research, we hope that colleagues will analyze assets (process equipment)
more deeply, in such a manner that the key influencing equipment performance parameters
become the criteria for determining the severity of malfunctions. In the absence of available
data, an input parameter analysis, in combination with uncertain linguistic terms, will
maintain the consistency of computation procedures, hence gaining more reliable severity
variables. The unpredicted occurrence of breakdowns and a consequent unit shutdown
is one of the most important causes of a decline in the performance of critical equipment.
Furthermore, breakdowns and failures occur for a wide variety of reasons, such as poor
management decisions, inefficient maintenance, operational actions, and the refinery work
environment. Reliable equipment must remain in excellent condition over the turnaround
cycle and not be exposed to unit shutdown.

5. Conclusions

This paper proposes a novel approach to ranking the risk that arises from an uncon-
ventional FMEA analysis via the implementation of the four fuzzy logic system. Unlike
previous papers, which generally have used the fuzzy logic system to override the draw-
backs of conventional FMEA, and to calculate an improved RPN, the proposed model
contains a combination of four fuzzy logic systems, where the input parameters that affect
the variables S, O and D are tested and analyzed additionally, i.e., a pre-assessment of
input parameters is conducted through defined fuzzy logic systems.

The originality of this model is that it provides agility and strengthens the decision-
making process, while taking into consideration inaccuracy, subjectivity, uncertainty, and
imprecision; therefore, it was applied in order to precisely determine the severity, occur-
rence, and detectability variables. The fourth step of fuzzy logic in this research was
addressed in order to emphasize the importance and weight of the variables S, O, and
D according to risk response, using business risk matrix and human expert knowledge
in the form of a non-linear relationship between variables. The result of this model was
better accuracy in the calculation of the quantified failure mode risks, and the improved
prioritization of mitigation activities.
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Appendix A

Table A1. List of fuzzy RPN rules.

1 If Severity is Very low and Occcrence is Rare and Detectability is Very high then RPN is Very low
2 If Severity is Very low and Occcrence is Unlikely and Detectability is Very high then RPN is Low
3 If Severity is Very low and Occcrence is Possible and Detectability is Very high then RPN is Low
4 If Severity is Very low and Occcrence is Likely and Detectability is Very high then RPN is Low
5 If Severity is Very low and Occcrence is Frequent and Detectability is Very high then RPN is Low
6 If Severity is Very low and Occcrence is Rare and Detectability is High then RPN is Low
7 If Severity is Very low and Occcrence is Unlikely and Detectability is High then RPN is Low
8 If Severity is Very low and Occcrence is Possible and Detectability is High then RPN is Low
9 If Severity is Very low and Occcrence is Likely and Detectability is High then RPN is Low

10 If Severity is Very low and Occcrence is Frequent and Detectability is High then RPN is Low
11 If Severity is Very low and Occcrence is Rare and Detectability is Medium then RPN is Low
12 If Severity is Very low and Occcrence is Unlikely and Detectability is Medium then RPN is Low
13 If Severity is Very low and Occcrence is Possible and Detectability is Medium then RPN is Low
14 If Severity is Very low and Occcrence is Likely and Detectability is Medium then RPN is Low
15 If Severity is Very low and Occcrence is Frequent and Detectability is Medium then RPN is Low
16 If Severity is Very low and Occcrence is Rare and Detectability is Low then RPN is Low
17 If Severity is Very low and Occcrence is Unlikely and Detectability is Low then RPN is Low
18 If Severity is Very low and Occcrence is Possible and Detectability is Low then RPN is Low
19 If Severity is Very low and Occcrence is Likely and Detectability is Low then RPN is Low
20 If Severity is Very low and Occcrence is Frequent and Detectability is Low then RPN is Low
21 If Severity is Very low and Occcrence is Rare and Detectability is Very low then RPN is Low
22 If Severity is Very low and Occcrence is Unlikely and Detectability is Very low then RPN is Low
23 If Severity is Very low and Occcrence is Possible and Detectability is Very low then RPN is Low
24 If Severity is Very low and Occcrence is Likely and Detectability is Very low then RPN is Low
25 If Severity is Very low and Occcrence is Frequent and Detectability is Very low then RPN is Low
26 If Severity is Low and Occcrence is Rare and Detectability is Very high then RPN is Low
27 If Severity is Low and Occcrence is Unlikely and Detectability is Very high then RPN is Low
28 If Severity is Low and Occcrence is Possible and Detectability is Very high then RPN is Low
29 If Severity is Low and Occcrence is Likely and Detectability is Very high then RPN is Low
30 If Severity is Low and Occcrence is Frequent and Detectability is Very high then RPN is Medium
31 If Severity is Low and Occcrence is Rare and Detectability is High then RPN is Medium
32 If Severity is Low and Occcrence is Unlikely and Detectability is High then RPN is Medium
33 If Severity is Low and Occcrence is Possible and Detectability is High then RPN is Medium
34 If Severity is Low and Occcrence is Likely and Detectability is High then RPN is Medium
35 If Severity is Low and Occcrence is Frequent and Detectability is High then RPN is Medium
36 If Severity is Low and Occcrence is Rare and Detectability is Medium then RPN is Medium
37 If Severity is Low and Occcrence is Unlikely and Detectability is Medium then RPN is Medium
38 If Severity is Low and Occcrence is Possible and Detectability is Medium then RPN is Medium
39 If Severity is Low and Occcrence is Likely and Detectability is Medium then RPN is Medium
40 If Severity is Low and Occcrence is Frequent and Detectability is Medium then RPN is Medium
41 If Severity is Low and Occcrence is Rare and Detectability is Low then RPN is Medium
42 If Severity is Low and Occcrence is Unlikely and Detectability is Low then RPN is Medium
43 If Severity is Low and Occcrence is Possible and Detectability is Low then RPN is Medium
44 If Severity is Low and Occcrence is Likely and Detectability is Low then RPN is Medium
45 If Severity is Low and Occcrence is Frequent and Detectability is Low then RPN is Medium
46 If Severity is Low and Occcrence is Rare and Detectability is Very low then RPN is Medium
47 If Severity is Low and Occcrence is Unlikely and Detectability is Very low then RPN is Medium
48 If Severity is Low and Occcrence is Possible and Detectability is Very low then RPN is Medium
49 If Severity is Low and Occcrence is Likely and Detectability is Very low then RPN is Medium
50 If Severity is Low and Occcrence is Frequent and Detectability is Very low then RPN is Medium
51 If Severity is Medium and Occcrence is Rare and Detectability is Very high then RPN is Medium
52 If Severity is Medium and Occcrence is Unlikely and Detectability is Very high then RPN is Medium
53 If Severity is Medium and Occcrence is Possible and Detectability is Very high then RPN is Medium
54 If Severity is Medium and Occcrence is Likely and Detectability is Very high then RPN is Medium
55 If Severity is Medium and Occcrence is Frequent and Detectability is Very high then RPN is Medium
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56 If Severity is Medium and Occcrence is Rare and Detectability is High then RPN is Medium
57 If Severity is Medium and Occcrence is Unlikely and Detectability is High then RPN is Medium
58 If Severity is Medium and Occcrence is Possible and Detectability is High then RPN is Medium
59 If Severity is Medium and Occcrence is Likely and Detectability is High then RPN is Medium
60 If Severity is Medium and Occcrence is Frequent and Detectability is High then RPN is Medium
61 If Severity is Medium and Occcrence is Rare and Detectability is Medium then RPN is Medium
62 If Severity is Medium and Occcrence is Unlikely and Detectability is Medium then RPN is Medium
63 If Severity is Medium and Occcrence is Possible and Detectability is Medium then RPN is Medium
64 If Severity is Medium and Occcrence is Likely and Detectability is Medium then RPN is Medium
65 If Severity is Medium and Occcrence is Frequent and Detectability is Medium then RPN is Medium
66 If Severity is Medium and Occcrence is Rare and Detectability is Low then RPN is Medium
67 If Severity is Medium and Occcrence is Unlikely and Detectability is Low then RPN is Medium
68 If Severity is Medium and Occcrence is Possible and Detectability is Low then RPN is Medium
69 If Severity is Medium and Occcrence is Likely and Detectability is Low then RPN is Medium
70 If Severity is Medium and Occcrence is Frequent and Detectability is Low then RPN is Medium
71 If Severity is Medium and Occcrence is Rare and Detectability is Very low then RPN is Medium
72 If Severity is Medium and Occcrence is Unlikely and Detectability is Very low then RPN is Medium
73 If Severity is Medium and Occcrence is Possible and Detectability is Very low then RPN is Medium
74 If Severity is Medium and Occcrence is Likely and Detectability is Very low then RPN is High
75 If Severity is Medium and Occcrence is Frequent and Detectability is Very low then RPN is High
76 If Severity is High and Occcrence is Rare and Detectability is Very high then RPN is Medium
77 If Severity is High and Occcrence is Unlikely and Detectability is Very high then RPN is Medium
78 If Severity is High and Occcrence is Possible and Detectability is Very high then RPN is Medium
79 If Severity is High and Occcrence is Likely and Detectability is Very high then RPN is Medium
80 If Severity is High and Occcrence is Frequent and Detectability is Very high then RPN is High
81 If Severity is High and Occcrence is Rare and Detectability is High then RPN is Medium
82 If Severity is High and Occcrence is Unlikely and Detectability is High then RPN is Medium
83 If Severity is High and Occcrence is Possible and Detectability is High then RPN is High
84 If Severity is High and Occcrence is Likely and Detectability is High then RPN is High
85 If Severity is High and Occcrence is Frequent and Detectability is High then RPN is High
86 If Severity is High and Occcrence is Rare and Detectability is Medium then RPN is Medium
87 If Severity is High and Occcrence is Unlikely and Detectability is Medium then RPN is High
88 If Severity is High and Occcrence is Possible and Detectability is Medium then RPN is High
89 If Severity is High and Occcrence is Likely and Detectability is Medium then RPN is High
90 If Severity is High and Occcrence is Frequent and Detectability is Medium then RPN is High
91 If Severity is High and Occcrence is Rare and Detectability is Low then RPN is Medium
92 If Severity is High and Occcrence is Unlikely and Detectability is Low then RPN is High
93 If Severity is High and Occcrence is Possible and Detectability is Low then RPN is High
94 If Severity is High and Occcrence is Likely and Detectability is Low then RPN is High
95 If Severity is High and Occcrence is Frequent and Detectability is Low then RPN is High
96 If Severity is High and Occcrence is Rare and Detectability is Very low then RPN is Medium
97 If Severity is High and Occcrence is Unlikely and Detectability is Very low then RPN is High
98 If Severity is High and Occcrence is Possible and Detectability is Very low then RPN is High
99 If Severity is High and Occcrence is Likely and Detectability is Very low then RPN is High

100 If Severity is High and Occcrence is Frequent and Detectability is Very low then RPN is High
101 If Severity is Very high and Occcrence is Rare and Detectability is Very high then RPN is Medium
102 If Severity is Very high and Occcrence is Unlikely and Detectability is Very high then RPN is High
103 If Severity is Very high and Occcrence is Possible and Detectability is Very high then RPN is High
104 If Severity is Very high and Occcrence is Likely and Detectability is Very high then RPN is High
105 If Severity is Very high and Occcrence is Frequent and Detectability is Very high then RPN is High
106 If Severity is Very high and Occcrence is Rare and Detectability is High then RPN is High
107 If Severity is Very high and Occcrence is Unlikely and Detectability is High then RPN is High
108 If Severity is Very high and Occcrence is Possible and Detectability is High then RPN is High
109 If Severity is Very high and Occcrence is Likely and Detectability is High then RPN is High
110 If Severity is Very high and Occcrence is Frequent and Detectability is High then RPN is Very high
111 If Severity is Very high and Occcrence is Rare and Detectability is Medium then RPN is High
112 If Severity is Very high and Occcrence is Unlikely and Detectability is Medium then RPN is High
113 If Severity is Very high and Occcrence is Possible and Detectability is Medium then RPN is High
114 If Severity is Very high and Occcrence is Likely and Detectability is Medium then RPN is High
115 If Severity is Very high and Occcrence is Frequent and Detectability is Medium then RPN is Very high
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116 If Severity is Very high and Occcrence is Rare and Detectability is Low then RPN is High
117 If Severity is Very high and Occcrence is Unlikely and Detectability is Low then RPN is High
118 If Severity is Very high and Occcrence is Possible and Detectability is Low then RPN is Very high
119 If Severity is Very high and Occcrence is Likely and Detectability is Low then RPN is Very high
120 If Severity is Very high and Occcrence is Frequent and Detectability is Low then RPN is Very high
121 If Severity is Very high and Occcrence is Rare and Detectability is Very low then RPN is High
122 If Severity is Very high and Occcrence is Unlikely and Detectability is Very low then RPN is High
123 If Severity is Very high and Occcrence is Possible and Detectability is Very low then RPN is Very high
124 If Severity is Very high and Occcrence is Likely and Detectability is Very low then RPN is Very high
125 If Severity is Very high and Occcrence is Frequent and Detectability is Very low then RPN is Very high

Appendix B

Table A2. The table contains subject matter experts’ assessment S and D for randomly selected failure modes and fuzzy
calculation for HDS FCC unit.

Failure Mode Possible Consequence,
Severity ”S”

Process Controls,
Detectability “D”

Experts Fuzzy
Variable1st 2nd 3th

1. Malfunction of fluid
catalytic creaking
debutanizer flow
controls

The level in D-101 increases,
liquid gets to the BD system
thru PV-101B valve or safety
valves PSV-101A/B, possible

catalyst degradation, S/D.

FI-104, LIC-102, LSLH-101
IS-01 interlock

S 7 7 6 7.5

D 1 1 1 2.14

2. Stuck of valve UV-102,
dysfunction-

The level in D-101 rising
further, liquid gets to safety
valves PSV-101A/B. Feed
must be stopped manually
before the D-007 flare k.o.

drum overfilling, S/D

FI-104, LIC-102, LSLH-101,
D-007, LIS-013, I-102
Measurement is done

manually by staff

S 7 7 6 7.5

D 4 4 4 4.56

3. Malfunction of fluid
catalytic creaking
debutanizer flow
controls

The level in D-101
decreasing, if D-101

emptying P-101A/B pumps
dry running may cause

damage. Combustible gas
discharging at the pump
sealing, fire hazard, S/D.

FI-104, LIC-102, LSLH-101
IS-02 interlock

Storage tank level indicators
and alarm

Asset management system

S 7 7 7 7.5

D 3 3 3 2.14

4. Feed parameters are
out of range

The temperature of feed may
increase above 80◦C, the

feed line and/or F-101 filter
may be damaged. The

quality of the product is out
of specification. S/D of feed

unit.

TI-101 (TAH)
TI-102

Debutanizer shutdown
Alarm signal on DCS

S 4 4 5 3.5

D 4 4 4 4.56

5. Tube rupture on heat
exchanger E-101

Leakage in E-101 heat
exchanger, light hydrogen

excess will cause an increase
in reactor temperature, the
temperature may reach a

hazardous level, the reactor
may be damaged, fire

hazard, S/D

TI-108, TI-125, TSHH-108,
TSHH-125, TI-126,

TSHH-126
IS-04 interlock
Lab analysis.

S 8 8 8 7.5

D 7 7 8 8

6. PSV-103AB break,
unnecessary open
broken spring

R-101 pressure may decrease
below the vapor pressure of
the medium, feed must be

stopped manually before the
D-007 flare k.o. drum

overfilling. S/D there is no
pressure.

PIC-107 (PAL)
Measurement required S/D

to switch PSV

S 5 6 6 5.5

D 7 7 7 7.5

7. TV-103 fails when
IS-03 interlock system
activated

IS-03 interlock closes,
UV-104 as well, the feed

stops. Temperature
increasing near to the oil
temperature may cause

lighter damage.

TI-108, TI-125,
TSHH-108, TSHH-125,

TI-126 TSHH-126

S 4 4 4 3.5

D 3 3 2 2.14
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Failure Mode
Possible Consequence,

Severity ”S”
Process Controls,
Detectability “D”

Experts Fuzzy
Variable

8. TV-103 fails when
IS-04 interlock system
activated

SHU reactor overheating
protection (IS-04) does not

close HC feed to the reactor,
hot CH feeding may

continue. The temperature
in the reactor cannot be

maintained, an exothermic
reaction occurs, overheating

in the reactor, fire hazard,
S/D.

TI-108, TI-125,
TSHH-108, TSHH-125,

TI-126 TSHH-126

S 8 9 9 7.5

D 1 1 1 2.14

9. P-104AB pump
failure, cracking
mechanical seal

High fluctuations and
foaming at the reboiler

return nozzle. Lower trays
may be submerged and the

separation declining.
Without intervention temp
reach the hazardous level,

the reactor may be damaged,
fire hazard, S/D

LIC-108
FIC-112

IS-09 interlock
LG-112 (local)

S 9 8 9 7.5

D 1 1 2 2.14

10. P-102AB reflux pump
failure

D-102 reflux drum level
increasing, tray 5 level

decreasing. Blowdown to
the flare through

PSV-104A/B. The product is
out of specification.

Tray 26: TI-133
Tray 33: TI-136
Tray 2: TI-135

Tray 17: TIC-137
FIC-114 (FAL)
LIC-110 (LAH)

S 4 4 5 3.5

D 4 4 4 4.56

Table A3. Example of FMEA for the drum system of CDU.

No Equipment Risk
Unmitigated Risk

Mitigation Action Proposed
Fuzzy

S O D RPN RPN

1. D-101, D-102 Steam explosion 8 9 10 720 Change feed introduction. 464

2.
SP1AB, SP2AB, SP3,
SP4AB, SP5, SP6AB,
SP7AB, SP8AB,

Cannot switch drum because critical
valves sensors, switch fault 9 7 6 378 Review the logic system(s). 738

3. P-118AB Too short cycle time (EDC loss) 6 8 7 336 Anti-foaming agent dosing
instrumental control (DCS). 214

4. P113ABC-P106AB Too high outlet temperature 8 6 6 288 Review nozzle capacity. 464

5. SP1AB Too low skin temperature. (<150 ◦C) 9 6 5 270 Improved, more reliable
replacement type. 464

6. Tk-101 Coke cutting impossible 7 7 5 245 Regular review. 464

7. Coke cutting system Coke cutting impossible 7 5 7 245
Improved, more reliable
replacement type (drilling
system)

464

8. SP6AB H-101 plugging with coke. 9 5 5 225 Improved, more reliable
replacement type. 464

9.
Coke handling system
Crane(1),Conveyor(7),
Crusher(1)

PIT filled up. 7 4 7 196

Associated organization
(Logistics) maintenance (UPTIME)
improvement: crane bucket, crane
rope, crane rail wheels, crane
electric cable, crushers, conveyors,
folding rollers and guide rollers.

464

10. Drums overhead line
D101-2 to T-101 Pipe plug. 9 5 4 180 Evan Hyde: restore the HCGO

quench; 464

11. H-101 to D101-2 inlet
line Pipe block. 9 5 4 180 Analyst (heat) camera used from

drum roof. 465

12. V101A Cannot open/close the drum. 7 6 4 168 Review the logic system (s). 465

13. MPS supply line MPS supply fault /leaks, block 7 6 4 168 Review MPS supply reliability,
and improve if possible. 465
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No Equipment Risk
Unmitigated Risk

Mitigation Action Proposed
Fuzzy

S O D RPN RPN

14. D-101/D-102, SP3 Too low skin temperature (<150 ◦C) 6 7 4 168 Improved, more reliable
replacement type. 214

15. SP1AB, SP2AB,11AB Critical valves fault /block/ 8 3 5 120
Instructions: regular cleaning and
inspection cycle maximum 2
years.

464

16. CFC101 A/B Quench water into drums controller 8 3 5 120
Instructions: Alternative steam
stripping and water cooling
beside local management;

464

17. 12AB, 14AB, SP7AB
CXV128/129

Critical valves fault /PITCH formed
in drums/ 9 1 10 90

Inspection: according industry
experience create action plan for
inspection.

464

18. P116-D107, pipeline Coke Condensate system leaks 9 1 7 63 No recommendation 464

19. E-102 Plugged by coke “explosion” 8 1 6 48 Outlet line connect to flare 214

20. P-110 AB Quench water supply pump 8 1 5 40 No recommendation 214
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20. Petrović, D.V.; Tanasijević, M.; Milić, V.; Lilić, N.; Stojadinović, S.; Svrkota, I. Risk assessment model of mining equipment failure
based on fuzzy logic. Expert Syst. Appl. 2014, 41, 8157–8164. [CrossRef]
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