
machines

Article

PMSM Speed Control Based on Particle Swarm Optimization
and Deep Deterministic Policy Gradient under
Load Disturbance

Chiao-Sheng Wang 1, Chen-Wei Conan Guo 1, Der-Min Tsay 1 and Jau-Woei Perng 1,2,*

����������
�������

Citation: Wang, C.-S.; Guo, C.-W.C.;

Tsay, D.-M.; Perng, J.-W. PMSM Speed

Control Based on Particle Swarm

Optimization and Deep Deterministic

Policy Gradient under Load

Disturbance. Machines 2021, 9, 343.

https://doi.org/10.3390/

machines9120343

Academic Editor: Jose

A. Antonino-Daviu

Received: 31 October 2021

Accepted: 6 December 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University,
Kaoshiung 804, Taiwan; d093020010@nsysu.edu.tw (C.-S.W.); m093020017@nsysu.edu.tw (C.-W.C.G.);
dermin@mail.nsysu.edu.tw (D.-M.T.)

2 Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University,
Kaohsiung 807, Taiwan

* Correspondence: jwperng@faculty.nsysu.edu.tw

Abstract: Proportional integral-based particle swarm optimization (PSO) and deep deterministic
policy gradient (DDPG) algorithms are applied to a permanent-magnet synchronous motor to track
speed control. The proposed methods, based on notebooks, can deal with time delay challenges, im-
precise mathematical models, and unknown disturbance loads. First, a system identification method
is used to obtain an approximate model of the motor. The load and speed estimation equations
can be determined using the model. By adding the estimation equations, the PSO algorithm can
determine the sub-optimized parameters of the proportional-integral controller using the predicted
speed response; however, the computational time and consistency challenges of the PSO algorithm
are extremely dependent on the number of particles and iterations. Hence, an online-learning method,
DDPG, combined with the PSO algorithm is proposed to improve the speed control performance.
Finally, the proposed methods are implemented on a real platform, and the experimental results are
presented and discussed.

Keywords: deep deterministic policy gradient; load disturbance; load estimation; motor control;
particle swarm optimization; reinforcement learning

1. Introduction

Motors are widely utilized as the main power source in modern industries, and can be
roughly classified into two types: direct current (DC) and alternating current (AC) motors.
DC motors operate on the principle of basic magnetism, and the speed and torque are easy
to control; however, DC motors have the disadvantages of high operation and maintenance
costs. Furthermore, DC motors cannot operate under explosive and hazardous conditions
because sparking occurs at the brush. Currently, AC motors are more widely utilized in
industrial applications. AC motors can be classified into two parts: induction motors [1]
and synchronous motors [2]. This study analyzes permanent magnet synchronous motors
(PMSMs). Because of the advantages of high power density, high reliability, and low
motor volume, PMSMs are used in computer numerical control (CNC) machines, electric
vehicle drive systems, and robots. Field-oriented control (FOC) [3] is a popular strategy for
controlling AC motors. FOC decouples the torque and flux by transforming the stationary
phase currents to a rotating d-q frame. By using the FOC method, the AC motor control
challenge can be simplified to a DC motor control challenge.

The control accuracy of the motor directly affects the performance of the system. The
literature [4] indicates that the rotation speed and propulsive force are two important
parameters in an air-borne bolting system. The breakage of the drill pipe and the inability
of the drill bit to cut the coal adequately can be caused by the unreasonable rotation speed
and propulsive force. In [5], it was found that, to produce precision parts, precise rotational

Machines 2021, 9, 343. https://doi.org/10.3390/machines9120343 https://www.mdpi.com/journal/machines

https://www.mdpi.com/journal/machines
https://www.mdpi.com
https://doi.org/10.3390/machines9120343
https://doi.org/10.3390/machines9120343
https://doi.org/10.3390/machines9120343
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/machines9120343
https://www.mdpi.com/journal/machines
https://www.mdpi.com/article/10.3390/machines9120343?type=check_update&version=2

Machines 2021, 9, 343 2 of 19

accuracy and a constant machine tool spindle speed are required. However, inevitable
changes in the spindle speed caused by the cutting force will lead to low-quality surfaces.
In addition, the rotation speed of the pin tool is an important controlled variable in friction
stir welding machines [6]. By controlling the rotating speed, a constant vertical force is
obtained during the welding process.

Generally, the proportional derivative (PD), proportional-integral (PI), and proportional-
integral-derivative (PID) are the most common controllers used to design the control system [7,8].
In addition, a few studies have proposed alternative algorithms for motor speed control.
The literature [9] proposes an on-line tuning fuzzy proportional derivative controller based
on the equivalent errors to deal with the contouring control of robot manipulators. The
results show that the controller can effectively deal with highly non-linear dynamic sys-
tems following an analytic/non-analytic path. A hybrid fuzzy-PI controller is proposed
to address the challenges of chattering effects and large execution times [10]. Nonlinear
controllers such as feedback linear control [11], sliding mode control [12], and adaptive
control [13] are presented. In addition, model prediction control has been successfully
used for the current and torque control of motors [14,15]. However, the aforementioned
algorithms require precise knowledge of the nonlinear model of the motor, which is difficult
to obtain.

This study adopts the particle swarm optimization (PSO) and deep deterministic
policy gradient (DDGP) algorithms to address the motor speed tracking challenge. In 1995,
the PSO algorithm was proposed by Kennedy and Eberhart [16]. The PSO algorithm is
inspired by the intelligent collective behavior of some animals, and is initialized with a
group of random particles, where each individual particle represents a single solution. The
particles move through the search space to obtain the optimized solution. The movement
direction and velocity of the particles are updated according to the local and global best
solutions. Numerous studies have indicated that the PSO algorithm is a powerful optimiza-
tion method used in various applications. In [17], a learning model is used to determine
the distance between the mobile sensor node and the anchor node. A PSO-based artificial
neural network is proposed to improve the estimation accuracy. In contrast to the conven-
tional optimization method of feed-forward backpropagation, PSO is utilized to update
the weights of the network. In [18], a PSO-based PID controller is proposed to address
the position control of the hydraulic system. The PSO algorithm is utilized to tune the
parameters of the PID controller, and the results indicate that the rising time, settling time,
and integral time absolute error can be reduced. The literature [19] reveals that the PSO
algorithm can also be implemented in the field of control. In [19], a PSO-IAC algorithm,
integrated by the adaptive inertia weight and constriction factor, is proposed to increase
the convergence velocity. The results indicate that the challenge of reaching the avoidance
problem can be addressed. A PSO, combined with a radial basis function neural network,
is proposed to deal with the pitch control of a wind turbine [20]. In addition, a graphical
approach is utilized to visualize the 2D or 3D boundaries of the PID controller. Under the
delay time effects, the stochastic inertia weight PSO can effectively handle pitch control.

Recently, machine learning has become a popular technique. Generally, unsupervised
learning [21], supervised learning [22], and reinforcement learning [23] are the three main
types of machine learning strategies. First, unsupervised learning is typically utilized in
the fields of data clustering and dimensionality reduction. It does not require a complete
and clean labeled dataset, such as principle component analysis [24], autoencoder [25], and
t-SNE [26]. Supervised learning deals mainly with classification and regression problems.
It requires well-labelled dataset, such as a convolutional neural network [27], long short-
term memory [28], and random forest [29]. In addition, in the literature [30], a two-layer
recursive neural network was used to approximate a motor model, and the network was
considered to be a motor speed predictor.

Reinforcement learning is a framework for learning the relationship between states
and actions. Ultimately, the agent can maximize the expected reward and learn how to
complete a mission. Q-learning [31] and deep Q network (DQN) [32] are common value-

Machines 2021, 9, 343 3 of 19

based reinforcement learning algorithms. The policy usually takes the largest action with
the largest action value. For the DQN, the Q table is replaced by a deep neural network to
estimate the action value. Experience replay is utilized to break the correlations between
the samples, which prevents the agent from overfitting to the sequence of training. In [33],
unlike the conventional control method, the complex nonlinear model of the PMSM does
not need to be known. A DQN-based controller is proposed to control the direct torque of
the PMSM; however, DQN can only deal with discrete and low-dimension action spaces. In
contrast to value-based learning, policy-based learning uses a stochastic policy that gives
the probability of action in a specific state. The policy gradient [34] is a basic policy-based
learning algorithm. The advantage of policy-based learning is that it can effectively deal
with high-dimensional and continuous action spaces; however, the learning methods tend
to converge to the local optima. To improve the performance of reinforcement learning,
DDPG [35], TD3 [36], and SAC [37], combining Q-learning and policy gradient algorithms,
are proposed. In [38], DDPG is used to solve the road-keeping challenge. The agent can
determine the steering angle of the vehicle by observing the distance between the vehicle
and the road boundaries. In [39], an optimal torque distribution control for multi-axle
electric vehicles with in-wheel motors is proposed. The DDPG algorithm can optimize the
drive torque for each motor to reduce the energy consumption of the vehicle.

The contributions of this paper are as follows:

1. This paper proposes an online-learning DDPG with the PSO method to control the
motor speed under a load disturbance.

2. The PSO algorithm is used to find a sub-optimized solution of the PI controller using
an approximate motor model. To safely train the model online and converge faster,
the sub-optimized solutions are added into the policy function of the DDPG as a
constraint.

3. The proposed network is a model-free method; hence, a precise mathematical model
of the motor is not required for speed control.

4. The proposed model can deal with the delay problem as well.

The experimental results demonstrate that the proposed method can effectively reduce
the settling time and overshoot of the speed response when a load disturbance occurs.
Furthermore, the results indicate that the proposed method performs better than the
conventional PSO and PI controllers.

The remainder of this paper is organized as follows. Section 2 presents the structure of
the motor testing platform. Section 3 describes the methodology, in which the formulation
and implementation of the system and reinforcement learning solution are discussed in
detail. In Section 4, the experimental results obtained from a real platform are presented.
The experimental results indicate that the proposed method can effectively handle speed
tracking control. Section 5 concludes this study.

2. Motor Testing Platform

In this study, the motor testing platform illustrated in Figure 1 was built. The motor
testing platform comprised two PMSMs and one speed sensor. The analyzed PMSM was
ECM-A3L-0807, developed by Delta Electronics. The rated speed and torque of the motor
are 2.39 Nm and 3000 rpm, respectively. The speed sensor used was DATAFLEX® 16,
which was manufactured by KTR Systems GmbH. The speed sensor outputs a voltage
ranging from 0 to 10 V, and the maximum measured speed can be set from 10 to 10,000 rpm.
The Hall sensor, ACS711EX, can handle bidirectional currents from −31 to +31 A with
a 100 kHz bandwidth. The data acquisition unit used was USB-2405, manufactured by
ADLINK Technology. It utilizes the 24-bit Sigma-Delta ADC with a built-in 165 anti-aliasing
filter and four simultaneous sampling analog input channels up to 128 kS/s.

Machines 2021, 9, 343 4 of 19

Figure 1. Motor testing platform: (1) motor I; (2) speed sensor; and (3) motor II.

As illustrated in Figure 1, the two motors were mounted on the motor testing platform.
Motor I was set in speed control mode and was controlled at a constant speed, Motor II was
set in torque control mode, and it could provide instant and inversed torque as a distur-
bance. This study utilized a notebook as the computational platform, and it communicated
to the actuator through RS-485. The speed sensor was connected between the two motors
to measure the rotating speed of Motor I. Three Hall sensors were individually clamped
to the three-phase wires of Motor I. To acquire a more stable current signal, the power
supplier was utilized to feed a power of 5 V to the Hall sensors. Four signals were acquired
by USB-2405, including the three-phase current signals and the speed signal of Motor I. The
sampling rate was 4000 Hz. When the direction of the torque was opposite to the direction
of rotation, the energy generated returned to the servo drive from the load. A regenerative
resistor with 60 Ohm and 1000 Watt was used to consume the energy. Important peripheral
devices are illustrated in Figure 2.

Figure 2. Peripheral devices: (1) power supplier; (2) signal amplifier of speed sensor; (3) USB-2405;
(4) hall sensor; (5) actuator; and (6) regenerative resistor.

The computer used for training in this work was a notebook equipped with an NVIDIA
GeForce GTX 1050 Ti and an Intel® Core™ I7-8750H. The notebook had an 8G memory.
This work used Python as a development tool owing to its convenient libraries, such
as Keras and TensorFlow. C++ was used for human interface design. The drawings in
this article were produced in MATLAB owing to the convenient drawing functions and
esthetics of its figures.

3. Methods

This section describes the proposed speed control methods. Three methods were
analyzed in this study including the fixed method, PSO algorithm, and DDPG. For the
fixed method, the Delta actuator has a function that can provide the parameters of PI
controller based on motor status and the settings in the actuator. However, the value does
not change when the external load happens. For the PSO algorithm, the approximate model
of the motor should be determined using the system identification method. Subsequently,

Machines 2021, 9, 343 5 of 19

the load and speed estimation equations are derived; however, the approximate models of
the PI controller and motor cannot fully describe the real platform. Using both estimation
equations, PSO can solely determine the sub-optimized values of Kp and Ki for the PI
controller. Hence, the proposed method, which combines the DDPG and PSO, was used
to learn the optimized solution online. The advantage of DDPG is that the method is a
model-free algorithm. The performance of the proposed method is discussed in Section 4.

3.1. System Description

Figure 3 illustrates a control block diagram of the motor speed control system. C(s)
and G(s) are the PI current controller and motor model, respectively. w∗ and w are the
speed command and output speed, respectively. tc is the torque command obtained by
multiplying the torque constant Kt by the current i. tL is the external load disturbance.
Using the system identification methods proposed in [40,41], the estimation model is a
second-order transfer function G(s), as follows:

G(s) =
W(s)

Tc(s)− TL(s)
=

D
As2 + Bs + C

(1)

The PI controller has the following form:

C(s) =
Kps + KpKi

s
(2)

where Kp and Ki are the proportional and integral gains.

Figure 3. Control block diagram of the motor speed control system.

3.2. Load and Speed Estimation Equation

In the analysis of the methods, unknown external load was seen as a disturbance to the
system, which can cause the motor speed response to change. The load estimation equation
was derived to estimate the unknown disturbance. Furthermore, a speed estimation
equation was derived. Both estimation equations were adopted for predicting the speed
response and to enable the PSO algorithm to determine the sub-optimized solution.

3.2.1. Load Estimation

According to Equation (1), the external load can be expressed as follows:

TL(s) = Tc(s)−
1
D

(
As2 + Bs + C

)
W(s) (3)

taking the inverse Laplace transform and assuming that the initial condition is zero. Then,
the following differential equation can be obtained:

tL(t) = tc(t)−
1
D
(

A
..
w(t) + B

.
w(t) + Cw(t)

)
(4)

Subsequently, the load estimation equation can be obtained by discretizing Equation (4).

tL(k− 1) = Kti(k− 1)− 1
D

(
A

w(k + 1)− 2w(k) + w(k− 1)
T2

s
+ B

w(k)− w(k− 1)
Ts

+ Cw(k− 1)
)

(5)

Machines 2021, 9, 343 6 of 19

where Ts is the sampling time.

3.2.2. Speed Estimation

Figure 3 illustrates that the transfer function I(s)/E(s) =
(
Kps + KpKi

)
/s. Assume

that the state X(s) = E(s)/s, and the differential equation is
.
x(t) = e(t). I(s) can be

expressed as:
I(s) = KpE(s) + KpKiX(s) (6)

Taking the inversed Laplace transform, the current response is expressed as follows:

i(t) = Kpe(t) + KpKix(t) (7)

For the speed estimation equation, Equation (4) can be rewritten in the form

..
w(t) +

B
A

.
w(t) =

1
A
(D(tc(t)− tL(t))− Cw(t)) (8)

Finally, the difference equations of Equation (7) is expressed as:

i(k) = Kp(w∗(k)− w(k)) + KpKix(k) (9)

and the speed estimation equation is

w(k + 1) = 2w(k)− w(k− 1)− B
A
(w(k)− w(k− 1))Ts +

(
D
A
(tc(k− 1)− tL(k− 1))− C

A
w(k− 1)

)
T2

s (10)

3.3. Particle Swarm Optimization Algorithm

In this study, the PSO algorithm was used to determine the parameters of PI controller.
When a load is added into the motor system and the speed of the motor is significantly
changed, the PSO algorithm starts. Figure 4 illustrates the operation of the PSO algorithm.

Figure 4. Operation of the PSO algorithm.

Figure 5 illustrates a general flowchart of the PSO algorithm. First, the number of PSO
particles and dimension of the search space should be determined. At the ith iteration, the
position and velocity of the particles can be expressed as follows:

Xn(i) = [xn1(i), xn2(i), · · · , xnd(i)], n = 1, . . . , m, (11)

Vn(i) = [vn1(i), vn2(i), · · · , vnd(i)], n = 1, . . . , m, (12)

where Xn(i) represents the nth particle position and Vn(i) is the nth particle velocity. m
and d are the number of particles and dimension of the searching space, respectively. The
individual best position Pn and global best position Pg are expressed as follows:

Pn(i) = [pn1(i), pn2(i), · · · , pnd(i)], n = 1, . . . , m, (13)

Machines 2021, 9, 343 7 of 19

Pg(i) =
[

pg1(i), pg2(i), · · · , pgd(i)
]
, n = 1, . . . , m, (14)

Figure 5. Flowchart of the PSO algorithm.

The integral absolute error (IAE), integral square error (ISE), integral time absolute
error (ITAE), integral time square error (ITSE), and integral square time error (ISTE) are
popular objective functions [42–44]. In this study, the IAE was adopted as the fitness
function, which is calculated as follows:

TIAE =
N

∑
k=1
|w∗(k)− w(k)| (15)

where TIAE indicates the IAE value. The load disturbance is first estimated by the load
estimation equation. Afterward, N sampling points are predicted by the speed estimation
equation for calculating the fitness function. Then, TIAE is calculated by subtracting the
command speed and the estimated speed. By operating the following equations, the
updated velocity and position of the particle can be obtained:

Vn(i + 1) = wpVn(i) + C1R1(Pn(i)− Xn(i)) + C2R2
(

Pg(i)− Xn(i)
)

(16)

Xn(i + 1) = Xn(i) + Vn(i + 1) (17)

Machines 2021, 9, 343 8 of 19

where wp is the inertia weight, which is a constant value. C1 and C2 are the individual
and global coefficients, respectively. R1 and R2 are random numbers generated from a
uniform distribution in the interval [−1, 1]. When the number of iterations is larger than
the number of maximum iterations, the PSO algorithm stops.

In this study, the parameter settings of the PSO algorithm are shown in Table 1. The
dimension of the searching space is 2 for Kp and Ki. Furthermore, the number of the
predicted sampling point is 300, about 0.075 s. Two settings of the maximum iteration
number are discussed in Section 4.2.

Table 1. Parameter settings of the PSO algorithm.

Parameters d wp C1 C2 N

Values 2 0.5 1.2 1.2 300

3.4. Deep Deterministic Policy Gradiend with Particle Swarm Optimization

This study proposes a DDPG model to implement the online learning of speed tracking
control. By combining the sub-optimized solutions of the PSO algorithm, the DDPG model
can converge faster.

3.4.1. State-Space

The state space denotes observations from the environment. To train the model
efficiently, the state variables should be strongly related to actions. According to the load
estimation and speed estimation equations shown in Equations (5) and (10), the variations
in the speed and current are important. In addition, the current values of Kp and Ki affect
the compensatory performance of the current. To ensure the scales of each feature are
similar, the values of Kp and Ki should be normalized to Kpn and Kin. The normalization
process is as follows:

K∗n =
K∗
Sn∗

(18)

K∗ indicates the values and of Kp and Ki. Sn∗ represents the space size of the Kp and
Ki. In this study, Snp and Sni were 250 and 100, respectively. Kpn, Kin, and the amount of
change of these two signals are measured and processed as the input state vectors.

Once the speed is continuously lower than Se% of the command speed for Ne, with
more than 9 sampling points, the tuning starts. The speed Wr (rad/s) and current Ir (A)
signals in the Ne continuous sampling points can be expressed as follows:

Wr = [wr1, wr2, . . . , wrNe] (19)

Ir = [ir1, ir2, . . . , irNe] (20)

Figure 6 illustrates the measured signals for Wr and Ir. By subtracting the first variable
from the others and combining the two vectors, the input state vector st can be obtained.

st =
[
wr1,2, wr1,3, . . . , wr1,10, ir1,2, ir1,3, . . . , ir1,10, Kpn, Kin

]
(21)

Machines 2021, 9, 343 9 of 19

Figure 6. Signals fed into the actor network under the conditions of speed command 52.359 rad/s and load disturbance
0.717 Nm: (a) speed and (b) current.

3.4.2. Action Space

The main actions controlling the speed response are the parameters of Kp and Ki. The
available setting ranges of Kp and Ki for the actuator utilized in this study are [0, 500] and
[0, 100], respectively. However, by observing the sub-optimized solution solved by the PSO
method, the boundary of Kp can be restricted to [251, 500], and the setting range of Ki is
kept the same.

3.4.3. Reward Function Design

This study proposes a reward function that enables the agent to track the speed
command. It encourages the agent to decrease the settling time and minimize the change
in speed while the load disturbance occurs. The IAE of the speed response is a key
measurement of how well the motor speed is maintained. Furthermore, to decrease
the training time and protect the mechanism during online training, the sub-optimized
solutions of Kps and Kis are considered. Assume that the actions determined by the actor
network are Kpa and Kia. In addition, the two search boundaries of the two actions are
defined as [Dpl ,Dpu] and [Dil , Diu]. The reward function R, based on the IAE and PSO, is
presented as follows:{

r(st, at) = r1

(
2e(r2

I
In) − r3

)
, if D∗l ≤ a∗,t ≤ D∗u]

rt(st, at) = Q(st, at
∣∣θQ)− 0.1, otherwise

, (22)

where r1 is a constant adopted to scale up the reward, and the neural network is allowed
to converge more easily. The value of r1 depends on the size of the action space. When
the size of the action space is large, the value of r1 should increase, otherwise, its value
should decrease. r2 is the decay rate, which is a negative constant. The normalized process
is usually used in the reward function design [45–47], and is calculated by Iw/In. Iw is the
IAE value obtained by subtracting the command speed and the measured output speed.
The number of the calculated sampling points is 300. In is the average IAE result under
a fixed Kp and Ki. The fixed values of Kp and Ki are 226 and 36, respectively, which are
calculated from the Delta actuator under the auto-tuning mode. r3 is also a constant, which
makes r ∼= 0.0 when I/In is 0.5. The design of r3 leads the reward function to contain both
positive and negative value. Dpu and Dpl are calculated as Kps ± dp. Similarly, Diu and
Dil are calculated as Kps ± di. If action a∗,t is out of the boundaries of [D∗l ,D∗u], a small

Machines 2021, 9, 343 10 of 19

punishment is given. Based on numerous experimental results and observations, the values
of the parameters are shown in Table 2.

Table 2. Parameter settings of the reward function.

Parameters r1 r2 r3 dp di In

Values 10 −2.5 0.3 40 30 9000

3.4.4. Network Architecture

To determine the actions and evaluate the value of actions under a certain state, a critic
network Q(s, a

∣∣θQ) and an actor µ(s|θµ) were designed. The architectures of the networks
are constructed by the fully connected layers, which are illustrated in Figure 7. After the
experimental tuning, the proposed actor has one input state, as shown in Equation (21),
including the values of Kpn and Kin and variations in the speed and current signals. Subse-
quently, two fully connected layers are connected. Finally, two output layers with the Tanh
activation function generate the actions Kpa and Kia, which are in the range of −1 to 1. By
scaling into the range of each action space, as mentioned in Section 3.4.2, the final actions
can be obtained.

Figure 7. Architectures of the networks: (a) actor and (b) critic.

In addition, the proposed critic network has two input vectors including the state
vector st and the action vector. First, the two input vectors are connected to two fully
connected layers separately, and are then concatenated together. Subsequently, one fully
connected layer is connected. Finally, one linear output layer outputs the action value. All
the fully connected layers used in the hidden layers are used with the ReLU [48] activation
function. Adam optimization with the mean square error function is used to train the
critic network. The mean of value given by the critic network is used to train the actor.
Based on the tuning results, a fixed learning rate of 0.003 is assigned. Tables 3 and 4 list the
hyperparameter settings of the proposed critic and actor networks.

Table 3. Hyperparameter settings of the proposed actor network.

Size of the input state 20× 1
Input size of the 1st fully connected layer 20× 1
Input size of the 2nd fully connected layer 256× 1

Input size of output layer 256× 1
Output size of output layer 2× 1

Learning rate 0.003

Machines 2021, 9, 343 11 of 19

Table 4. Hyperparameter settings of the proposed critic network.

Size of the state vector 20× 1
Size of the action vector 2× 1

Input size of the 1st fully connected layer 20× 1
Input size of the 2nd fully connected layer 2× 1

Input sizes of the concatenate layer: (1st fully
connected layer)

(2nd fully connected layer)

48× 1
48× 1

Input size of the 3rd fully connected layer 96× 1
Input size of the 4th fully connected layer 256× 1

Input size of output layer 256× 1
Output size of output layer 1× 1

Learning rate 0.003

The details of the reinforcement motor speed control method are presented in Algo-
rithm 1. First, the experience memory M with the size of 100, and the critic, actor, and
target networks are initialized. Afterward, every 5 s, motor II changes the disturbance
load in the range of 0.0 to 1.0 Nm. If significant change happens on the motor speed, the
state st is fed into the actor and determines the parameter settings of PI controller. The
exploration noise εt is a random number, which is in the range of −5.0–5.0 after scaling.
The reward is calculated after the actions are implemented on the motors. Then, the critic,
actor, and target networks are updated. τ denotes the changed rate of the target network.
The design of τ is intended to change the weight of the target network slowly, which is 0.05
in this paper.

Algorithm 1 DDPG for Speed Tracking Control

1: Initialize experience memory M
2: Randomly initialize critic network Q(s, a

∣∣θQ) and actor µ(s|θµ) with weights θQ and θµ

3: Initialize target network Q′ and µ′ with weights θQ′ ← θQ , θµ′ ← θµ

4: repeat
5: Randomly select disturbance load in the range of 0.0~1.0 Nm
6: if significant change in motor speed then
7: Observe the state st, and calculate sub-optimized solutions and boundaries Kps, Kis, Dpl , Dpu,
Dil , and Diu
8: Select the actions at = µ(st|θµ) + εt according to the current policy and exploration noise
9: if a∗,t is out of the boundaries of [D∗l , D∗u] then
a. Store transition (si, ai, ri)
b. Randomly select action a∗,t in the boundary of [D∗l , D∗u]
10: end if
11: Execute actions at and observe reward rt
12: Store transition (si, ai, ri)
13: Sample a random minibatch of Nm transitions (si, ai, ri) from M
14: Set yi = ri

15: Update critic by minimizing the loss L = 1
Nm

∑i (yi −Q(si, ai
∣∣θQ))

2

16: Update the actor policy using the sampled policy gradient:

17: ∇θµ J ≈ 1
Nm

∑i∇aQ(s, a
∣∣∣θQ)

∣∣∣s=si ,a=µ(si)∇θµ µ(s
∣∣∣θµ)

∣∣∣
s=si

18: Update the target networks:
19: θQ′ ← τθQ + (1− τ)θQ′

20: θµ′ ← τθµ + (1− τ)θµ′

21: end if
22: until convergence

4. Experimental Results

In this section, the results of the experiment are discussed. The flowchart of the
proposed online tuning method is shown in Figure 8. First, the approximate model of the
motor was obtained by the system identification. To verify the stability of the system, the

Machines 2021, 9, 343 12 of 19

Routh–Hurwitz [49] stability criterion was used. Afterward, the searching regions of Kp
and Ki could be determined. By using the Hall sensor and speed sensor, the current signal
and the motor speed could be acquired. When a significant change happened in the motor
speed, the tuning algorithm started. In this study, three tuning methods, including the
fixed method, PSO algorithm, and DDPG, were compared. Finally, the desired parameters
of Kp and Ki could be obtained and updated in the actuator.

4.1. System Description and Stability

The motor system was considered to be a two-order transfer function, which is shown
in Equation (1). By measuring the three-phase current and the output speed, and using the
MATLAB system identification toolbox, the coefficients of A, B, C, and D were found to
be 4.4720 × 10−4, 1.0181, 3.9129, and 886.21519, respectively. To confirm the performance
of the system identification process, motor under settings of Kp = 226 and Ki = 36 were
tested. Figure 9a illustrates the transient and steady state response under the command
speed of 500 rpm. In addition, Figure 9b shows the speed response to load disturbance.
The results show that the settling times of the approximate model and the real motor were
similar. However, different amounts of overshoot and undershoot were found to exist. In
Figure 9a, it can be seen that the overshoots of the simulation and real motor were 15.0%
and 8.4%, respectively. In Figure 9b, when adding a load to the motor, the undershoot of
the simulation and real motor were found to be 8.4% and 13.4%, respectively. However,
when releasing the load, the overshoot of the simulation and real motor were observed to
be 7.7% and 12.7%, respectively.

Figure 8. Flowchart of the proposed online-tuning method.

Machines 2021, 9, 343 13 of 19

Figure 9. Motor speed response: (a) transient and steady state response, and (b) speed response with disturbance load of
0.717 Nm.

In order to implement the online learning method, the stability of the system needed
to be considered. Inappropriate tuning parameters would cause the system to be unstable.
According to the Routh–Hurwitz criterion, the stable boundaries of Kp and Ki that cause
the system to be stable were calculated and are shown in Figure 10. The positive area below
the blue curve is the stable region. As mentioned in Section 3.4.2, the available setting
ranges of Kp and Ki of the actuator were [0, 500] and [0, 100], respectively. The available
operating area, the red boundary, is shown in Figure 10. All the operating area was in the
stable region. Hence, the settings of the actuator were all allowed.

Figure 10. Stable range of Kp and Ki for the system.

4.2. Online-Tuning Results

The experiment was divided into four stages representing the load conditions of
0→0.717 Nm, 0.717→0 Nm, 0→0.717 Nm, and 0.717→0 Nm, respectively. Figure 11 shows

Machines 2021, 9, 343 14 of 19

the comparison of the four methods. As shown in Figure 11, using fixed values of Kp
and Ki, the settling time, undershoot and overshoot were about 100 ms, 13.4%, and 12.7%,
respectively. To improve the performance of the time response, PSO tuning method is first
discussed. Two parameter settings of PSO algorithm are shown in Table 5.

In Case I, when twenty continuous sampling points of the rotating speed was lower
than 97% of the command speed, the PSO tuning method started. To calculate the fitness
equation TIAE as shown in Equation (15), 300 sampling points of the speed response
after the starting point were predicted by Equations (5) and (10). Subsequently, the sub-
optimized solutions could be obtained and sent into the actuator.

First, for comparison with the fixed method, the values of Kp and Ki were initialized to
226 and 36. In stage I, the settling time could be improved from 100 ms to 58 ms. However,
the undershoot did not undergo significant change, and was about 13%. In stage II, the
settling time was decreased to 39 ms, which was 61 ms better than that of the fixed method.
Moreover, the overshoot was decreased to 6.8%. To confirm the performance of the motor
encountering the same load conditions, stages III and IV were conducted. In stage III, the
settling time and undershoot were 34 ms and 7.6%, respectively. Because the values of Kp
and Ki had been tuned, a better ability to compensate the current is shown. In stage IV, the
settling time was 34 ms, and the overshoot was 6.26% which was 0.54% better than that
in stage II. The results suggest that the performance of the time response was improved.
However, the tuning results were affected by the computational consumption and delay
time. In stage I, the real tuning point was operated after the lowest point, which was far
from the start point. The delay time caused the solutions determined by the PSO algorithm
to be sub-optimized solutions. In Case I, the PSO algorithm took about 2 ms to yield the
solutions. In addition, the delay time of communicating with the actuator was about 10 ms.
The results show that the time consumption is an important issue.

In order to minimize the influence of computational time and delay time, some
parameter settings were changed. In Case II, the threshold Se, error number Ne, and the
iteration number were modified to 98.5% and 5. By changing the settings, the calculation
time of the PSO algorithm was reduced to 1 ms. A lower value of Se led the tuning method
to be more sensitive to the speed error; however, it made the start point move forward by
about 2.5 ms.

In stage I, the settling time was about 28 ms, which was 22 ms better than that of Case
I. However, the change of the settings did not make great improvement on the undershoot.
In stage II, the settling time was decreased to 20 ms. Furthermore, the overshoot was
decreased to 6.4%. In stage III, the settling time and undershoot were 19 ms and 8.3%,
respectively. In stage IV, the settling time was 22 ms, and overshoot was 6.26%. The
results show that, by reducing the processing time, some parts of the performance could
be improved.

To deal with the delay time problem and imprecise mathematical model, DDPG
model-free reinforcement learning was used to train online. By observing the experimental
results of Cases I and II, the values of Se and Ne were set to 98.5% and 10 in the Cases of
DDPG. In addition, the TensorFlow Lite technique was utilized to accelerate the prediction
process without losing accuracy. The prediction time could be reduced to 0.03 ms, which
was about 300 times smaller than that of Case II. As illustrated in Figure 11, when a load
was added to the motor, the DDPG method could provide the best current compensation.
The settling times in stages I and II were 18 and 16 ms, which were the smallest values
in each Case. When releasing the load, in stages II and IV, the settling times were 20 ms
and 18 ms, respectively. Table 6 list the values of settling time, undershoot, and overshoot
of each method. The fixed value settings obtained from the Delta actuator performed the
worst. For the undershoot and overshoot, the other three methods had similar performance.
However, for the settling time, the proposed method had the smallest values.

Machines 2021, 9, 343 15 of 19

Table 5. Two parameter settings of PSO algorithm.

Case

Parameters

Particle
Number

Iteration
Number wp C1 C2 Se% Ne

Number of
Predicted

Points

I 25 10 0.5 1.2 1.2 97 20 300
II 25 5 0.5 1.2 1.2 98.5 10 300

Figure 11. Comparison of the four tuning methods.

Table 6. Values of settling time, undershoot, and overshoot of each method.

Methods

Time Response

Settling Time (ms) Undershoot/Overshoot (%)

Stage I Stage II Stage III Stage IV Stage I Stage II Stage III Stage IV

Fixed 100 100 100 100 ≈13.4 12.7 13.4 12.7
PSO (Case I) 58 39 34 34 ≈13.4 6.8 7.6 6.3
PSO (Case II) 28 20 19 22 ≈13.4 6.4 8.3 6.3

DDPG 18 16 20 18 ≈13.4 6.5 8.0 6.3

Figure 12 shows ten experimental results of the IAE calculation in different stages for
each method. In Case I, the average IAE values of each stage were 5151.84, 2305.85, 2908.35,
and 1792.76, respectively. In Case II, the average IAE values of each stage were 3831.83,
2333.24, 2718.14, and 2230.39, respectively. Generally, in stage I, the tuning results of Case
II were better than those of Case I. Because the starting point was moved forward and the

Machines 2021, 9, 343 16 of 19

calculation time was decreased, the solutions of Kp and Ki could operate at a more suitable
point. In stages II and III, the average IAE values were similar. In stage IV, the tuning
results of Case I were better than those of Case II. Furthermore, in Case I, the standard
deviations of each stage were 169.69, 205.41, 277.11, and 89.92, respectively. In Case II, the
standard deviations of each stage were 246.02, 169.64, 429.51, and 322.51, respectively. The
solutions of Case II were more separated, which was caused by the smaller number of
iterations. However, some solutions determined by Case II were better than Case I.

Figure 12. IAE values in each stage.

The average IAE values of the proposed DDPG showed the best performance. Fur-
thermore, according to the standard deviation of the IAE value, the solutions determined
by the proposed DDPG were more converged, which is shown in Figure 12. Table 7 lists
the average and standard deviation of the IAE value of the four methods. The experimen-
tal results show that the DDPG method combines the advantages of Cases I and II. The
proposed method can learn the unknown model of the motor system and determine better
tuning solutions for the load disturbance.

Table 7. IAE value of each Case.

Methods

IAE Value

Average Standard Deviation

Stage I Stage II Stage III Stage IV Stage I Stage II Stage III Stage IV

Fixed 8906.63 8674.13 8887.93 8641.33 50.31 105.52 19.74 70.90
PSO (Case I) 5151.84 2305.85 2908.35 1792.76 169.69 859.26 277.11 89.92
PSO (Case II) 3831.83 2333.24 2718.14 2230.39 246.02 169.64 429.51 322.51

DDPG 3279.09 1956.57 2303.54 1693.80 100.20 356.02 119.93 187.66

5. Conclusions

This study proposed a DDPG method to effectively track the speed control under
an unknown load disturbance. A precise mathematical model of the motor system is not
required when using the model-free reinforcement learning algorithm. Three methods,
including the fixed method, PSO algorithm, and DDPG, were discussed. The fixed method
showed the worst performance. The fixed values of Kp and Ki, 226 and 36, were provided
by the Delta actuator based on the motor status and settings. It took the longest time to
return back to the speed command, and had the largest overshoot and undershoot. The
tuning results of the PSO algorithm show that the speed response was improved when the
load disturbance occurred. However, the computational time and time delay caused by

Machines 2021, 9, 343 17 of 19

communicating to the actuator affected the tuning performance. To solve the mentioned
challenges, the DDPG method was proposed. The sub-optimized solutions of Kp and
Ki determined by the PSO algorithm were added into the DDPG training, which caused
the training to converge faster and more safely. Through the use of Tensorflow Lite, the
computational time challenge could be solved. The experimental results show that the
proposed DDPG method was able to effectively decrease the settling time, overshoot, and
undershoot under the load disturbance. The proposed technique can be used in the field
of machining. In the cutting process, the speed of the motor usually decreases when the
external load suddenly becomes large. To obtain a smooth surface and high quality of the
parts, the fast compensation method of the motor speed can be utilized.

Author Contributions: Conceptualization, C.-S.W. and C.-W.C.G.; methodology, C.-S.W. and C.-
W.C.G.; software, C.-S.W.; validation, C.-S.W.; formal analysis, C.-S.W.; investigation, C.-S.W.; re-
sources, C.-S.W.; data curation, C.-S.W.; writing—original draft preparation, C.-S.W.; writing—review
and editing, J.-W.P.; visualization, C.-S.W.; supervision, J.-W.P. and D.-M.T.; project administration,
J.-W.P. and D.-M.T.; funding acquisition, J.-W.P. and D.-M.T.; All authors have read and agreed to the
published version of the manuscript.

Funding: This study was funded by a grant from the Ministry of Science and Technology, Taiwan,
under Grant No. MOST 110-2221-E-110-031-.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cruz, A.G.d.A.; Gomes, R.D.; Belo, F.A.; Lima-Filho, A. A Hybrid System Based on Fuzzy Logic to Failure Diagnosis in Induction

Motors. IEEE Lat. Am. Trans. 2017, 15, 1480–1489. [CrossRef]
2. Sant, A.V.; Rajagopal, K.; Sheth, N.K. Permanent Magnet Synchronous Motor Drive Using Hybrid PI Speed Controller with

Inherent and Noninherent Switching Functions. IEEE Trans. Magn. 2011, 47, 4088–4091. [CrossRef]
3. Gashtil, H.; Pickert, V.; Atkinson, D.; Giaouris, D.; Dahidah, M. Comparative evaluation of field oriented control and direct torque

control methodologies in field weakening regions for interior permanent magnet machines. In Proceedings of the 2019 IEEE 13th
International Conference on Compatibility, Power Electronics and Power Engineering, Sonderborg, Denmark, 23–25 April 2019.

4. Liu, Q.; Zha, Y.; Liu, T.; Lu, C. Research on adaptive control of airborne bolting rigs based on genetic algorithm optimization.
Machines 2021, 9, 10. [CrossRef]

5. Hayashi, A.; Nakao, Y. Rotational speed control system of water driven spindle considering influence of cutting force using
disturbance observer. Precis. Eng. 2018, 51, 88–96. [CrossRef]

6. Ciccarelli, D.; El Mehtedi, M.; Forcellese, A.; Greco, L.; Simoncini, M. In-process Control of Rotational Speed in Friction Stir
Welding of Sheet Blanks with Variable Mechanical Properties. Procedia CIRP 2018, 67, 440–445. [CrossRef]

7. Huba, M.; Chamraz, S.; Bistak, P.; Vrancic, D. Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise
and Reliable. Sensors 2021, 21, 6157. [CrossRef]

8. He, Z.; Nie, L.; Yin, Z.; Huang, S. A Two-Layer Controller for Lateral Path Tracking Control of Autonomous Vehicles. Sensors
2020, 20, 3689. [CrossRef]

9. Li, K.; Boonto, S.; Nuchkrua, T. On-line Self Tuning of Contouring Control for High Accuracy Robot Manipulators under Various
Operations. Int. J. Control. Autom. Syst. 2020, 18, 1818–1828. [CrossRef]

10. Sant, A.V.; Rajagopal, K.R. PM Synchronous motor speed control using hybrid fuzzy-PI with novel switching functions. IEEE
Trans. Magn. 2009, 45, 4672–4675. [CrossRef]

11. Aghili, F. Optimal feedback linearization control of interior PM synchronous motors subject to time-varying operation condi-tions
minimizing power loss. IEEE Trans. Ind. Electron. 2018, 65, 5414–5421. [CrossRef]

12. Li, Z.; Zhou, S.; Xiao, Y.; Wang, L. Sensorless Vector Control of Permanent Magnet Synchronous Linear Motor Based on
Self-Adaptive Super-Twisting Sliding Mode Controller. IEEE Access 2019, 7, 44998–45011. [CrossRef]

13. Mier, L.; Benitez, J.; Lopez, R.; Segovia, J.; Peña-Eguiluz, R.; Ramirez, F.J.J. Adaptive Fuzzy Control System for a Squirrel Cage
Induction Motor. IEEE Lat. Am. Trans. 2017, 15, 795–805. [CrossRef]

14. Ahmed, A.A.; Koh, B.K.; Lee, Y.I. A comparison of Finite control set and continuous control set model predictive control schemes
for speed control of induction motors. IEEE Trans. Ind. Inform. 2018, 14, 1334–1346. [CrossRef]

http://doi.org/10.1109/TLA.2017.7994796
http://doi.org/10.1109/TMAG.2011.2159831
http://doi.org/10.3390/machines9100240
http://doi.org/10.1016/j.precisioneng.2017.07.015
http://doi.org/10.1016/j.procir.2017.12.239
http://doi.org/10.3390/s21186157
http://doi.org/10.3390/s20133689
http://doi.org/10.1007/s12555-019-0110-9
http://doi.org/10.1109/TMAG.2009.2022191
http://doi.org/10.1109/TIE.2017.2784348
http://doi.org/10.1109/ACCESS.2019.2909308
http://doi.org/10.1109/TLA.2017.7910191
http://doi.org/10.1109/TII.2017.2758393

Machines 2021, 9, 343 18 of 19

15. Bolognani, S.; Peretti, L.; Zigliotto, M. Design and Implementation of Model Predictive Control for Electrical Motor Drives. IEEE
Trans. Ind. Electron. 2009, 56, 1925–1936. [CrossRef]

16. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural
Networks, Perth, WA, Australia, 27 Noverber–1 December 1995; IEEE: Piscataway, NJ, USA; Volume 4, pp. 1942–1948.

17. Gharghan, S.K.; Nordin, R.; Ismail, M.; Ali, J.A. Accurate Wireless Sensor Localization Technique Based on Hybrid PSO-ANN
Algorithm for Indoor and Outdoor Track Cycling. IEEE Sens. J. 2016, 16, 529–541. [CrossRef]

18. Ye, Y.; Yin, C.-B.; Gong, Y.; Zhou, J.-J. Position control of nonlinear hydraulic system using an improved PSO based PID controller.
Mech. Syst. Signal Process. 2017, 83, 241–259. [CrossRef]

19. Lin, C.-J.; Li, T.-H.S.; Kuo, P.-H.; Wang, Y.-H. Integrated particle swarm optimization algorithm based obstacle avoidance control
design for home service robot. Comput. Electr. Eng. 2016, 56, 748–762. [CrossRef]

20. Perng, J.-W.; Chen, G.-Y.; Hsieh, S.-C. Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems. Energies
2014, 7, 191–209. [CrossRef]

21. Usama, M.; Qadir, J.; Raza, A.; Arif, H.; Yau, K.-L.A.; Elkhatib, Y.; Hussain, A.; Al-Fuqaha, A. Unsupervised Machine Learning for
Networking: Techniques, Applications and Research Challenges. IEEE Access 2019, 7, 65579–65615. [CrossRef]

22. Sen, P.C.; Hajra, M.; Ghosh, M. Supervised Classification Algorithms in Machine Learning: A Survey and Review. In Emerging
Technology in Modelling and Graphics; Springer: Singapore, 2020; pp. 99–111. [CrossRef]

23. Liu, C.; Xu, X.; Hu, D. Multiobjective Reinforcement Learning: A Comprehensive Overview. IEEE Trans. Syst. Man Cybern. Syst.
2015, 45, 385–398. [CrossRef]

24. Luwei, K.C.; Yunusa-Kaltungo, A.; Sha’aban, Y.A. Integrated fault detection framework for classifying rotating machine faults
using frequency domain data fusion and artificial neural networks. Machines 2018, 6, 59. [CrossRef]

25. Seong, J.H.; Seo, D.H. Selective Unsupervised Learning-Based Wi-Fi Fingerprint System Using Autoencoder and GAN. IEEE
Internet Things J. 2020, 7, 1898–1909. [CrossRef]

26. Van der Maaten, L.; Hinton, G. Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
27. Won, C.S. Multi-Scale CNN for Fine-Grained Image Recognition. IEEE Access 2020, 8, 116663–116674. [CrossRef]
28. Moreira, L.; Figueiredo, J.; Vilas-Boas, J.; Santos, C. Kinematics, Speed, and Anthropometry-Based Ankle Joint Torque Estimation:

A Deep Learning Regression Approach. Machines 2021, 9, 154. [CrossRef]
29. Chiu, Y.-C.; Wang, P.-H.; Hu, Y.-C. The thermal error estimation of the machine tool spindle based on machine learning. Machines

2021, 9, 184. [CrossRef]
30. Wu, B.-F.; Lin, C.-H. Adaptive neural predictive control for permanent magnet synchronous motor systems with long delaytime.

IEEE Access 2019, 7, 108061–108069. [CrossRef]
31. Watkins, C.J.C.H.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
32. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with deep reinforce-

ment learning. arXiv 2013, arXiv:1312.5602.
33. Schenke, M.; Wallscheid, O. A Deep Q-Learning Direct Torque Controller for Permanent Magnet Synchronous Motors. IEEE Open

J. Ind. Electron. Soc. 2021, 2, 388–400. [CrossRef]
34. Sutton, R.; McAllester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function approximation.

Adv. Neural Inf. Process. Syst. 2000, 12, 1057–1063.
35. Lillicrap, T.P. Continuous control with deep reinforcement learning. arXiv 2015, arXiv:1509.02971.
36. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in Actor-Critic methods. In Proceedings of the 35th

International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.
37. Haarnoja, T. Soft Actor-Critic algorithms and applications. arXiv 2018, arXiv:1812.05905.
38. Liu, M.; Zhao, F.; Niu, J.; Liu, Y. ReinforcementDriving: Exploring Trajectories and Navigation for Autonomous Vehicles. IEEE

Trans. Intell. Transp. Syst. 2021, 22, 808–820. [CrossRef]
39. Jin, L.; Tian, D.; Zhang, Q.; Wang, J. Optimal torque distribution control of multi-axle electric vehicles with in-wheel motors based

on DDPG algorithm. Energies 2020, 13, 1331. [CrossRef]
40. Takasaki, G.; Fenton, R. On the identification of vehicle longitudinal dynamics. IEEE Trans. Autom. Control. 1977, 22, 610–615.

[CrossRef]
41. Chen, G.Y.; Perng, J.-W. PI speed controller design based on GA with time delay for BLDC motor using DSP. In Proceedings of

the 2017 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 24 August 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 1174–1179.

42. Bicakci, S. On the Implementation of Fuzzy VMC for an Under Actuated System. IEEE Access 2019, 7, 163578–163588. [CrossRef]
43. Rahimi, T.; Ding, L.; Kheshti, M.; Faraji, R.; Guerrero, J.M.; Tinajero, G.D.A. Inertia response coordination strategy of wind

generators and hybrid energy storage and operation cost-based multi-objective optimizing of frequency control parameters. IEEE
Access 2021, 9, 74684–74702. [CrossRef]

44. Yousaf, S.; Mughees, A.; Khan, M.G.; Amin, A.A.; Adnan, M. A Comparative Analysis of Various Controller Techniques for
Optimal Control of Smart Nano-Grid Using GA and PSO Algorithms. IEEE Access 2020, 8, 205696–205711. [CrossRef]

45. Wasala, A.; Byrne, D.; Miesbauer, P.; O’Hanlon, J.; Heraty, P.; Barry, P. Trajectory based lateral control: A Reinforcement Learning
case study. Eng. Appl. Artif. Intell. 2020, 94, 103799. [CrossRef]

http://doi.org/10.1109/TIE.2008.2007547
http://doi.org/10.1109/JSEN.2015.2483745
http://doi.org/10.1016/j.ymssp.2016.06.010
http://doi.org/10.1016/j.compeleceng.2015.05.019
http://doi.org/10.3390/en7010191
http://doi.org/10.1109/ACCESS.2019.2916648
http://doi.org/10.1007/978-981-13-7403-6_11
http://doi.org/10.1109/tsmc.2014.2358639
http://doi.org/10.3390/machines6040059
http://doi.org/10.1109/JIOT.2019.2956986
http://doi.org/10.1109/ACCESS.2020.3005150
http://doi.org/10.3390/machines9080154
http://doi.org/10.3390/machines9090184
http://doi.org/10.1109/ACCESS.2019.2932746
http://doi.org/10.1007/BF00992698
http://doi.org/10.1109/OJIES.2021.3075521
http://doi.org/10.1109/TITS.2019.2960872
http://doi.org/10.3390/en13061331
http://doi.org/10.1109/TAC.1977.1101569
http://doi.org/10.1109/ACCESS.2019.2952294
http://doi.org/10.1109/ACCESS.2021.3081676
http://doi.org/10.1109/ACCESS.2020.3038021
http://doi.org/10.1016/j.engappai.2020.103799

Machines 2021, 9, 343 19 of 19

46. Lin, G.; Zhu, L.; Li, J.; Zou, X.; Tang, Y. Collision-free path planning for a guava-harvesting robot based on recurrent deep
reinforcement learning. Comput. Electron. Agric. 2021, 188, 106350. [CrossRef]

47. Zou, Y.; Chen, T.; Chen, X.; Li, J. Robotic seam tracking system combining convolution filter and deep reinforcement learning.
Mech. Syst. Signal Process. 2022, 165, 108372. [CrossRef]

48. Yu, W.; Lv, P. An End-to-End Intelligent Fault Diagnosis Application for Rolling Bearing Based on MobileNet. IEEE Access 2021, 9,
41925–41933. [CrossRef]

49. Khatwani, K. On Routh-Hurwitz criterion. IEEE Trans. Autom. Control. 1981, 26, 583–584. [CrossRef]

http://doi.org/10.1016/j.compag.2021.106350
http://doi.org/10.1016/j.ymssp.2021.108372
http://doi.org/10.1109/ACCESS.2021.3065195
http://doi.org/10.1109/TAC.1981.1102670

	Introduction
	Motor Testing Platform
	Methods
	System Description
	Load and Speed Estimation Equation
	Load Estimation
	Speed Estimation

	Particle Swarm Optimization Algorithm
	Deep Deterministic Policy Gradiend with Particle Swarm Optimization
	State-Space
	Action Space
	Reward Function Design
	Network Architecture

	Experimental Results
	System Description and Stability
	Online-Tuning Results

	Conclusions
	References

