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Abstract: We aimed to develop an artificial intelligence (AI) diagnosis system for uterine smooth
muscle tumors (UMTs) by using deep learning. We analyzed the morphological features of UMTs
on whole-slide images (233, 108, and 30 digital slides of leiomyosarcomas, leiomyomas, and smooth
muscle tumors of uncertain malignant potential stained with hematoxylin and eosin, respectively).
Aperio ImageScope software randomly selected ≥10 areas of the total field of view. Pathologists
randomly selected a marked region in each section that was no smaller than the total area of 10 high-
power fields in which necrotic, vascular, collagenous, and mitotic areas were labeled. We constructed
an automatic identification algorithm for cytological atypia and necrosis by using ResNet and
constructed an automatic detection algorithm for mitosis by using YOLOv5. A logical evaluation
algorithm was then designed to obtain an automatic UMT diagnostic aid that can “study and
synthesize” a pathologist’s experience. The precision, recall, and F1 index reached more than 0.920.
The detection network could accurately detect the mitoses (0.913 precision, 0.893 recall). For the
prediction ability, the AI system had a precision of 0.90. An AI-assisted system for diagnosing UMTs
in routine practice scenarios is feasible and can improve the accuracy and efficiency of diagnosis.

Keywords: smooth muscle tumor; leiomyosarcoma; artificial intelligence; training set

1. Introduction

Uterine smooth muscle tumors (UMTs) are the most common tumors of the female
genital tract, with an incidence of approximately 70% in women aged >40 years [1,2]. The
World Health Organization Classification of Tumours of Female Reproductive Organs (fourth
edition, 2014) classifies UMTs into three main categories: leiomyoma (including specific
subtypes), leiomyosarcoma, and smooth muscle tumors of uncertain malignant potential
(STUMP) [3]. These classifications are still used in the fifth edition published in 2020.

The diagnostic criteria for smooth muscle tumors include cytological atypia, mitoses,
coagulative tumor cell necrosis, tumor border, and vascular invasion [4–6]. The three main
criteria for diagnosis are the heterogeneity of tumor cells, mitoses, and tumor coagulative
necrosis. The accurate accounting of mitoses is particularly important in differentiating
leiomyosarcomas from certain subtypes of leiomyomas (e.g., leiomyomas with bizarre
nuclei and mitotically active leiomyomas) or STUMPs. However, the judgment of these
three main criteria is somewhat subjective for pathologists, especially mitoses, which are
often interfered with by nuclear fragmentation, apoptosis, and inflammatory cells with
irregular nuclei. This is poorly reproducible and time-consuming for pathologists and may
ultimately result in an incorrect diagnosis.

With the development of computer technology and medical image analysis algorithms,
it has become possible to use artificial intelligence (AI) to analyze whole-slide images and
to perform early screening and diagnosis for tumors [7–9]. Several studies have verified the
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effectiveness of AI in the pathological diagnosis of tumors in different organs, such as lung
cancer, breast cancer, prostate biopsy, and mesothelioma [10–15]. The current study aimed
to analyze the morphological characteristics of digitally scanned sections of UMTs and
build an AI diagnosis system for UMTs by using a computerized deep learning network
model for image detection and recognition to assist pathologists in improving diagnostic
accuracy and efficiency.

2. Materials and Methods

Figure 1 presents the methods of this study. After data preparation and labeling, the
classification and detection models were trained to obtain an automatic UMT diagnostic
aid that can “study and synthesize” a physician’s experience.

Figure 1. Flowchart of AI-assisted diagnosis of UMTs.

2.1. Data Set

The Ethics Committee of Beijing Obstetrics and Gynecology Hospital approved the
study. The requirement for informed consent was waived because the reports were
anonymized. Overall, 29 cases of leiomyosarcomas, 5 cases of STUMP, and 24 cases
of leiomyomas (including 20 cases of conventional leiomyomas and 4 cases of lipoleiomy-
omas) were collected. All patients were diagnosed by the Department of Pathology of
Beijing Obstetrics and Gynecology Hospital from May 2016 to May 2021. The inclusion
criteria were as follows: clinical diagnosis of uterine occupancy with mass resection or total
hysterectomy and pathological diagnosis of smooth muscle tumors, including leiomyomas,
STUMP, and leiomyosarcomas. The exclusion criteria were as follows: patients who (1) had
received preoperative radiotherapy or chemotherapy before surgery, (2) were diagnosed
with uterine leiomyosarcomas exhibiting a predominant epithelioid appearance, (3) were
diagnosed with myxoid leiomyosarcoma or leiomyomas with bizarre nuclei, (4) had used
hormonal drugs, or (5) were pregnant.

This study used 233 digital slides of leiomyosarcomas, 108 digital slides of leiomyomas,
and 30 digital slides of STUMP stained using hematoxylin and eosin (HE). Two pathologists
selected and read all slides, and all data were strictly desensitized.

Aperio ImageScope software (Vista, CA, USA) was used for the annotation of digital
sections. To train the deep learning model, the regions of necrotic, cytological atypia,
collagen, blood vessels, and a certain range of mitosis targets in the digital sections were
first annotated by pathologists. To facilitate the subsequent detection of nuclear fractures,
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the area of the field under the microscope was roughly converted into 10 square areas with
969-pixel borders, according to the method of counting nuclear fractures in 10 high-power
fields (HPF, d = 0.55 mm). Five pathologists randomly selected a marked region in each
section that was no smaller than the total area of 10 HPF in the digital sections. We labeled
the areas of necrosis (N), vascular (x), collagen (j), and mitoses (h).

2.2. Deep Learning Models

The deep learning modern model was established on the basis of multiple convo-
lutional neural network (CNN) feature extraction backbones and the image features of
UMTs [16,17]. The images were divided into small-scale cuts that were 224 pixels × 224 pixels
or 128 pixels × 128 pixels in size. An 18-layer residual network model was used to train and
test the automatic classification on a server equipped with four NVIDIA Tesla v100 graphics
cards to determine whether the slices had cytological atypia or necrosis. A small-scale
detection network was built directly by using the YOLOv5s model with two NVIDIA RTX
3090 graphics cards to obtain a mitosis detection network. The YOLOv5s network is the
network with the smallest depth and the smallest width of characteristic graph in the
YOLOv5 series; therefore, this model has a faster training and prediction speed than other
models and is widely used in medical case diagnosis research.

The classification and mitoses detection results were logically judged to obtain the
final diagnosis. All of these were automatically handled by the deep learning model.

2.3. Evaluation Metrics

Our evaluation metrics included the following: (1) accuracy: (TP + TN)/(TP + FP + TN + FN);
(2) precision: TP/(TP + FP); (3) recall: TP/(TP + FN), which is the proportion of correct
positive predictions for all positive samples; and (4) F1 index: two multiples of the summed
mean of precision and recall.

F1 Index =
2 × recall × precision

recall + precision
(1)

TP indicates that the sample is positive and that the prediction result is also positive.
FP indicates that the sample is negative, but the prediction result is wrongly interpreted
as positive. TN indicates that the sample is negative and that the prediction result is also
negative. FN indicates that the sample is positive, but the prediction result is wrongly
judged as negative. The accuracy rate and F1 index can be used to measure the overall
classification performance of the model, and a value that is closer to one indicates a better
model. Accuracy, which is also known as the accuracy check rate, indicates the proportion
of TPs among the positive samples detected by the model. Recall, which is also known as
the full check rate, indicates the proportion of positive samples accurately detected by the
model among all positive samples.

3. Results
3.1. Image Annotation

Among the patients with leiomyosarcoma, 2 had moderate cytological atypia, 5 had
moderate–severe cytological atypia, and 20 had severe cytological atypia. A total of
24 patients had necrosis with an average count of more than or equal to 10 mitoses in
10 high-magnification fields (≥10/10 HPF).

A total of 140 images of 19 patients with leiomyosarcoma were selected as the training
set and were labeled by pathologists. The cellular regions of the tumor in the digital
pathology slices were classified as normal or mild atypia, tumor necrosis, tumor cytological
atypia (moderate to severe), collagen area, and vascular regions (Figure 2).
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Figure 2. Annotations were made in tumor areas, including necrosis (N), blood vessels (x), collagen
area (j), and mitotic (h). (A,B) represent different areas of the leiomyosarcoma image (Original
magnification: 40×).

3.2. Automatic Classification of Necrosis and Tumor Cytological Atypia

By using image data that were manually labeled by physicians, a classification model
was constructed using a residual network. Among the patients with leiomyosarcoma,
140 slice images of 19 patients were selected as the training set. Some 93 slice images of
another 10 patients with leiomyosarcoma were selected as the test set, in which different
areas were intercepted according to necrosis and nuclear anomaly annotation. Images of
normal or mild cytological atypia samples were obtained from patients with leiomyoma
(57 slices of 19 patients). The target regions in the slices were intercepted and cropped into
small blocks of 224 pixels × 224 pixels (Figure 3). The final image blocks of the training set
obtained 6418 images of moderate and severe cytological atypia, 2593 images of normal or
mild atypia, and 13,266 images of necrosis. The test set contained 1200 images of each.

Figure 3. Automatic classification of necrosis and tumor cytological atypia: (A) classification network
structure; we performed a 7 × 7 normal convolution and four 3 × 3 residual channel convolutions
and used global average pooling and full connection; (B) results of the classification network.



Life 2023, 13, 3 5 of 11

The test results for the model after training are shown in Table 1. The table shows that
the classification network can correctly classify normal images, nuclear atypia, and necrotic
images. In addition, all classification indices reached more than 0.920.

Table 1. The accuracy, precision, recall, and F1 score of various categories in the test set.

Types Accuracy Precision Recall F1 Index

Moderate-to-severe cytological atypia vs. normal and mild cytological atypia 0.962 0.928 0.998 0.963
Tumor necrosis vs. normal 0.947 0.930 0.969 0.949

3.3. Automatic Detection of Mitoses

The microscopic counting of mitoses requires the high-resolution observation of patho-
logical sections to identify various morphological targets of nuclear division at the cellular
level (Figure 4). On the basis of this working idea, the YOLOv5s model in the one-stage
detection mode was used for the construction and training of the detection network in this
project. The hardware device was two NVIDIA RTX 3090 graphics cards.

Figure 4. Automatic detection of mitoses: (A) detection network structure; we used the fifth genera-
tion YOLO algorithm as the basic framework. BottleNeck Cross Stage Partial and Spatial Pyramid
Pooling were used to optimize the feature extraction structure and improve the accuracy of mitosis
detection; (B) the results of the detection network. The green box refers to the mitosis target.
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First, the target field in the physician-labeled slice was intercepted using the program.
The coordinates were then repositioned in the intercepted result, with the upper left corner
of the intercepted region as the coordinate origin and the positive direction to the right
and down, respectively. Second, the manually labeled position of each nuclear split was
recorded and saved. Finally, we recorded the coordinates of the center point of each
nuclear split region, the length of the region, and the width of the region using rectangular
positioning boxes. The size of each cut block was 128 pixels × 128 pixels (Figure 4).

According to the pathologist’s annotation, 2000 blocks were used as the training set,
which comprised 1500 cuts containing nuclear mitoses targets and 500 cuts with apoptotic
body or other interfering factors. A total of 1000 blocks were used as the test set, which
comprised 525 cuts containing mitosis targets and 475 normal cuts. In the detection model,
the max-det value was set to one to ensure that, at most, one nuclear split target was
detected in each cut block (128 pixels × 128 pixels). The confidence threshold was set
to 0.6, and it was considered correctly detected when the intersection over union value
of the detection box and manual marker box overlap was 0.55. The detection network
could accurately detect the mitoses with 0.938 precision, 0.913 accuracy, 0.893 recall, and
0.915 F1 index (Table 2), which could meet the requirements in practical applications. After
detecting the target, the program could further calculate the number of mitoses required to
obtain the target result.

Table 2. The precision, recall, accuracy, and F1 index of mitoses detection in the test set.

Detected as Mitosis Detected as Normal or
Apoptotic Body Total Precision Recall Accuracy F1 Index

Actually mitotic 469 56 525
0.938 0.893 0.913 0.915Actually normal or

apoptotic body 31 444 475

Total 500 500 1000

3.4. AI for Logical Judgment

To test whether the AI-aided diagnosis system can make accurate and logical judg-
ments, we combined the automatic classification model with the automatic detection model
to perform overall detection and logical judgments on pathological sections (Figure 5).
We selected 10 cases of leiomyosarcoma, 5 cases of STUMP, and 5 cases of leiomyoma
(1–3 sections for each case) for testing. Among them, one case of leiomyosarcoma was
misdiagnosed as STUMP, and one case of STUMP was misdiagnosed as leiomyoma; the
others were consistent with the pathologist’s diagnosis, with a total precision of 0.900
(Table 3). For 0.24 mm2 or 10 HPF of 0.55 mm in diameter, the computational times of
the proposed network model for automatic classification, automatic detection, and logical
judgment were 1.7, 1.5, and 0.1 s, respectively.

Table 3. The accuracy, precision, recall, and F1 score of various categories in the test set.

Types Accuracy Precision Recall F1 Index

Leiomyosarcoma vs. STUMP and leiomyoma 0.950 1.000 0.900 0.947
STUMP vs. leiomyosarcoma and leiomyoma 0.900 0.800 0.800 0.800

Total for three categories / 0.900 / /
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Figure 5. Flowchart of the automated diagnosis of UMTs by our proposed method. “Y” and “N” in
the table indicate that the item is positive and negative, respectively.

4. Discussion

The significance of using deep learning models is that automatic analysis can be ob-
tained by learning from the samples, and the empirical knowledge of different pathologists
can be synthesized. Repetitive and empirical tasks can be handed over to machines for
assisted analysis. By using the computerized deep learning of digital pathological sections
of UMTs, the following functions were achieved in this project: (1) automatic discrimina-
tive analysis of cytological atypia and tumorigenic necrosis of tumor cells, (2) automatic
detection and counting of mitoses, and (3) logical judgment of the results obtained from
the classification and detection networks to make a diagnosis.

Smooth muscle tumors are common tumors of the female reproductive system and
most often occur in the uterus, followed by the cervix; broad ligament; and occasionally in
the vagina, ovaries, fallopian tubes, and vulva [18]. At present, the properties of smooth
muscle tumors are mainly based on the heterogeneity of tumor cells, mitosis, and tumor
coagulative necrosis [3]. For example, in coagulative necrosis, a UMT with mild cytological
atypia is diagnosed as a leiomyosarcoma if the mitotic count is ≥10/10 HPF; otherwise, it
is diagnosed as a STUMP. In the absence of coagulative necrosis, if the tumor cells show
diffuse moderate-to-severe atypia and the mitotic count is ≥10/10 HPF, the diagnosis is
leiomyosarcoma. However, when only one of the conditions is met, the diagnosis is STUMP.
When necrosis is lacking and cytological atypia is not obvious or only focally mild, the
accuracy of the mitotic count is paramount. Tumors lacking cytological atypia and tumor
cell necrosis but with ≥15 mitoses/10 HPF should be diagnosed as STUMP. Therefore,
cytological atypia, mitotic count, and tumor cell necrosis play important roles in diagnosing
UMTs. However, due to subjectivity, the consistency of interpretation between different
pathologists is poor. In addition, counting the mitoses of tumor cells is time-consuming and
labor intensive, which affects the accuracy and efficiency of diagnosis. In the classification
of UMTs, STUMPs show morphological features that exceed the criteria for leiomyoma or
its subtypes but are insufficient for a diagnosis of leiomyosarcoma. This issue often puzzles
pathologists. However, the cytological atypia, necrosis, and mitosis in leiomyosarcoma and
leiomyomas are relatively clear. We try to establish an AI judgment standard by observing
the morphological characteristics of these two categories such that the diagnosis of STUMPs
will be more objective.
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In recent years, rapid development in the field of AI, especially deep learning (e.g., a
CNN), has provided more possibilities for the establishment of intelligent computer-aided
diagnostic systems based on pathological image analysis [19,20]. Deep learning is a new
field in machine learning research in which higher-level attribute classes or features are
formed by combining lower-level features into more abstract ones. Several studies and
clinical practices are attempting to integrate AI and pathological image analysis to achieve
intelligent detection and diagnosis and overcome the shortcomings of manual reading
visual fatigue to improve diagnostic accuracy. Therefore, they have important clinical
value and application prospects. For example, Song et al. developed an assisted diagnostic
system using AI for gastric adenocarcinoma biopsy specimens. The deep CNN was trained
on 2123 slides of digital pathology slices stained using hematoxylin and eosin (HE). It
achieved a sensitivity of approximately 100% and an average specificity of 80.6% on a
real-world test data set of 3212 slides of digital pathology [11]. In other tumors, such as
esophageal cancer, lung cancer, and prostate cancer, AI based on deep learning has also
achieved good detection results [21–23]. ResNet is a classic residual neural network and
has an excellent performance in image classification tasks, including ResNet-18, ResNet-50,
and other frameworks [24]. In the pre-experiments on our data set, we used ResNet-18,
ResNet-34, and ResNet-50 for the classification network detection. It showed that the
18-layer residual network achieved the best classification performance. Therefore, in this
experiment, an 18-layer residual network model was adopted for the model building to
detect the tumor cytological atypia and tumor necrosis. The specific process is shown in
Figure 3. The classification network achieved the correct classification of normal images,
nuclear heterotypes, and necrotic images through testing. Furthermore, the classification
performance was good, with all classification indexes reaching more than 92%. This shows
that a deep-learning-based AI system can detect cytological atypia and necrosis of smooth
muscle tumors.

The identification and counting of mitotic images are crucial for the differential diag-
nosis of benign and malignant smooth muscle tumors. Computer experts have developed
several methods for mitotic detection, such as the maximized inter-class weighted mean,
CNN, and YOLOv5 [25–27]. YOLOv5 was proposed in 2020 and is one of the latest achieve-
ments of the YOLO series of detection algorithms in the one-stage detection framework. It
contains YOLOv5s, YOLOv5m, and other frameworks and has excellent detection accuracy
and speed in target detection tasks. Our pre-experiment on the sub-data set showed that
YOLOv5s had the best detection performance, so we chose YOLOv5s as the detection net-
work in this experiment, as shown in Figure 4. The precision and recall steadily improved
and approached one, which was used to measure the performance of the detection network
during training. This indicated that the network was well trained. The detection network
can detect mitoses accurately, which meets the requirements of practical applications.

We achieved automatic discrimination and classification of nuclear atypia and tumor
cell necrosis through training in the classification network. The detection network makes
it possible to detect and count mitoses automatically. We combined the automatic clas-
sification and automatic detection models and performed overall detection and logical
judgment on some pathological sections, shown in Figure 5. In the detection experiments,
20 cases of UMTs, including 10 cases of leiomyosarcomas, 5 cases of STUMPs, and 5 cases
of leiomyoma, were tested. Except for one leiomyosarcoma misdiagnosed as STUMP, the
results were consistent with the pathologist’s diagnosis, with 0.90 precision. Our study
initially explored the feasibility of using histopathological AI-assisted systems to diagnose
UMTs, which can assist pathologists in making judgments and improve the efficiency and
accuracy of diagnosis.

This study had some limitations. First, the number of images in the categories is
small. To improve the performance of our diagnostic system, a larger data set is required.
Second, our experiments were conducted mainly on UMTs, and the morphological features
of other spindle cell tumors in the uterus, such as endometrial mesenchymal sarcoma,
inflammatory myofibroblastoma tumor, and perivascular cell tumor, were not learned and
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judged by AI. Therefore, it is still necessary to manually select the slides of pathological
images to be analyzed. Owing to the limited number of cases, the computer learning
and judgment of cell-rich leiomyomas myxoid leiomyosarcoma, leiomyomas with bizarre
nuclei, and epithelioid leiomyosarcoma are not yet convincing. Finally, the false detection
rate of the model for detecting mitoses was relatively high. Given that clinical information,
immunohistochemical markers, and molecular detection results can help affect pathological
diagnoses [28,29], especially for relatively difficult cases, it is necessary to combine this
information with the AI system. This is a difficult issue in automatic histopathological
diagnosis. In subsequent experiments, we should continue to expand the sample size and
combine immunohistochemistry and molecular results with AI to improve the diagnostic
accuracy and automation of the model.

5. Conclusions

The criteria for UMT diagnosis are very complex. Furthermore, UMT diagnosis is time-
consuming and error prone. This study proposes an AI-aided diagnosis and evaluation
system for UMTs based on deep learning. The algorithms for the automatic classification of
necrosis and tumor cytological atypia and the automatic detection of mitoses were proved
to be effective. By analyzing whole-slide images, an AI system can judge the properties of
UMTs and make logical conclusions. This system may provide a new, comprehensive, and
intelligent method for pathological diagnosis and may generate new ideas for advancing
interdisciplinary collaborative research on clinical medical problems. However, there are
still areas that can be improved, and our current work is mainly based on the pathological
image slices of a certain size. Therefore, it is necessary to manually frame a certain area to
be analyzed on a slice. Achieving automatic application at the WSI level requires further
research. In addition, studies should be conducted on the improvement of the depth
learning algorithm to further improve the accuracy of the system and ensure its clinical
practicality.
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