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Abstract: The slurry pump is widely used in ore mining, metal smelting, petrochemical, and other
industries, mainly to transport fluid media containing large solid particles. Importantly, it is easy to
damage the impeller of a slurry pump in the operation process, which greatly affects the performance
of the pump. In this paper, a 25 MZ slurry pump was selected as the research object, and the Euler–
Euler multiphase flow model was employed to analyze the internal flow characteristics of the slurry
pump under the conditions of clear water and solid–liquid two-phase flow. Additionally, the flow
characteristics of each part under different flow conditions were studied, and the effects of different
particle volume concentrations, particle sizes, and pump speeds on the impeller’s wear characteristics
and hydraulic performance were analyzed. In order to verify the reliability and accuracy of the
numerical simulation results, clean water and solid–liquid two-phase flow wear tests of the slurry
pump were carried out, and the results showed that a high solid volume fraction and solid–phase
slip velocity were generated at the junction of the blade leading edge and the rear cover plate, thus
leading to easier wear of the blade. Therefore, enhancing the strength of the junction between the
blade leading edge and the rear cover plate is beneficial for improving service life and should be
considered in the design of slurry pumps.

Keywords: slurry pump; solid–liquid flow; hydraulic performance; wear characteristic

1. Introduction

As an important piece of energy conversion equipment, the slurry pump has been
widely used in mining, electric power, metallurgy, coal, and other industries. Both the
complexity of the solid–liquid two-phase flow in the slurry pump and the limitations of two-
phase flow field measurement technology have made it very difficult to obtain flow field
information of an entire flow channel. Therefore, capturing the flow field characteristics of
slurry pumps is the fundamental objective of their optimized design and wear investigation.
In recent years, there has been much research on the motion of the solid–liquid two-phase
flow. Wang et al. [1] used a CFD-DEM coupling algorithm to study the spatial distribution
and motion characteristics of particles with different sizes, and the effects of particle
diameter on the intensity and scale of the vortex in a guide vane were investigated; it was
concluded that the existence of particles had a limited effect on the hydraulic performance
of the pump in low-concentration fluids. In a numerical study of the internal flow field of
the solid–liquid slurry pump, Shi et al. [2] analyzed the wear mechanism of the volute wall
of a slurry pump and proposed an effective wear equation for estimating the wear strength
and wear area of the slurry pump volute. Peng et al. [3] analyzed slurry flow under
different particle concentrations and volume flows by using the Euler–Euler method, and
the effects of particle concentration on flow resistance, reflux, and wall wear were assessed.
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Li et al. [4] simulated the solid–liquid two-phase flow in a centrifugal pump by using the
computational fluid dynamics discrete element coupling method. Their results showed
that the increase in the wear rate was related to the increase in particle mass concentration.
Tan et al. [5] utilized high-speed photography to track the movement of solid–liquid two-
phase flow particles in a double-blade slurry pump, and the effects of particle diameter and
density on the collision characteristics were analyzed. The results showed that with
the increase in particle size, the average time through the pump first decreased and
then increased. Shen et al. [6] designed a new type of longitudinal groove structure
for the volute to improve the internal flow field. Wang et al. [7] combined numerical
simulations and experiments to study the wear characteristics of an open impeller, and
they concluded that the most serious wear area of the impeller was the middle of the
pressure surface. Zhao et al. [8] simulated turbulence with a homogeneous balance model,
and the relationships between concentration and external performance, velocity, pressure,
and turbulent kinetic energy distribution were evaluated. Wang et al. [9] investigated the
relationships between particle size, volume concentration, solid-phase volume, and inlet
pressure fraction by using a mixed multiphase flow model. Wang et al. [10] combined
experiments and calculation models to study the effects of different coating thicknesses on
the operating characteristics of centrifugal pumps, and they reported on the effect of coating
thickness on performance and pressure fluctuations. Gu et al. [11] employed the Euler
model to build a non-smooth surface on an impeller blade for numerical simulation, and
they found that the non-smooth surface area was better able to reduce drag and affect the
performance of the pump. Yan et al. [12] carried out a full-channel numerical simulation of
solid–liquid two-phase flow by using the McLaury wear model, and the distribution region
and variation trend of impeller and volute wall wear caused by the change of clearance
were assessed. Wang et al. [13] studied the flow characteristics and wear performance
of the pump at different rotational speeds with numerical simulation and calculated the
wear rate of the blade surface at different rotational speeds. Tang et al. [14] studied the
solid–liquid flow in a pump and compared the contact force and collision characteristics of
particles with different shapes.

Most of the abovementioned studies considered the effects of the shape and size of
particles on the wear characteristics of pumps, but there has been little research on the
investigation of slurry pumps under different flow conditions and pump speeds. Therefore,
the authors of this paper used numerical simulations and experiments to analyze the
internal flow characteristics of a slurry pump under the conditions of clear water and
two-phase flow. The flow characteristics of each part under different flow conditions were
studied, and the effects of different particle volume concentrations, particle sizes, and pump
speed on the impeller’s wear and hydraulic performance were analyzed. Additionally, in
order to verify the reliability and accuracy of the numerical simulation results, clean water
and solid–liquid two-phase flow wear tests of the slurry pump were carried out to provide
reference for the optimization of the design of the slurry pump.

2. Analysis Model

In this paper, a 25 MZ slurry pump is selected as the research object. Its main geometric
parameters are shown in Table 1, where the design flow conditions are represented by QBEP
(Best Efficiency Point, BEP).

Table 1. Main parameters of 25 MZ slurry pump.

Design Flow
QBEP (m3/h)

Head
H (m)

Speed
n (r/min)

Blade
Number

Impeller Outer
Diameter D2 (mm)

Blade Outlet
Width b2 (mm)

Inlet Diameter
Dj (mm)

26 11 1500 4 178 30 75
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2.1. 3D Modeling

In order to study the internal flow field of the slurry pump, the fluid domain was
simplified into four parts: inlet, impeller, volute, and outlet. Based on the three-dimensional
modeling software UG, the solid modeling of each fluid domain was built, and the three-
dimensional model of the main components is shown in Figure 1.

Machines 2021, 9, x FOR PEER REVIEW 3 of 19 
 

 

2.1. 3D Modeling 
In order to study the internal flow field of the slurry pump, the fluid domain was 

simplified into four parts: inlet, impeller, volute, and outlet. Based on the three-dimen-
sional modeling software UG, the solid modeling of each fluid domain was built, and the 
three-dimensional model of the main components is shown in Figure 1. 

  
(a) Impeller (b) Volute 

Figure 1. (a,b) Three-dimensional models of the flow domain. 

2.2. Grids 
In this paper, ICEM was employed to mesh the fluid domains. Considering that the 

quality of the grid has a great influence on the convergence and reliability of calculation 
results, the calculation domain was divided into a hexahedral structured grid to better 
improve the accuracy of the numerical simulation. The structural grids of the main com-
ponents are shown in Figure 2. 

 

 
(a) Impeller (b) Volute 

Figure 2. (a,b) Mesh generation of the flow domains. 

Meanwhile, the greater the number and the higher the quality of grids that are gen-
erated, the more accurate the calculation results that can be obtained. However, too many 
grids consume many computing resources. Therefore, to ensure the accuracy of numerical 
simulation results and the rational use of computer resources, the grid independence of 
the calculation domain was conducted [15–20]. For this section, the calculation of slurry 
pump models with different grids was carried out, and a reasonable number of grids were 
obtained by comparing the fluctuation of head and efficiency. As shown in Figure 3, with 
the increase in grid number, the fluctuation value of the head efficiency gradually de-
creased. Additionally, when the grid number was 2.7 million, the fluctuation value of the 
external characteristic was less than 1.0%, which met the requirements of numerical sim-
ulations. Therefore, a grid number of 2.7 million was selected for the investigation. 

Figure 1. (a,b) Three-dimensional models of the flow domain.

2.2. Grids

In this paper, ICEM was employed to mesh the fluid domains. Considering that
the quality of the grid has a great influence on the convergence and reliability of calcu-
lation results, the calculation domain was divided into a hexahedral structured grid to
better improve the accuracy of the numerical simulation. The structural grids of the main
components are shown in Figure 2.
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Meanwhile, the greater the number and the higher the quality of grids that are gener-
ated, the more accurate the calculation results that can be obtained. However, too many
grids consume many computing resources. Therefore, to ensure the accuracy of numerical
simulation results and the rational use of computer resources, the grid independence of
the calculation domain was conducted [15–20]. For this section, the calculation of slurry
pump models with different grids was carried out, and a reasonable number of grids
were obtained by comparing the fluctuation of head and efficiency. As shown in Figure 3,
with the increase in grid number, the fluctuation value of the head efficiency gradually
decreased. Additionally, when the grid number was 2.7 million, the fluctuation value of
the external characteristic was less than 1.0%, which met the requirements of numerical
simulations. Therefore, a grid number of 2.7 million was selected for the investigation.
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ANSYS CFX was employed the calculation of the water, which was selected as the
fluid medium, and the medium temperature was 298 K. Total pressure inflow (1 atm) and
mass flow outflow were adopted, and the standard k-ε turbulence model was selected as
the turbulence model. Meanwhile, the fluid domain of the impeller was set as the rotating
part; the inlet section, the outlet section, and the volute were set as the stationary parts;
the frozen rotor method was adopted for the interface; and the convergence accuracy was
set to 1.0 × 10−5. In this paper, the continuity equation of incompressible fluid and the
Navier–Stokes equation were employed to describe the three-dimensional turbulence in a
centrifugal pump.

The continuity equation is as follows:

∂(ρui)

∂xi
= 0

The Navier–Stokes equation for incompressible fluid is as follows:

∂(ρui)

∂t
+

∂
(
ρuiuj

)
∂xj

= − ∂p
∂xj

+ ρFi + 2
∂
(
µSij

)
∂xj

In the formula, ρ: fluid density; t: time; Fi: the volume force component of a fluid per
unit mass; P: pressure; ui and uj (i, j = 1, 2, 3): the velocity component of the fluid; xi and xj
(i, j = 1, 2, 3): coordinate components; µ: molecular viscosity coefficient; and Sij: the fluid
deformation rate tensor.

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
For the calculation of solid–liquid two-phase flow, the heterogeneous flow model

of the particle in the Euler–Euler method was adopted. The flow conditions of 0.6 QBEP,
1.0 QBEP, and 1.5 QBEP were selected to carry out the calculations, and particle volume
concentrations of 5%, 10%, 15%, 20%, and 25% were chosen. Meanwhile, the density of
solid particles was set to 2900 kg/m3, and the particle diameters were 0.15, 0.3, and 0.6 mm.
The Gidaspow model was selected for the drag force, the Favre-averaged drag force model
was selected for the turbulent dissipative force, and the dissipation coefficient was 1.0. In
this paper, the effects of lift, virtual mass force, and wall lubrication force on the flow field
were not considered. The inlet of the two-phase flow adopted the mass flow inlet, and the
outlet adopted the average static pressure outlet. Considering the liquid without the slip
velocity on the wall, the liquid phase adopted the non-slip wall. However, the wear effect
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of particles on the wall was considered, the solid phase adopted a free slip wall, and the
SIMPLE algorithm was used to solve the pressure–velocity coupling.

Due to the different densities of solid particles and water, the density of the transport
medium of the slurry pump changed after the solid particles were added to the clear water,
and the calculation formula is as follows:

ρ′ = Cv(ρ1 − ρ2) + ρ2 (1)

In the formula, ρ′ is the density of solid–liquid two-phase flow, ρ1 is the density of
solid particles, ρ2 is the density of water, and Cv is the volume concentration of particles.
The calculation results of fluid density in the centrifugal pump under different solid phase
volume concentrations are shown in Table 2.

Table 2. Density under different particle volume concentrations.

Cv/% 0 5 10 15 20 25 30 50

ρ′ (kg/m3) 1000 1095 1190 1285 1380 1475 1575 1950

3. Results and Discussion
3.1. Flow Field Analysis of Inlet

Figures 4 and 5 show the streamline distribution of the inlet section when using clean
water and when using a medium containing 15% solid particles with a diameter of 0.6 mm
under 0.6 QBEP, 1.0 QBEP, and 1.5 QBEP. It can be seen from Figure 4 that the fluid in
the inlet section had a slight pre-rotation, and the pre-rotation direction was consistent
with the rotation direction of the impeller under 0.6 QBEP. Under the effect of the rotation
impeller, the fluid direction changed from axial flow to radial flow. Meanwhile, with the
increase in the flow rate, the velocity at the impeller inlet gradually increased, and the
ability of the impeller to rotate the fluid near the inlet was weakened. When the solid
particles were added to the fluid, the kinematic viscosity and flow resistance of the medium
were increased, and the ability of the pre-rotation was weaker than that of clean water,
as shown in Figure 5. A slight pre-rotation could be observed at the impeller inlet under
1.0 QBEP, and due to the solid particles being carried in the fluid, a certain degree of wear
was generated at the leading edge of the blade. Furthermore, the ability of the pre-rotation
continuously decreased with the increase in flow rate. When the flow rate reached 1.5 QBEP,
the fluid movement at the inlet section was relatively stable.

Machines 2021, 9, x FOR PEER REVIEW 5 of 19 
 

 

Due to the different densities of solid particles and water, the density of the transport 
medium of the slurry pump changed after the solid particles were added to the clear wa-
ter, and the calculation formula is as follows: 

( ) 221v' ρρρρ +−= C  (1) 

In the formula, ρ′ is the density of solid–liquid two-phase flow, ρ1 is the density of 
solid particles, ρ2 is the density of water, and Cv is the volume concentration of particles. 
The calculation results of fluid density in the centrifugal pump under different solid phase 
volume concentrations are shown in Table 2. 

Table 2. Density under different particle volume concentrations. 

Cv/% 0 5 10 15 20 25 30 50 

'ρ  (kg/m3) 1000 1095 1190 1285 1380 1475 1575 1950 

3. Results and Discussion 
3.1. Flow Field Analysis of Inlet 

Figures 4 and 5 show the streamline distribution of the inlet section when using clean 
water and when using a medium containing 15% solid particles with a diameter of 0.6 
mm under 0.6 QBEP, 1.0 QBEP, and 1.5 QBEP. It can be seen from Figure 4 that the fluid in the 
inlet section had a slight pre-rotation, and the pre-rotation direction was consistent with 
the rotation direction of the impeller under 0.6 QBEP. Under the effect of the rotation im-
peller, the fluid direction changed from axial flow to radial flow. Meanwhile, with the 
increase in the flow rate, the velocity at the impeller inlet gradually increased, and the 
ability of the impeller to rotate the fluid near the inlet was weakened. When the solid 
particles were added to the fluid, the kinematic viscosity and flow resistance of the me-
dium were increased, and the ability of the pre-rotation was weaker than that of clean 
water, as shown in Figure 5. A slight pre-rotation could be observed at the impeller inlet 
under 1.0 QBEP, and due to the solid particles being carried in the fluid, a certain degree of 
wear was generated at the leading edge of the blade. Furthermore, the ability of the pre-
rotation continuously decreased with the increase in flow rate. When the flow rate reached 
1.5 QBEP, the fluid movement at the inlet section was relatively stable. 

 

   
(a) 0.6 QBEP (b) 1.0 QBEP (c) 1.5 QBEP 

Figure 4. (a–c) Flow distribution in the inlet section under clean water. 
Figure 4. (a–c) Flow distribution in the inlet section under clean water.



Machines 2021, 9, 373 6 of 20Machines 2021, 9, x FOR PEER REVIEW 6 of 19 
 

 

 

   
(a) 0.6 QBEP (b) 1.0 QBEP (c) 1.5 QBEP 

Figure 5. (a–c) Flow distribution in the inlet section under two-phase flow. 

3.2. Flow Field Analysis of Impeller 
The solid volume fraction and slip velocity had obvious influence on the wall wear, 

and the collision frequency of particles against the wall were enhanced with the increase 
in solid volume fraction. Additionally, the increase in solid particle slip velocity improved 
the impaction of a single particle on the wall. However, according to a previous investi-
gation [3], solid-phase slip velocity has a great influence on wall wear. Figure 6 shows the 
solid volume fraction distribution on the impeller wall under different flow conditions; 
the solid volume concentration was 15% and the particle size was 0.6 mm. It can be seen 
from the figure that the solid volume fraction of the blade pressure surface gradually 
moved from the leading edge to the trailing edge with the increase in flow rate. Under the 
0.6 QBEP condition, the velocity of the liquid and the centrifugal force on the solid particles 
was low, which made the solid particles accumulate at the impeller inlet. When the flow 
rate increased to 1.5 QBEP, the solid particles moved to the rear cover plate under the effect 
of inertia force, which resulted in a large solid volume fraction at the interface between 
the impeller and the rear cover plate. 

 

   
(a) 0.6 QBEP (b) 1.0 QBEP (c) 1.5 QBEP 

Figure 6. (a–c) Solid volume fraction distribution of the blade. 

3.3. Flow Field Analysis of Volute 
Figures 7 and 8 present the solid volume fraction distributions of the volute wall un-

der the flow conditions of 0.6 QBEP, 1.0 QBEP, and 1.5 QBEP; the solid volume concentration 
was 15% and the particle diameter was 0.6 mm. Under the 0.6 QBEP condition, the larger 
solid volume fraction was mainly distributed between the sixth and eighth sections, and 
the solid volume fraction at the tongue was lower.  

Figure 5. (a–c) Flow distribution in the inlet section under two-phase flow.

3.2. Flow Field Analysis of Impeller

The solid volume fraction and slip velocity had obvious influence on the wall wear,
and the collision frequency of particles against the wall were enhanced with the increase in
solid volume fraction. Additionally, the increase in solid particle slip velocity improved
the impaction of a single particle on the wall. However, according to a previous investiga-
tion [3], solid-phase slip velocity has a great influence on wall wear. Figure 6 shows the
solid volume fraction distribution on the impeller wall under different flow conditions; the
solid volume concentration was 15% and the particle size was 0.6 mm. It can be seen from
the figure that the solid volume fraction of the blade pressure surface gradually moved
from the leading edge to the trailing edge with the increase in flow rate. Under the 0.6 QBEP
condition, the velocity of the liquid and the centrifugal force on the solid particles was
low, which made the solid particles accumulate at the impeller inlet. When the flow rate
increased to 1.5 QBEP, the solid particles moved to the rear cover plate under the effect of
inertia force, which resulted in a large solid volume fraction at the interface between the
impeller and the rear cover plate.
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3.3. Flow Field Analysis of Volute

Figures 7 and 8 present the solid volume fraction distributions of the volute wall under
the flow conditions of 0.6 QBEP, 1.0 QBEP, and 1.5 QBEP; the solid volume concentration
was 15% and the particle diameter was 0.6 mm. Under the 0.6 QBEP condition, the larger
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solid volume fraction was mainly distributed between the sixth and eighth sections, and
the solid volume fraction at the tongue was lower.
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With the increase in flow rate, the region with a large solid volume fraction on the
volute wall gradually moved from the front cover to the rear cover. When the fluid entered
the volute from the impeller under the effect of centrifugal force, the volume fraction of
solid particles near the rear cover plate was larger, resulting in the wear on the rear cover
plate being higher than that on the front cover.

3.4. Effect of Particle Parameters on Wear Characteristic

In this section, the effects of particle volume concentration and particle diameter
on impeller wear are discussed, and the effects of the solid volume fraction and solid
slip velocity on the blade are analyzed. Abscissa indicates the relative distance in the
direction of the blade streamline (streamwise); a relative distance of the blade streamline of
0 represents the leading edge of the blade, a relative distance of the streamline of 1 indicates
the trailing edge of the blade, and an ordinate represents the solid phase volume fraction
(solid volume fraction) and the solid phase slip velocity (solid velocity).
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3.4.1. Effect of Particle Volume Concentration on Wear

Figure 9 shows the hydraulic performance curves of different concentrations under
optimal flow conditions. Here, 0 indicates that the medium is clear water. It can be seen
from the figure that with the increase in concentration, the head gradually and continuously
decreased. With the increase in the concentration, the viscosity of the solid–liquid two-
phase flow increased and the friction force and energy loss between the internal fluids
gradually increased, which resulted in a decrease in the head. At the same time, with
the increase in solid particle volume concentration, the enhancement of the centrifugal
pump impeller torque led to the increase in motor power consumption and the decrease
in centrifugal pump efficiency. When the concentration was 5%, the head decreased by
0.33% and the efficiency decreased by 1.60%. When the concentration was 25%, the head
decreased by 8.9% and the efficiency decreased by 8.09%. Therefore, the head and efficiency
of the pump decreased with the increases in particle volume concentration.
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Figure 10 shows the solid phase slip velocity distribution of the impeller when the
particle size was 0.6 mm and the particle volume concentrations were 5%, 15%, and 25%.
It was found that the solid phase slip velocity at the leading edge of the pressure surface
was the smallest—when the particles entered the impeller, the particles flowed from the
axial direction to the radial direction under the effect of centrifugal force, which decreased
the slip velocity. With the increase in concentration, the slip velocity of solid particles on
the pressure surface gradually increased. There was no great change in the slip velocity on
the suction surface, though a sudden change in the slip velocity of the solid particles was
found at the trailing edge of the blade which resulted from the flow separation near the
trailing edge of the suction surface. Additionally, the slip velocity of solid particles on the
pressure surface was generally larger than that on the suction surface.
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that the used medium was clear water. With the increase in the particle diameter, the en-
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time, with the increase in solid particle diameter, the friction loss between particles and 
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sumption. Therefore, as the particle diameter increased from 0.15 to 0.6 mm, the pump 
head decreased from 12 to 11.42 m and the efficiency decreased from 71.25% to 67.35%. 

Figure 10. (a,b) Solid velocity distribution of the blade.

Figure 11 shows the solid volume fraction distribution of the impeller when the
particle size was 0.6 mm and the particle volume concentrations were 5%, 15%, and 25%. It
can be seen from the figure that the solid volume on the blade pressure surface gradually
decreased from the leading edge to the trailing edge, with less and less accumulation of
solid particles due to the work of the blade. Meanwhile, there were almost no solid particles
on the suction surface of the blade, so the solid volume fraction on the pressure surface of
the blade was larger than the suction surface. With the increase in the concentration, the
solid particles and solid volume fraction gradually increased.
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3.4.2. Effect of Particle Size on Wear Characteristic

Figure 12 shows the comparison of the hydraulic performance curves of different
particle diameters under design flow conditions, where a particle size of 0 mm indicates
that the used medium was clear water. With the increase in the particle diameter, the
energy driving the solid particles was greater and the head gradually decreased. At the
same time, with the increase in solid particle diameter, the friction loss between particles
and impeller increased, which led to the increases in impeller torque and motor power
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consumption. Therefore, as the particle diameter increased from 0.15 to 0.6 mm, the pump
head decreased from 12 to 11.42 m and the efficiency decreased from 71.25% to 67.35%.
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Figure 12. Characteristic curve under different particle sizes.

Figure 13 shows the distribution of the solid-phase slip velocity of the impeller when
the particle volume concentration was 15% and the particle diameters were 0.15, 0.3, and
0.6 mm. It can be seen from the figure that the solid slip velocity of the pressure surface
gradually increased from the leading edge to the trailing edge. Additionally, with the
increase in the particle diameter, the solid slip velocity at the trailing edge of the pressure
surface gradually increased. This phenomenon is attributed to the increasing radial velocity
and circumferential velocity of solid particles after they entered the impeller, which led to
an increase in solid-phase slip velocity. Therefore, the solid phase slip velocity on the blade
surface increased with the increase in solid particle diameter.
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Figure 14 shows the solid volume fraction distribution of the impeller when the
particle volume concentration was 15% and the particle diameters were 0.15, 0.3, and
0.6 mm. It was found that with the increase in solid particle diameter, the region of the
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larger solid volume fraction moved from the suction surface to the pressure surface. When
the solid particles entered the impeller, the effects of the particle’s inertia and the extrusion
of the blade resulted in a larger solid volume fraction at the leading edge. At the same time,
with the increase in the particle diameter, the influence of the fluid centrifugal force on the
solid particles was enhanced, which made the solid particles move from the suction surface
to the pressure surface. Moreover, the maximum solid volume fraction was generated at
the leading edge of the blade on the pressure surface, while the maximum solid volume
fraction was generated at the trailing edge of the suction surface.
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3.5. Effect of Pump Speed on External Performance

In the previous analysis of solid–liquid two-phase flow, it can be seen that increases in
solid volume concentration led to decreases in the head and efficiency of the slurry pump.
With the increase in the solid volume concentration, the viscosity between the solid–liquid
two-phase flow increased and the friction force and energy loss between the internal fluids
was increased, which resulted in the decline of the head. More importantly, the slurry
pump could not reach the corresponding working condition, which may be another reasons
for the wear of the impeller. Therefore, in this paper, the influence of speed on hydraulic
performance was studied. Under the rated flow condition, solid–liquid two-phase flow
simulation calculations were carried out at the rotational speeds of 1480, 1490, 1500, 1510,
1520, and 1530 r/min and media with solid-phase volume concentrations of 0, 5%, 10%,
15%, 20%, and 25%. Then, the head value data obtained by the simulation were plotted
into a three-dimensional scatter diagram, as shown in Figure 15.

According to the head scatter diagram, the relationship between the rotational speed
and solid volume concentration on the head was evaluated. The head reached its minimum
value at Cv = 25% and n = 1480 r/min, and it reached its maximum value at Cv = 0% and
n = 1530 r/min. At the same solid volume concentration, the head of the pump increased
with the increase in rotational speed. At the same speed, the head of the pump decreased
with the increase in solid volume concentration.
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In order to better analyze the influence of rotational speed and solid volume concen-
tration on the head, a three-dimensional fitting surface was built, and the relationship
between the rotational speed, solid volume concentration, and the head was evaluated. In
the figure, the head value of the thickened equipotential line is 12 m.

At the same speed, with the increase in solid volume concentration, the head first
slowly decreased and then rapidly decreased. The surface fitting diagram showed that the
fitting effect of Cv = 10% was the best and the head value of Cv = 20% was generally lower
than the fitting value. On the whole, the fitting effect was able to meet the investigation
requirements. From low rotational speed and high solid volume concentration to high
rotational speed and low solid volume concentration, the distribution of head contours
was uniform and gradually increased.

A three-dimensional fitting surface diagram was projected onto an XY plane, and
solid volume concentration, rotational speed, and head diagram values were obtained, as
shown in Figure 16. It can be seen from the figure that under the condition of equal head,
the pump speed slowly improved with the increase in solid volume concentration. In the
figure, the head value of the thickened equipotential line is 12 m. While the solid phase
volume concentration increased, the pump head value could reach the corresponding
required value via adjustments of the rotational speed of the pump, which ensured the
pump operates at the rated flow condition and reduced the fluctuation of the shaft power.
For other operating conditions or head values, the head equipotential curve could be
obtained with the same method, and then the corresponding operating conditions could be
reached by adjusting the pump speed. Therefore, the head first slowly decreased and then
rapidly decreased with the increase in solid volume concentration, and it continuously
increased with the increases in rotational speed.
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4. Experimental Investigation
4.1. Hydraulic Performance Test

The test of the slurry pump was divided into two parts: the clear water performance
test and wear performance test. The clear water performance test mainly investigated
the external characteristic performance of the pump by measuring its flow rate, pressure,
rotational speed, and torque, which were compared with the numerical simulation results.
Meanwhile, the wear test was carried out on the slurry pump wear test bench, and the
amount of wear was calculated by the impeller weight-loss method.

In order to compare the hydraulic performance between the experiment and simu-
lation, the head and efficiency were selected as evaluation indexes and the clear water
hydraulic performance under different flow conditions was assessed, as shown in Figure 17.
The expressions of the head and efficiency are, respectively, as follows:

H =
p2 − p1

ρg
+

v2
2 − v2

1
2g

+ (z2 − z1) (2)

η =
ρgQH

Ps
× 100% (3)

In the equations, p1, v1, and z1 are the pump inlet parameters; p2, v2, and z2 are the
pump outlet parameters; η is the pump efficiency; and Ps is the output power of the motor.
During the test, a turbine flow meter (accuracy ± 0.1%) was used to measure the flow rate,
and a pressure sensor (accuracy ± 0.1%) was used to measure the inlet and outlet pressure
of the pump. A torque sensor (accuracy ± 0.5%) and a speed sensor (accuracy ± 0.1%)
were used to measure torque and speed, respectively.
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Figure 17. Hydraulic performance test bench.

Figure 18 shows the hydraulic performance results of the simulation and experiment.
The leakage loss, disk friction loss, and friction loss between the bearing and sealing device
were not taken into account in the numerical simulation, which resulted in the numerical
simulation results being larger than the experimental data and the trend of the simulation
head and efficiency curve being the same as that of the test. The maximum deviation of the
head under 8 m3/h was 4.32%, which was due to the instability of the internal flow field
of the pump operation except for optimal flow conditions. However, when the flow rate
was 26 m3/h, the minimum deviation between the simulation head and the test head was
2.52% and the efficiency deviation was less than 2.56%. The calculation deviation in the
full flow range was less than 5%. Therefore, the calculation model could accurately predict
the performance of the pump.

4.2. Wear Performance Test

The wear test bench was mainly composed of the slurry pump, pressure gauge,
pipeline, valve, motor, and test system. The test system included strong electric parts,
such as the step-down starting cabinet, system distribution cabinet, and test conversion
protection cabinet, and weak current parts, such as intelligent display instrument, signal
conversion device, and various signal sensors. Figure 19 shows the wear test bench.

In the wear test, the wear condition of the impeller was studied by means of equal
flow control and impeller weight loss measurements. The inlet and outlet of the pump were
equipped with pressure gauges. The wear test was divided into the following two stages.
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1. The first stage

The total duration of the first-stage test was 24 h. The test was carried out under
the condition of equal flow rate, and the running speed of the pump was 1500 r/min.
Meanwhile, the solid particles were brown corundum, the density was 2900 kg/m3, the
particle size was 0.6 mm, and the solid volume was 15%. The mass of the impeller before the
test was 2070 g. When the pump was running for 4 h, it was found that there was obvious
wear at the intersection between the suction surface and the front cover plate, and slight
wear was generated at the entrance of the blade. When the pump was running for 24 h, the
weight of the impeller was 1960 g and the weight loss rate was 5.31%. Meanwhile, it was
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found that the blade was seriously worn at the entrance, and about 1–2 mm oval pits were
created on the rear cover plate near the suction surface of the hub. Additionally, the wear
of the blade suction surface and the front cover plate joint was more serious; there was an
approximately 3 mm long groove on the blade, as shown in Figures 20 and 21.
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2. The second stage

The total duration of the second stage was 24 h. The test was carried out under the
condition of equal flow rate, the solid particles were brown corundum, the density was
2900 kg/m3, the particle size was 0.6 mm, the solid volume concentration increased to 25%,
and the weight of the impeller before the test was 1960 g. When the pump was running for
24 h, the mass of the impeller was 1560 g and the weight loss rate was 20.41%. After the
second-stage wear test, there was serious wear at the junction of the blade pressure surface
and the front cover plate that extended from the blade leading edge to the trailing edge. At
the same time, serious wear was generated at the junction of the impeller outlet and the
rear cover plate, as shown in Figures 22 and 23.
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4.3. Analysis of Wear Distribution Characteristic

In this section, to analyze the wear distribution characteristic under the design flow
condition, the calculation and experimental results with a solid volume concentration of
25% are discussed. Figure 24 shows a contrast diagram of the inlet wear of the impeller. The
calculation results show that the high solid volume fraction was generated at the junction
of the blade inlet and the rear cover plate. The experiment results showed that slight wear
was created at the entrance of the front cover, and the rear cover was worn out. From the
previous analysis of blade wear, it could be seen that the high solid-phase slip velocity was
generated at the entrance of the front cover plate and the solid phase slip velocity at the
leading edge of the blade was larger, which resulted in the rear cover plate being easier to
wear out. Figure 25 shows the contrast diagram of impeller outlet wear. The numerical
simulation results showed that the solid phase slip velocity at the junction between the
blade and the rear cover plate was larger and the slip velocity gradually declined from
the trailing edge to the leading edge. At the same time, the numerical simulation results
were in good agreement with the experimental results. Therefore, enhancing the strength
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of the junction between the blade leading edge and the rear cover plate was beneficial for
improving the service life of the slurry pump.
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5. Conclusions

In this paper, a 25 MZ slurry pump was selected as the research object, and the Euler–
Euler multiphase flow model was employed to analyze the internal flow characteristic of
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the slurry pump under the conditions of clear water and solid–liquid two-phase flow. The
following conclusions were obtained:

(1) Pre-rotation was generated at the inlet section, and the pre-rotation direction was
consistent with the rotation direction of the impeller under part-load conditions.
Meanwhile, the ability of the pre-rotation continuously decreased with the increase
in flow rate. When the flow rate reached 1.5 QBEP, the flow at the inlet section was
relatively stable. Furthermore, the solid volume fraction of the blade pressure surface
gradually moved from the leading edge to the trailing edge with the increase in flow
rate. When the flow rate increased to 1.5 QBEP, the solid particles moved to the rear
cover plate under the effect of inertia force, which resulted in a large solid volume
fraction at the interface between the impeller and the rear cover plate.

(2) With the increase in the particle volume concentration, the viscosity of the solid–
liquid two-phase flow increased and the friction force and energy loss between the
internal fluids gradually increased, which resulted in a decrease in the head. When the
concentration was 5%, the head decreased by 0.33% and the efficiency decreased by
1.60%. When the concentration was 25%, the head decreased by 8.9% and the efficiency
decreased by 8.09%. Therefore, the head and efficiency of the pump decreased with
increases in particle volume concentration.

(3) When the particle diameter gradually increased, the energy driving the solid particles
was greater and the head gradually decreased. At the same time, with the increase
in solid particle diameter, the friction loss between particles and impeller increased,
which led to the increases in impeller torque and motor power consumption. There-
fore, when the particle diameter increased from 0.15 to 0.6 mm, the pump head
decreased from 12 to 11.42 m and the efficiency decreased from 71.25% to 67.35%.

(4) Finally, clean water and solid–liquid two-phase flow wear tests of the slurry pump were
carried out. The calculation deviation in the full flow range was less than 5%, so the
calculation model could accurately predict the performance of the pump. By comparing
the wear distribution of numerical and experiment, it was found that high solid volume
fraction and solid-phase slip velocity were generated at the junction of the blade leading
edge and the rear cover plate, which made the latter easier to wear out. Therefore,
enhancing the strength of the junction between the blade leading edge and the rear cover
plate would be beneficial for improving the service life of a slurry pump.

In this paper, in order to simplify the analysis model, a uniformly spherical particle was
employed in the calculation process. However, particles in a slurry pump have a lot of different
shapes during actual operation. Therefore, the influence of particle shapes on the hydraulic
performance and wear characteristics of slurry pumps will be investigated in the future.
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