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Abstract: Expert systems are a form of highly understandable artificial intelligence that allow
humans to trace the decision-making processes that are used. While they are typically software
implemented and use an iterative algorithm for rule-fact network processing, this is not the only
possible implementation approach. This paper implements and evaluates the use of hardware-based
expert systems. It shows that they work accurately and can be developed to parallel software
implementations. It also compares the processing speed of software and hardware-based expert
systems, showing that hardware-based systems typically operate two orders of magnitude faster
than the software ones. The potential applications that hardware-based expert systems can be used
for and the capabilities that they can provide are discussed.
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1. Introduction

Artificial intelligence techniques are used throughout modern society for numerous
applications. They have been used for gaming [1], robotics [2], credit worthiness decision-
making [3,4], assisting in surgical procedures [5,6], cyberattack detection [7] and numerous
other applications. A key issue with some forms of artificial intelligence is a lack of human
understanding of how the techniques work and the exact criteria upon which decisions are
made. This issue is particularly pronounced when these systems make decisions which
impact humans [8]. Neural networks (see, e.g., [9,10]), in particular, have caused concern as
their networks do not have a known meaning—instead, they are a temporary summation
of the learning that has occurred to date [11]. Moreover, the network could readily change
if additional learning occurs. Concerns about understandability and unknown bias in
decision-making have led to artificial intelligence techniques being called “algorithms of
oppression” [12] and the development of explainable techniques (see, e.g., [13,14]) that
avoid some of these pitfalls.

Expert systems [15,16] are one of the earlier forms of artificial intelligence. They were
introduced in the 1960s and 1970s with two key systems, Dendral and Mycin [17]. They
are inherently understandable as they utilize a rule-fact network. Initially, expert systems
were designed to emulate what an expert in a field would do in making conclusions
about specific data; however, expert systems have found use in numerous other areas,
such as control systems [18] and facial expression [19] and power system [20] analysis.
Traditionally, expert systems have been implemented using an iterative algorithm that
processes the rule-fact network. This approach is problematic in that the outcome of the
network may be different depending on the order in which rules are selected for execution.
Additionally, the iterative nature of the approach means that its decision-making time
is unknown. This limitation impairs the utility of expert systems for robotics and other
real-time applications.
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One approach to removing these limitations is to implement expert systems in hard-
ware where the rule execution logic can be performed truly in parallel (as opposed to simu-
lated parallelism through timesharing or similar techniques). It has been proposed [21,22]
that hardware-based gates be used in place of creating software-based rule-fact networks.
The prior work [21,22], though, did not implement or validate hardware expert systems’
efficacy or performance.

This paper’s objective is to demonstrate the functionality and characterize the perfor-
mance of hardware-based expert systems and to compare them to software-based ones.
The contributions of this paper are the demonstration of the implementation of a hardware
expert system (which was theorized, but not implemented, in prior work [21,22]), and the
validation of their efficacy and the assessment of their performance. To this end, limitations
on hardware expert systems network sizes are explored. Additionally, rule-fact expert
system networks are developed in both software and hardware and their performance is
compared.

This paper continues, in Section 2, by reviewing prior work that provides a foundation
for the work presented herein. Section 3 details the system design that was used to model
both the hardware and software-based expert system networks that were used for the
experiments performed. Section 4 presents the data collected via the testing of the types of
networks and its analysis. Then, in Section 5, applications and hardware expert system
efficacy for them are discussed. Finally, the paper concludes in Section 6 and discusses
areas of potential future work.

2. Background

This section presents prior work on expert systems and their applications, as well as
work related to the proposed concept of taking a hardware-based approach to implement-
ing an expert system. First, a general overview of expert systems is presented. Following
this, in Section 2.2, expert systems’ potential use cases are described. In Section 2.3, the
use of artificial intelligence in robotics is discussed. Next, in Section 2.4, prior work on ex-
plainable artificial techniques is reviewed. Finally, Section 2.5 details how hardware-based
expert systems have been previously theorized and assessed. It also discusses potential
use cases and implementations of hardware-based expert systems.

2.1. Expert System

Expert systems are a form of artificial intelligence that was originally designed to
emulate the behavior of a human expert within a specific field or application [23]. Initially,
these systems were developed using rule-fact networks [15,16] which were built based on
knowledge collection from experts [24]. Traditional expert systems utilize a rule-fact-based
network to reach a conclusion based on given inputs [24]. Simply, in these systems, facts
can have either a true or a false value. The initial input facts serve as inputs to rules. If
both input facts are identified as being true, then additional facts (the rule outputs) can
also be asserted as true. The rule processing engine that operates an expert system scans
the network for rules that have had their preconditions satisfied and updates any of the
relevant output facts accordingly. Notably, the process used for rule selection is a key
feature of expert system engines. The Rete algorithm, developed by Forgy [25], gained
prominence due to its capabilities for rule selection. Later versions of Rete, for which the
underlying algorithms were not publicly disclosed, notably improved upon the initial
algorithm’s performance [26].

Beyond the traditional rule-fact expert systems, systems performing similar functions
which use fuzzy logic [27–29] and which are based on neural networks [30,31] have been
proposed. Systems have also been developed which use the connection weights from
a neural network to generate rules for expert systems’ rule-fact networks, rather than
using a human knowledge engineer to develop the network [27]. A system using neural
network optimization principles directly on an expert system rule-fact network has also
been proposed [32].
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2.2. Expert System Uses

Expert systems have been used in a wide variety of different fields and for different
types of tasks. One area where expert systems have found a wide variety of uses is the
medical field [33]. Within the medical field, expert systems have been used and developed
for diet planning [34], diabetes therapy [35], heart disease [36], eye disease [37], skin
disease [38], COVID-19 [39] and hypertension [40] diagnosis, lower back pain diagnosis
and treatment [33], neck pain diagnosis [33] and many more have also been developed [33]
relating to medical diagnosis and treatment. Expert systems have also been used to
diagnose diseases in fruits [41], plants [42] and animals [43].

Beyond medicine and related fields, expert systems have also been used for numerous
other applications including knowledge extraction [44], construction [45] and tourism [46]
planning, quality control [47], fault detection [48], power systems [20], facial feature iden-
tification [19], geographic information systems [49] and agriculture [50]. They have also
found uses in education, such as for academic advising [51], testing [52] and projecting
student performance [53].

2.3. Artificial Intelligence in Robotics

Robotics is a key field where artificial intelligence concepts have been used. Machine
learning, in particular, has been used to optimize robot performance through autonomous
learning [54]. Robots have been developed that are able to perform numerous tasks such
as driving, flying, swimming and transporting items through various environments [54].
One example of an application area where artificial intelligence is used within robotics is
unmanned aerial vehicles (UAVs). UAVs themselves are used for numerous applications,
including livestock [55] and forest fire detection [56], ensuring food security on farms [57]
and military applications [54]. Artificial intelligence techniques have also been demon-
strated for use in robot foraging [58], robotic manufacturing [59,60], fault identification [61]
and diagnosis [62].

Artificial intelligence has been implemented in robotics, using techniques such as
deep learning and neural networks, to provide object recognition [54,56], interaction [63]
and avoidance [64] capabilities. While artificial intelligence technologies have proved to be
useful for object recognition, using neural networks and deep learning makes the systems
difficult for humans to understand and troubleshoot, as the techniques are not inherently
understandable [8]. Artificial intelligence techniques have also been used for robotic
command decision-making [65] and managing connectivity and security, determining
robot position and for other purposes [66].

In addition to using neural networks and deep learning, other techniques, such as
particle swarm optimization, have also been used for robotics. Particle swarm optimization,
in particular, has been used for determining UAV trajectory and facilitating multi-robot
communications [66]. Machine learning has also been used within robotics for mobility
prediction, virtual-reality-commanded operations and deployment optimization, among
other things [66]. Expert systems and the conceptually related Blackboard Architecture [67]
have been used for robotic command [68]. Artificial intelligence is an integral part of
robotics as many applications require capabilities beyond teleoperation which must be
performed using artificial intelligence techniques. Despite the extensive use of artificial
intelligence in robotics, numerous limitations still remain as many techniques are not
deterministic with respect to time, making them problematic for controlling real-time
autonomous robotic systems. Non-understandable techniques are also problematic for
robotic (as well as other) uses, as discussed subsequently, as they cannot be guaranteed to
perform appropriately in all circumstances. They are also not able to justify their decisions
in cases of failure.

2.4. Explainable Artificial Intelligence

While expert systems have been around since the at least the 1970s [17] (some would
argue since the 1960s [69], considering Dendral instead of Mycin to be the first expert
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system), the later growth in the prevalence of neural network use [70] has led to issues that
have driven the development of new types of artificial intelligence that strive to have expert
systems’ inherent property of understandability. These techniques are called explainable
artificial intelligence (XAI). They have been developed because neural networks have been
shown to have issues related to poor transparency and bias and because they have the
potential for learning non-causal relationships [8]. Some are not able to even “explain their
autonomous decisions to human users” [13], despite their effectiveness at making them.
XAI techniques seek to mitigate understandability problems by implementing techniques
that facilitate human developers and users’ understanding of how autonomous systems
are making their decisions [13].

Arrieta et al. [71] have categorized XAI into two categories: techniques that provide a
“degree of transparency” and techniques which are “interpretable to an extent by them-
selves”. Expert systems fall into the interpretable by themselves category and are inherently
human understandable due to their rule-fact network structure.

While XAI systems are a demonstrable advancement from opaque ones, Buhmann
and Fieseler note that “simply the right to transparency will not create fairness” [72].
Techniques such as expert systems that do not just explain how a decision was made but
also constrain decisions to only valid outcomes are key to solving the problems identified
by Buhmann and Fieseler.

2.5. Hardware Expert System

Hardware-based expert systems were proposed in [21] and discussed in [22]. Their
performance was also projected in [22]. While there are variations between hardware and
software expert system implementations, a significant similarity exists between the rule-fact
network structure of an expert system and circuits created using electronic AND-gates [21].
A traditional expert system, whose inputs can have either true or false values, can—because
of this similarity—be readily constructed electronically using hardware AND-gates [22].

The use of a hardware-based expert system might prove to be effective for applications
where a fixed rule-fact network would have numerous uses, where the reduced processing
time required across multiple runs would compensate for the higher cost of physical
network configuration. Thus, one use for electronic expert systems is for applications
where the time benefits of hardware-based network performance outweigh the creation
time and cost, in comparison to the much faster and cheaper production and time cost of a
software-based expert system.

Notably, software-based systems require a computer to operate them. For applications
where a computer is not already available or applications where the expert system’s needs
drive the computational costs, hardware-based expert systems may also provide a financial
benefit (in addition to a processing speed one).

A hardware-based network would operate in the same way as a traditional Boolean
rule-fact network-based expert system that uses inputs that have either true or false
values [22]. The principal difference between the two is that a software-based expert system
uses general purpose computational hardware to apply Boolean logic when processing the
network to verify that rule prerequisites have been met and assert output facts. A hardware-
based network instead uses electronic gates where signals are either a one-value (a HIGH
digital signal) or a zero-value (a LOW digital signal). The two states that signals can be at
parallels the rule-fact structure that an expert system relies on for network processing. This
characteristic allows hardware-based implementations to provide all of the functionality
of software-based systems while providing benefits over a software-based network, in
applications where the network design is fixed. Due to the high setup and change-over
costs, electronic implementations would not be practical for applications where the network
changed frequently.
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3. System Design

For data collection and testing, two types of networks were designed. The first type of
networks were comprised of between one and five network components that each included
32 AND-gates. They were designed to measure the time it takes a signal to propagate
through varying amounts of gates, based on how many network components were con-
nected. The second type of networks were designed to model how a real-world network
would work. They had different amounts of inputs, structures and network designs.

The underlying methodology behind the creation of each of the five networks for the
second network type was to create different network configurations and complexities. Each
type of network could have different potential bottlenecks and other considerations which
could impact system performance. The networks’ designs first focused on some networks
having more depth versus others having more breadth, both in terms of the number of
required inputs and the configuration of facts and rules.

This design facilitated assessment as to whether a breadth-heavy network—one
which had most of the inputs to the network required before later layers—or a depth-
heavy network—one which had required additional inputs throughout most layers of the
network—would take a longer time to fully process and whether any difference in the
performance of the hardware versus software implementations would be noted between
the two types.

Each network was also indicative of a potential real-world scenario, where a network
would not typically fall at the extreme of solely being breadth-heavy or depth-heavy.

Additionally, in the design of each network, a key consideration was the ability to
readily implement the corresponding physical network. A brief overview of the impetus
for each individual design is included in Section 3.1 along with the presentation of each
network’s logical design.

3.1. Logical Design of Networks

Figures 1–5 are distinct logical designs of rule-fact networks that were used to create
both hardware and software expert systems for comparison purposes. These networks
were designed to simulate how a real-world application of an expert system would work.
Each has a different number of inputs and operations that work to produce a single output.

Network 1, for example, is a network that has an initial level of eight inputs and a
second level of four additional inputs paired with the previous layers’ results. Then, the
network requires an additional input on each layer up until the last layer to get a result.
This network was designed to have characteristics in between those of a breadth-heavy and
a depth-heavy network. It is slightly deeper than wide, with five rules in the completion
path and the largest layer having four rules. A potential use case of Network 1 could be
in a credit approval system that comes to a conclusion based off of many initial questions
with some smaller additional follow-up data being used. Network 1 is shown in Figure 1.

Network 2 was designed similarly to Network 1 but presents a scenario where, after
the first and second layers requiring input, the network continues its processing without
needing any additional input for two layers and then requires a final input before making
its recommendation. As with Network 1, this network was designed to have characteristics
in between the two extremes of high-width and high-depth networks. Its key focus was
having most inputs supplied early in the network’s runtime.
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Network 2 could be used within an application, such as identity verification, as most
of the information is gathered at the beginning of the network with minor additional input
or information being gathered later. The final input, number 13, would be typical of data
that might be collected as part of a final validation step. Network 2 is depicted in Figure 2.
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Network 3 was designed for a scenario that requires additional input paired with
results from prior layers several times to draw a conclusion. This network was designed to
be depth focused. It also incorporates inputs throughout this depth, as each layer requires
additional information prior to the final two resulting facts being processed by a final
rule to generate the recommendation or decision. Network 3 could serve very well in
troubleshooting applications where, following the initial inputs, additional data are needed
based on the information previously provided. Network 3 is presented in Figure 3.
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Network 4 shares the same structure as Network 2 but adds an initial layer in which
four inputs are initially required, and their result replaces two initial inputs in the following
iteration. This network was designed to be a breadth-heavy network whose inputs are
supplied early in network operations, leaving about half of the layers to operate without
requiring any additional inputs. While the network has a lot more breadth than Network 3,
Network 4 could also find use in troubleshooting applications that, after an initial iteration
where a problem is identified, need additional preliminary information in the next layer,
with additional follow-up data being needed throughout the rest of the network. Network
4 is shown in Figure 4.
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Finally, Network 5 is designed for a scenario that, after the initial layer’s inputs, has
a combination of paths that require multiple inputs later in the process and paths that
require no further inputs. This network was designed to fall in between the breadth and
depth-heavy designs and requires several inputs for each layer in the first half of the
network. It also, notably, has some facts that bypass network layers, being generated in
an earlier layer and maintained for later use. Network 5 could be appropriate for use by a
process control application with various preferences and settings. Some settings trigger a
need for additional configuration parameters, while others do not. Network 5 is presented
in Figure 5.
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The five different designs of networks were created to assess what the expected
runtimes would be for different applications and their applicable network designs. This
analysis can also be used to project how runtimes might increase for similar designs of
networks at a larger scale. Networks 1, 2 and 5 were designed with more of a focus on the
breadth of the network, to showcase different potential designs for applications that would
require many additional inputs. Networks 3 and 4 were designed to show what a network
that has more of a focus on depth than on the network breadth would look like and how it
would operate. A feature that is shared by all of the networks is that, for the initial iteration,
they all require inputs into both sides of the gates. This is a requirement as the first iteration
is the entry point into the network and is not a continuation off a different network.

The main consideration when designing the networks was to use different internal
structures along with differing amounts of inputs and gates to gather data on what runtimes
would be. These data can inform the design and predict the time cost when creating
larger networks.

3.2. Hardware Design

Hardware-based networks were designed and built using breadboards that each
included eight Texas Instruments CD4081BE AND-gate chips. Each of these chips contains
four AND-gates, making a total of 32 gates per board.

Using these boards, two different types of networks were created, as described pre-
viously. First, deep networks were created for speed testing. For these networks, each
gate had a single hard-coded input and an input that came from a previous gate. This was
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performed to test the propagation time of a single signal through the entire network. This
system, thus, did not require all of the inputs which would be required for a large network
to be set by a microcontroller. Instead, for testing purposes, a single input was sent that
was passed through different numbers of gates, based on the experimental condition.

Second, the networks described in Section 3.1 were built based on their logical dia-
grams. These networks were similar to the deep ones; however, instead of hard-coded
inputs being used, every individual input signal that the network required was supplied
by the microcontroller at runtime. Figure 6 depicts how an expert system network (such
as those presented in Figures 1–5) can be implemented into both software (Figure 6a) and
hardware (Figure 6b).
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3.3. Experimental Setup

The experiment was comprised of two configurations. The first was for the deep
network test and the second was for the real-world-based networks. For both tests, an
Elegoo MEGA2560 R3 microcontroller was used to send inputs to the AND-gate network
and a Hantek DSO5072P oscilloscope was used to receive a copy of the initial signal and
the output, to time the operations of the hardware implementation. This configuration
is depicted in Figure A3. The second experiment also included a software-based expert
system. The software-based expert system was run on a computer with an Intel Core i5-
1135G7 processor, a base clock speed of 2.40 GHZ and 32 GB of 3200 MHZ DDR4 memory.

For the first experimental setup (the deep networks), a signal that alternated between
digital zero and one (high and low) was sent by the microcontroller. The initial probe,
connected to the oscilloscope, was used to measure when the first input into the network
was sent, (i.e., when digital one/high was sent) with the microcontroller alternating be-
tween the high and a low signal. A second probe was attached to the final gate in the
network—the output. Using the two probes and the oscilloscope, the time between the
high signal from the first probe and the high signal from the second probe was recorded.
This represents the signal propagation time across the network (i.e., the time it takes from
when the initial probe reads a high signal to when the secondary probe reads the high
signal). These propagation times were recorded and used to compare the time that it takes
a signal to travel through networks with 32 to 160 gates. The signal propagation delay (the
difference between the rise of the first and second channel) is shown in Figure 7.
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For the second experimental setup, the real-world-based networks, the probes were
attached in the same manner. The difference between the two network designs was that in
the real-world-based networks, many different inputs were required, rather than just the
single input used in the large network tests. These were supplied by the microcontroller.
For the timing of these networks, the initial probe was attached to the first input sent by
the microcontroller, to take into consideration the additional processing time required by
the network when the network is waiting for additional inputs from the microcontroller.
The second probe was again attached to the final output gate of the network. Again, the
propagation times were measured and compared (in the same way as described for the
deep networks).

4. Data and Analysis

The two different experiments and their corresponding network designs were used to
collect two types of data. The deep networks were used to collect data for five different
network depth sizes. This was achieved by sending the signal through five subnetworks
that each had 32 individual gates that the signal passes through. Results were gathered for
32, 64, 96, 128 and 160 gates by connecting one, two, three, four and five of the subnetworks
together (in sequence).

For the smaller networks that were presented in Section 3.1, each network was built in
the same fashion as the deep networks (as described in Section 3). For these network con-
figurations, a software expert system (custom software written in C#) was also used, with
the same network, to provide the computation time needed for computer-based processing
of the network. This was compared to the hardware-based approach’s completion time.

For the hardware networks, timing was performed with an oscilloscope (as discussed
in Section 3) that was used to measure the delay in signal rise between the initial signal
and the output signal of the networks. The software expert system was measured using a
time function that is built into the Microsoft. Net framework.

4.1. Deep Network Propagation Experiment

For the deep network propagation experiment, interchanging high and low input
signals were generated using a microcontroller at regular intervals, as previously discussed.
This generated a block waveform which was measured to compare the initial rise of the
network from a high input and the rise of the network’s output signal (i.e., the signal that
had propagated through the network). For each network size (32, 64, 96, 128 and 160 gates),
25 tests were performed. The average, median, standard deviation and the minimum
and maximum of the times for each set of runs are presented in Table 1. For purposes of
comparison, data were also gathered on the performance of the network with the gates
in an unpowered state (while this resulted in unconventional behavior and would not be
suitable for operational use, it does show the impact of the gates’ operation on system
speed). These data are presented in Table 2. After the network size tests were run, the time
between the processing times of the networks and the number of individual gates were
used to calculate an average processing time per gate in each network size. This is shown
in Table 3.
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Table 1. Comparison between times for signal propagation for networks with powered gate ICs.

# Gates Average Median Standard Deviation Minimum Maximum

32 Gates 1.270 µs 1.270 µs 5.277 ns 1.260 µs 1.280 µs
64 Gates 2.212 µs 2.210 µs 8.684 ns 2.197 µs 2.227 µs
96 Gates 3.348 µs 3.345 µs 10.012 ns 3.330 µs 3.365 µs

128 Gates 4.460 µs 4.460 µs 16.361 ns 4.430 µs 4.500 µs
160 Gates 6.224 µs 6.225 µs 26.991 ns 6.175 µs 6.280 µs

Table 2. Comparison between times for signal propagation for networks with unpowered gate ICs.

# Gates Average Median Standard Deviation Minimum Maximum

32 Gates 36.00 ns 35.00 ns 4.208 ns 27.50 ns 45.00 ns
64 Gates 47.00 ns 47.50 ns 3.385 ns 40.00 ns 52.50 ns
96 Gates 67.90 ns 67.50 ns 4.546 ns 60.00 ns 77.50 ns

128 Gates 120.00 ns 120.00 ns 5.000 ns 110.00 ns 130.00 ns
160 Gates 342.60 ns 355.00 ns 76.323 ns 135.00 ns 460.00 ns

Table 3. Comparison between gate count and processing time per gate for each configuration.

# Gates Average Time Time Per Gate

32 1.270 µs 39.70250 ns
64 2.212 µs 34.56250 ns
96 3.348 µs 34.87083 ns

128 4.460 µs 34.84531 ns
160 6.224 µs 38.90125 ns

In addition to calculating the speed of the gates, another goal of this experiment was
to ascertain if a loss of signal (voltage) would limit the number of gates that could be placed
in series. This would inherently limit the size of the network and be a key design factor (as
networks could potentially be designed to reduce the number of gates in series through the
creation of parallel processing branches and other structural decisions. No notable level
of signal loss was detected during this experiment. Thus, there is no evidence, at present,
of a signal loss-based limitation on network size. Notably, parallel processing branches
may also provide speed benefits (as gates operate truly in parallel), so this technique may
still be used for this purpose, despite not being needed to overcome a signal loss-driven
network length limitation.

4.2. Real-World-Based Network Model

For the real-world-based network experiment, similarly to the previous experiment, a
high and low input signal were generated using the microcontroller. Signal propagation
(based on receiving the correct output signal) was measured from the start of the first input
to the final output signal. For each network, 10 tests were performed and the average,
median, standard deviation, minimum and maximum were calculated. The results of the
hardware-based networks are presented in Table 4. Notably, the networks produced the
correct output consistently. This was assessed by visually inspecting the output waveform.
If the network produced an incorrect result, the waveform would have a notable deviation
in it. No such deviations were detected.

Table 4. Comparison between runtimes of each network for hardware implemented networks.

Average Median Standard Deviation Minimum Maximum

Network 1 0.05523 ms 0.05520 ms 0.09383 µs 0.05520 ms 0.05550 ms
Network 2 0.04725 ms 0.04724 ms 0.01033 µs 0.04724 ms 0.04726 ms
Network 3 0.04335 ms 0.04336 ms 0.00966 µs 0.04334 ms 0.04336 ms
Network 4 0.05131 ms 0.05129 ms 0.05502 µs 0.05128 ms 0.05146 ms
Network 5 0.04343 ms 0.04342 ms 0.01033 µs 0.04342 ms 0.04344 ms
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Additionally, the same network that was implemented using hardware gates was
also implemented in software. The results from the software runs are presented in Table 5.
As with the hardware networks, the average, median, standard deviation, minimum and
maximum are included.

Table 5. Comparison between runtimes of each network for software-implemented networks.

Average Median Standard Deviation Minimum Maximum

Network 1 4.92906 ms 4.81610 ms 0.77596 ms 4.11610 ms 6.11560 ms
Network 2 4.49059 ms 4.37360 ms 1.01827 ms 2.40240 ms 5.96940 ms
Network 3 4.87442 ms 4.63700 ms 0.81041 ms 4.02230 ms 6.12160 ms
Network 4 4.85997 ms 4.63625 ms 0.89830 ms 3.67520 ms 6.81720 ms
Network 5 4.42146 ms 4.42500 ms 0.42759 ms 3.79400 ms 5.13510 ms

For the real-world-based networks, there are two main design categories which have
been implemented: wider networks and deeper networks. Wider networks, such as
Networks 1, 2 and 5, would be applicable to applications that make decisions based on
limited processing of a collection of initial given parameters. For example, an application
for credit might draw upon a number of initial inputs (such as the applicant’s income,
credit history, job history, etc.). However, once these inputs are known, the decision can
be arrived at quickly—and most inputs are used in most decisions (as opposed to deeper
networks with later-used inputs which thus draw upon additional data in some, but not
all, circumstances).

Networks 3 and 4, on the other hand, utilize more depth. Network 3 is the most depth
focused while Network 4 falls in between the depth of Network 3 and the lower depth
levels of Networks 1, 2 and 5. Network 3 would be representative of troubleshooting-type
applications (such as computer support or medical diagnosis) where there are a small
number of initial inputs or questions; however, throughout the process additional input
may be required to reach a conclusion.

Due to falling in between the depth-focused Network 5 and the other shallower
networks, Network 4 would be representative of a more complex troubleshooting setup.
This could involve a smaller number of initial questions, some of which trigger a need for
additional data to support decision/recommendation making.

4.3. Analysis

For the signal propagation time experiment, as expected, when additional gates were
added to the overall network, the time for the signal to propagate (and thus the network
to process) increased nearly linearly. There was, however, a slight difference between the
additional time cost of 128 gates and 160 gates which may be attributable to production
irregularities of the gates or the result of other similar causes.

On average, for each additional 32 gates there was roughly an increase of 1.1 µs of
processing time above the base 1.2 µs propagation time with only 32 gates in the network.
The data regarding the speed of signal propagation provide a basis for modeling an expert-
system that can make decisions at a much faster speed than a computer-based one. This
could prove beneficial in applications where a system’s speed is important. Notably,
the gates still take more time to operate than current flow without them, as the signal
propagation speed increases to be roughly 30 times as fast through a set of gates that
are not powered. This demonstrates the notable difference in speed at which the signal
flows through the gates when they are not making any logical calculations and are simply
providing a conduit.

For the real-world-based networks, the logical networks shown in Figures 1–5 were
created in both hardware-based and software based expert systems. As shown in Table 4,
each of the software-based networks ran the network at a speed between 2.4 and 6.8 ms,
with an average for each network being between 4.4 and 4.9 ms. Notably, the timing of
the networks did not include the creation of the network and only included the processing
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of the network to facilitate direct comparison with the hardware-based expert system’s
performance.

The hardware-based networks, on the other hand, took between 0.04 ms and 0.05 ms,
on average, to run. This means that, for each network, the hardware-based expert system
ran approximately 95 times faster than the software version. While the difference in timing
between the hardware and software networks is significant, it is also notable that the
real-world-based networks operate significantly slower than the large deep network tests,
where a single signal propagates through a network, despite being smaller. Each of the large
deep networks has between 32 to 160 gates, whereas the real-world-based networks have
between 10 and 14 gates. This speed difference is largely due to the processing speed of the
microcontroller that sends the input signals. The microcontroller can only set one signal
at a time and the signal propagates through the network of gates significantly faster than
the controller is able to provide all the input signals to the network. Practically, this means
that large and complex networks will have a performance that is quite similar to smaller
networks, as long as they have a similar number of inputs supplied by a microcontroller of
this speed.

This also means that the performance of the system could be demonstrably enhanced
by supplying different values from multiple microcontrollers or a faster microcontroller.
Prospectively, the gate-based system could be supplied directly from sensors and other
data sources in robotic systems, facilitating the maximum use of the gate network’s pro-
cessing speed.

In Table 3, the processing time per gate was calculated for each of the large deep
network configurations. It ranged between 34.5 and 39.7 ns. The input time, on the other
hand, was measured to be 3.945 ± 0.005 µs per gate input. This means that the per-gate
processing time is approximately 100 times smaller than the input time. This comparatively
small amount of processing time means that, for real-world applications using a hardware-
based system, the network processing time is dwarfed by the time required for input
processing for the number of inputs that are provided to the network. Practically, this
means that anything that can be calculated from an input (or a combination of inputs)
should be arrived at this way, to save loading time. It also suggests that there is a limited
time cost when designing more robust rule-fact networks which use a larger number of
rules to perform more detailed analysis for hardware expert systems. This is a significant
difference as compared to software-based expert systems which incur significant time costs
with the rule selection and processing steps. Additionally, software-based expert systems
must save their results to intermediate facts while intermediate values are carried by wire
directly to their next rule in the hardware-based expert systems.

Based upon the analysis conducted and the efficiencies identified, an expert system
hardware module could be used to expedite processing. This type of hardware module
could have a collection of pre-interlinked gates with the capability to turn connections off
to match the logical system design. A large, highly connected network could be built. This
would then be reduced to the specific configuration of a given network via configuration
options which would be used to set flip-flop (set/reset) components to disable pathways
between gates which are not present in the network design. This concept is depicted in
Figure 8.

4.4. Real World Operational Implications

A variety of real-world operational benefits are presented by the enhanced perfor-
mance of the hardware expert systems. In a batch processing environment, the two
orders-of-magnitude performance enhancement would allow approximately 100 decisions
to be made in the time normally taken by one. This facilitates more processing being
performed by the same number of systems or can reduce the number of systems needed.
This benefit is further enhanced by the likely lower cost levels of the hardware expert
system compared to a full-fledged computer.
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The benefit can also be considered in terms of robot response impact. Tables 6 and 7
present this benefit. Table 6 shows the hardware and software time requirements for each
of the five test networks and the time savings enjoyed by using the hardware system.
Table 7 assesses what the difference level for Network 1 (given the similarities in difference
levels for the five networks, the other networks’ results would be similar to Network 1’s)
would mean in terms of saved travel distance and extra maneuverability. Notably, for
orbital vehicles and HTV-2 aircraft, the time savings provides 4 and 3 m of maneuverability,
respectively. This additional capability could potentially be critical in collision avoidance
from another satellite or aircraft crossing one of these vehicles’ paths.

Table 6. Performance difference between hardware and software expert system networks.

Hardware Software Difference

Network 1 0.055 ms 4.930 ms 4.874 ms
Network 2 0.047 ms 4.490 ms 4.443 ms
Network 3 0.043 ms 4.874 ms 4.831 ms
Network 4 0.051 ms 4.860 ms 4.809 ms
Network 5 0.043 ms 4.421 ms 4.378 ms

Table 7. Extra maneuverability caused by hardware implementation for different craft speeds for
Network 1.

Type Speed (MPH) Extra Maneuverability

Orbital [73] 17,448 380.15 cm
HTV-2 [74] 13,000 283.24 cm
SR-72 [75] 4603 100.29 cm
QF-16 [76] 1128 24.58 cm

Taranis [77] 700 15.25 cm

While the five networks presented may have the complexity of an automated collision
avoidance system, route selection and planning systems would be inherently more complex.
The enhanced hardware expert system performance thus might allow a more robust planning
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decision-making process to be made in the same time that only a basic avoidance process
could run on a software expert system. This would facilitate better decisions which not only
avoid the obstacle but also chose a more path-resumption-optimal means of doing so.

Beyond emergency response, the processing time reduction can facilitate evaluating a
greater number of potential options for a decision, leading to potentially better decision-
making. It may also facilitate decision-making systems being run, to update mid-range and
long-term plans, more frequently. Thus, the proposed hardware expert system implemen-
tation approach provides a logic-capability-rich reflex arc [78] style function (facilitating
fast response without core command system involvement) while also being useful for
larger-scale decision-making and planning processes.

5. Comparison to Other Techniques

Several different classes of rule-fact expert system implementations exist. The most
basic is the iterative expert system, where rules are selected to run each iteration and then
run with the cycle repeating until no rules remain (or some other termination condition
exists). Predictive expert systems, such as the different Rete versions [26,79], do not run
every rule. Instead, they select rules to run. These systems can run much faster due to this;
however, many are proprietary and not available for direct comparison to new systems.
Neural networks have found uses similar to expert systems and offer a training capability,
in addition to decision or recommendation making. Finally, hardware expert systems are
described herein. Notably, hybrid systems are possible, as the use of neural networks for
developing expert system networks [80] and the use of gradient descent techniques for
training expert systems [32] have been proposed.

Table 8 compares these forms of expert systems in terms of six metrics. Understand-
ability is a measure of how easily the decisions that the system makes can be understood in
terms of what caused them. Systems with high traceability perform well in terms of this
metric, while systems that cannot track their decision-making back to specific causes do
not perform as well. Neural networks, in this area, suffer from the potential that learning-
caused changes may change the decision arrived at from a single set of inputs on a regular
(or continuous) basis. Predictive expert systems largely have proprietary engines, making
it difficult to understand their specific outcomes.

Table 8. Comparison to other state-of-the-art techniques.

Iterative Expert
System

Predictive Expert
System Neural Network Hardware Expert

System

Understandability H L L H
Defensibility M L L H

Speed M H M H

Grows By
Time increases greater

than linearly with
network size

Prediction process
impact cost

Increases with number
and size of layers

Increases linearly with
length of pathways

through the network
Reproducibility M L L H
Changeability H H VH L

Defensibility presents similar considerations—however, the question here goes beyond
just whether a system’s decisions can be understood after the fact to whether a system will
always give a similar answer with a similar set of inputs. Again, the potential for training-
caused changes in neural networks impairs their performance in terms of this metric. The
fact that different outputs can result from different rule selection orders, under the iterative
and predictive expert systems, impairs their performance in terms of this metric.

The speed of the systems is then compared. Notably, the predictive and hardware
expert systems outperform the other types. This is explained by the factor that causes time
growth, which is also included, for each, in the table.
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Reproducibility is highly linked to defensibility. It is a metric of whether the same
experiment run on the same network would yield the same results. Again, neural networks
training and predictive expert systems’ rule selection ambiguity impact their performance
in terms of this metric.

Finally, changeability is the last key metric. Neural networks perform very well in
terms of this metric, due to their self-learning mechanisms. Iterative and predictive systems
are, similarly, easily changed by changing their network structure in memory or storage on
the processing system (without requiring coding changes, in many cases). Hardware expert
systems may be unchangeable (if implemented on a printed circuit board) or expensive to
change, due to the need to reconfigure the hardware to the new network design.

6. Conclusions

This paper has described how a hardware-based expert system can be created using
logical AND gates and a basic microcontroller. It has discussed several prospective ap-
plications of hardware-based expert systems and how they could improve over current
software-based expert systems for some applications. The use of hardware for expert
system implementation allows much faster network processing. The level of enhanced
speed has been quantified herein as being approximately 95 times as fast. This enhanced
speed provides significant benefit for applications, such as robotics, where decision-making
needs to happen quickly. Additionally, as the data show, there is minimal variation. Thus,
hardware-based expert systems also benefit applications that need to make decisions
within a constrained amount of time. For some applications, software-based implementa-
tion may lack the processing speed required. In other cases, a more expensive computer
could be replaced by a less expensive hardware-based expert system which also provides
speed-enhancement benefits.

For robotics, autonomous machinery and other similar applications, such as self-
driving vehicles and artificial intelligence-operated robots or drones, the hardware-based
expert system approach to decision making may be of particular utility. While some
applications are fine relying on software-based control systems (for example, applications
that that are not making real-time decisions), others will require rapid decision-making
and decision-making within a known and constrained period of time. Robots, for example,
must be able to make a decision within their obstacle-sensing timeframe (the time between
when an object is sensed and when the robot would arrive at the object’s position).

Utilizing a hardware-based expert system implementation eliminates some processing
time and allows for rapid processing capabilities, once all inputs are supplied to the
network. As inputs could potentially be supplied directly by sensors, even this may not
be a significant time constraint for some robotic systems. This is well-suited for systems
that need nearly instantaneous decision-making capabilities. An autonomous drone’s fast
decision-making, for example, could provide the difference between the drone being able
to maneuver around a moving obstacle or being unable to respond quickly enough to
avoid it and crashing.

In addition to removing limits on the potential performance that a network may
be capable of delivering, hardware-based implementations may facilitate placing certain
systems (such as obstacle avoidance) closer to sensing or control systems (as opposed to
these being in a central processing location). This proximality may also offer additional
speed of response benefits.

This low-cost logical processing capability may also be well suited to enable a variety
of other applications. For example, it could be used to build an autonomous troubleshooting
capability into large machinery. Without requiring the cost of a computer (and the wear-
and-tear considerations of hard drives, fans and other parts), a system could be included
that would facilitate troubleshooting the device and going through steps required to
return to an operational state, without requiring a field support technician to go and visit
it to troubleshoot it. Autonomous troubleshooting could be connected to key systems
throughout the machine and, when self-diagnosis detects that the machine is not fully
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operational, it could begin its autonomous troubleshooting to attempt to return the device
to an operational state. If this fails, it could also perform preliminary analysis to ensure that
any technician deployed to service it has the appropriate skillset for the type of problem
that has been detected. The low cost of this type of computing system facilitates its use as
an add-on to other systems, without increasing their costs to the extent that an onboard
computer system would.

In addition to the results described above, this work has identified a number of areas
for future exploration. Planned future work includes assessing different approaches to
reduce or eliminate the time cost incurred by the microcontroller loading of fact data. It
will also include developing larger network examples to further test the effectiveness of
using a hardware-based approach to developing an expert system for specific applications
and the evaluation of the use of customizable AND-gate networks.
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Appendix A

This appendix presents pictures of the setup of the experimental system.
Figures A1–A3 are pictures of the hardware-based networks that were used for testing.
Figures A1 and A2 show the five-board (largest) deep network for speed testing and
Figure A3 shows a network built on a single board in the data collection configuration.
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