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Abstract: Periodontitis, characterized by the progressive destruction of dental support tissues due
to altered immune responses, poses a significant concern for public health. This condition involves
intricate interactions between the immune response and oral microbiome, where innate and adaptive
immune responses, with their diverse cell populations and inflammatory mediators, play crucial roles
in this immunopathology. Indeed, cytokines, chemokines, growth factors, and immune cells perform
key functions in tissue remodeling. Focusing on periodontal therapies, our attention turns to micro-
immunotherapy (MI), employing low doses (LDs) and ultra-low doses (ULDs) of immunological
signaling molecules like cytokines, growth factors, and hormones. Existing studies across various
fields lay the groundwork for the application of MI in periodontitis, highlighting its anti-inflammatory
and regenerative potential in soft tissue models based on in vitro research. In summary, this review
underscores the versatility and potential of MI in managing periodontal health, urging further
investigations to solidify its clinical integration. MI supports an innovative approach by modulating
immune responses at low doses to address periodontitis.

Keywords: periodontitis; micro-immunotherapy; low doses; ultra-low doses; immunotherapy;
immunomodulation; cytokines

1. Introduction

Periodontal diseases are characterized by the progressive destruction of tissues that
support teeth, including the soft and hard tissues of the periodontal region [1]. These
conditions, which pose a significant challenge to oral and public health, result from an
altered immune response and the disruption of the oral ecosystem, where the microbial
community plays a crucial role [2–4].

Periodontal diseases, such as gingivitis and periodontitis, arise from the complex
interaction between the immune response and microbial biofilms in the periodontal region.
Gingivitis is an acute and reversible inflammation confined to the gingival tissues. If left
untreated, gingivitis leads to periodontitis, a more advanced, irreversible, and destructive
form of periodontal disease [1]. Periodontal disease represents a significant public health
problem that affects 20–50% of the adult population, with chronic periodontitis being the
most prevalent form [4–7]. This context underscores the importance of understanding the
mechanisms involved in the development and progression of the disease.

Gingivitis is caused by pathogenic subgingival microbial biofilm development and
dysbiotic interactions between the host and the hosted microbes. The extracellular matrix
on the teeth surface at the initial stage of biofilm formation facilitates this process, leading
to anaerobic microorganisms increasing due to oxygen depletion in a growing and mature
biofilm [8]. This transition allows the dysbiotic community, rich in virulence factors, to
prosper in an inflammatory environment [9]. Consequently, pathogenicity occurs when
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the host’s immune response is dysregulated due to changes in the microbial community or
immune-regulatory defects [10].

If biofilm accumulation persists, the inflammatory process becomes irreversible, lead-
ing to clinical manifestations of periodontitis involving deeper periodontal tissue disruption
that drives the destruction of tooth-supporting structures, loss of periodontal ligaments
and cementum attachment, and resorption of the alveolar bone [1,5,11] (Figure 1). In more
advanced stages, deepened pocket depths with alveolar bone loss cause tooth mobility,
drifting, flaring, and, ultimately, the loss of the affected tooth due to periodontal tissue
destruction. A collapse of the bite function is typically the result of advanced cases wherein
several teeth are affected [12]. This transition from gingivitis to periodontitis is classi-
fied according to clinical manifestations, symptoms, and pathological changes related to
molecular, cellular, and immunohistochemical aspects [13,14].
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The primary etiology of periodontal disease is host-mediated inflammatory and im-
mune responses to microbial plaque accumulation caused by dysbiosis. However, to bet-
ter understand this disease, focusing on other contributory factors, including host envi-
ronmental factors, immunological and genetic mechanisms, and environmental host fac-
tors like heredity, diet, and lifestyle, is necessary [1,2,15]. 

Risk factors for periodontitis include daily brushing frequency, routine scaling, 
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ney disease, and certain cancers [16,17]. Understanding the mechanisms behind this link 
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contribute to the differentiation and maturation of the host mucosa and the development 
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Figure 1. Schematic illustration of the changes in periodontal structure from healthy to pathological
periodontitis. (A) The healthy periodontium had a complete structure with microbiota homeostasis
and a controlled inflammatory environment. (B) Pathogenic subgingival microbial biofilms develop
and cause host-mediated inflammatory responses without losing alveolar bone, leading to gingivitis.
The transition to periodontitis involves an abnormal inflammatory reaction, tooth-supporting struc-
ture destruction, periodontal ligament loss, and alveolar bone resorption. This figure was created
with BioRender.com.

The primary etiology of periodontal disease is host-mediated inflammatory and im-
mune responses to microbial plaque accumulation caused by dysbiosis. However, to better
understand this disease, focusing on other contributory factors, including host environ-
mental factors, immunological and genetic mechanisms, and environmental host factors
like heredity, diet, and lifestyle, is necessary [1,2,15].

Risk factors for periodontitis include daily brushing frequency, routine scaling, smok-
ing, alcohol consumption, heredity, and hypertension [3,15]. Epidemiologically, periodontal
disease is linked to comorbidities such as cardiovascular disease, type-2 diabetes, obesity,
atherosclerosis, rheumatoid arthritis, osteoporosis, respiratory infections, inflammatory
bowel disease, Alzheimer’s disease, nonalcoholic fatty liver disease, chronic kidney disease,
and certain cancers [16,17]. Understanding the mechanisms behind this link is crucial for
the early identification and prevention of periodontal diseases.

A dynamic bidirectional interaction between the oral microbiome and the host is
essential to establish periodontal diseases. This interaction involves different factors that
contribute to the differentiation and maturation of the host mucosa and the development
of the host immune system [18–20].

The two main aims of this review are: (i) discuss the current knowledge of the im-
munological mechanisms involved in the initiation and progression of periodontitis, and
(ii) give an overview of the different therapeutical interventions in managing periodon-
titis, focusing the attention on the potential of micro-immunotherapy (MI), an immune
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regulator-based low dose immunotherapy [21]. Drawing from its applications in various
fields, and considering the immunological intricacies of periodontal disease, the aim is
to provide insights into how MI may effectively address the complexities of periodontitis
based on previous research findings.

2. Periodontitis Immunopathology

Dynamic interactions between pathogen products, numerous cell populations, and
inflammatory mediators are crucial for homeostasis and inflammatory processes. Thus, it
is essential to understand the role of the cells and mechanisms induced in the innate and
adaptive immune response by pathogens in periodontitis progression [22–26].

2.1. Innate Response

The innate immune response is activated when pathogens invade the periodontium,
with barriers such as saliva, complement system activity, and the membrane attack complex
(MAC) that induce the lysis of microbial targets (Figure 2, point 1). The immune system is
activated, amplified, and synchronized through the complement pathway, killing bacteria
and activated mast cells, neutrophils, and macrophages [27].
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Figure 2. Schematic representation of the immunoregulation in periodontitis progression. Adaptive
immune cells activated by an exaggerated innate immune response orchestrate the progression of
periodontal inflammation and tissue destruction. The interplay between pathogens, immune cells,
and inflammatory mediators in periodontitis immune response is detailed. 1: Lysis of microbial
targets through the complement system, secretory IgA (sIgA), and membrane attack complex (MAC);
2: Activation of proinflammatory transcription factors; 3: Migration of neutrophils through the
junctional epithelium; 4: Antigen presentation by dendritic cells (DCs) cells; 5: Activation of cellular
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immunity of Th1 cells by proinflammatory cytokines liberation; 6: IL-17 produced by Th17 exacerbates
gingival tissue inflammation and bone loss; 7: Humoral immunity and anti-inflammatory role of Th2
cells; 8: Treg cells role in bone homeostasis; 9: Dual role in antibody production and inflammatory
response of B cells. This figure was created with BioRender.com. IL: interleukin; Ig: immunoglobulin;
IFN: interferon; MMPs: matrix metalloproteinases; RANKL: receptor activator of nuclear factor
kappa-B ligand; TGF-β: transforming growth factor-beta; Th: T helper; TNF-α: tumor necrosis
factor-α. Lines with arrows represent stimulation, while dashed lines indicate inhibition.

However, virulence factors in the biofilm and prolonged inflammation can overcome
this well-designed defense system. Periodontal pathogens can hijack and manipulate the
host inflammatory response, causing the junctional epithelium to migrate and activate
collagen destruction, eventually forming the periodontal pocket [12]. Periodontal pocket
refers to a pathologically deepened gingival sulcus around a tooth at the gingival margin,
typically because of periodontal disease, allowing for bacterial accumulation and potential
damage to the surrounding structures [28]. Therefore, pathogens at the periodontal pocket
stimulate the secretion of proinflammatory cytokines as interleukin (IL)-1β, IL-6, IL-23,
tumor necrosis factor-alpha (TNF-α), chemokines and antimicrobial peptides by epithelial
cells, keratinocytes, fibroblasts, periodontal ligament stem cells (PLSCs), and dendritic cells
(DCs) (Figure 2, point 2) [2].

Overall, C-X-C motif chemokines (CXCs) tend to activate neutrophils. In contrast, C-C
motif chemokines (CCs) are more likely to attract monocytes/macrophages and lympho-
cytes involved in the polarization of macrophages from an M1 to an M2 phenotype during
the transition from acute to chronic inflammation [29]. More specifically, CCL2 and CCL3
are chemotactic for monocytes and lymphocytes; CCL4 is chemotactic for CD4+ T cells
and is regulated by activated, normal T cell expression and secreted (RANTES); moreover,
CCL5 attracts T helper (Th)1 cells, playing a significant role in immune cell migration to
sites of periodontal infection [30].

As a result of the growing cascade of proinflammatory cytokines and chemokines,
neutrophil cells constantly transmigrate through the junctional epithelium to the gingival
sulcus, releasing antimicrobial peptides against microbes and stimulating the adhesion and
spread of keratinocytes on the tooth surface (Figure 2, point 3) [31]. However, excessive
production and secretion of proinflammatory cytokines such as IL-1β, TNF-α, IL-6, and
IL-8 by neutrophils can result in the aggravation and expansion of inflammation, making
neutrophils fail to kill bacteria of such magnitude and chronic persistence [3,18]. At the
same time, this migration into inflamed tissues stimulates the chemotaxis of other non-
resident inflammatory cells (macrophages, lymphocytes, plasma cells, and mast cells) to
the site of infection.

Macrophages facilitate bacterial destruction by expressing proinflammatory cytokines
such as IL-6 and TNF-α, the secretion of metalloproteinases (MMPs), and collagenases
through classically activated M1 macrophages. Activated M2 macrophages secrete many
anti-inflammatory factors inhibiting inflammation and promoting tissue regeneration. The
ratio of M1/M2 in the gingival tissue and macrophage polarization may be closely related
to chronic periodontitis and influenced by microbial populations [31,32].

Mast cells migrate to the infection site and undergo explosive degranulation, releasing
their granules into the surrounding environment [33]. This process affects endothelial cells
and other cell types, causing the production of proinflammatory cytokines and chemokines
like TNF-α and RANTES/CCL5, granulocyte-macrophage colony-stimulating factor (GM-
CSF), nitric oxide (NO), acid phosphatases, or MMPs [34,35]. In addition, natural killer
(NK) cells also contribute to the pathogenesis of periodontitis by binding to oral pathogens
and activating the adaptive immune response [2].

Inflammatory mediators in periodontitis contribute to the degradation of the extra-
cellular matrix of the connective tissue. Proteolytic MMP enzymes and their endogenous
inhibitors, tissue inhibitors of metalloproteinases (TIMPs), are critical players in tissue
destruction. MMP-1, MMP-8, and MMP-13 are involved in alveolar bone destruction by de-
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grading type I collagen, while two gelatinases (MMP-2 and -9) accomplish the degradation
of denatured collagen. Furthermore, MMP-9 assists in osteoclast migration, while MMP-13
triggers osteoclast activation, facilitating type I collagen degradation [36,37].

This proteolytic response degrades 60–70% of the collagen in the gingival connective
tissue, although, gingival tissue repair prevents permanent damage. However, due to
host environmental factors, inflammation and tissue damage fail to resolve [38]. Damage
leads to pathogen invasion into epithelial tissues and the lamina propria, enhancing tissue
breakdown and irreversible periodontal ligament destruction and bone resorption [14,39].

2.2. Adaptative Response

The progression of inflammation and tissue destruction is orchestrated by adaptive
immune cells, activated by the innate immune response. DC cells within the epithelium
recognize microbial antigens through their toll-like receptors (TLRs) and bring them to the
lymphoid tissue for antigen presentation to T and B lymphocytes (Figure 2, point 4) [2].
This process involves the release of cytokines such as IL-1β, IL-6, IL-12, and various
chemokines [31].

T-helper cytokines are essential in periodontal pathogenesis and disease progression.
An intense T lymphocyte stage contributes to cellular immune responses by stimulating
various CD4+ Th-cell responses [40,41]. Th1 cells activate cellular immunity against intra-
cellular pathogens by proinflammatory cytokines, such as IL-1β, IL-12, IL-2, interferon
(IFN)-γ, and TNF-α, associated with periodontal tissue destruction (Figure 2, point 5). IL-17,
which is produced by Th17, is also a proinflammatory cytokine with a significant impact,
aggravating the inflammation of gingival tissue and the loss of alveolar bone, inducing
the expression of the receptor activator of the nuclear factor kappa-B ligand (RANKL),
prostaglandin E2 (PGE2), IL-1β, and TNF-α (Figure 2, point 6) [37].

Th2 cells, which produce cytokines like IL-4, IL-10, and IL-11, play a crucial role in
humoral immunity and anti-inflammatory properties, attenuating the destructive host re-
sponse mediated by mostly Th1 and Th17 (Figure 2, point 7) [38,40,41]. T lymphocytes CD8+

regulatory (Treg) cells also play a protective role in alveolar bone homeostasis by suppressing
osteoclastogenesis and modulating the innate immune response by attenuating T cells’ exces-
sive inflammation and proliferation (Figure 2, point 8) [2]. Understanding the mechanisms
under Th1, Th17, Th2, and Treg subpopulation regulation will improve host-modulatory
interventions to resolve inflammation and tissue destruction in periodontal disease.

In periodontitis, B cells, adaptive immune cells, produce antibodies and cytokines [31].
B cells transform into antibody-producing plasma cells that are abundant in inflammatory
infiltrates, producing antibodies that facilitate the elimination of bacteria and stop the
progression of the disease. The amount and avidity of these antibodies are essential in
protecting against periodontitis [3]. B cells can also play a role in immunoregulation and
inflammatory response, producing cytokines like TNF-α, IL-6, IL-10, and MMP, which
contribute to the degradation of periodontal tissue (Figure 2, point 9) [2].

2.3. Osteoimmunology

Periodontal inflammation disrupts the bone remodeling balance, causing the exagger-
ated activation of osteoclastogenesis and the destruction of alveolar bone, leading to tooth
loss [12]. A dynamic balance between bone formation and resorption is necessary for bone
remodeling, mediated by osteoblasts and osteoclasts (Figure 3, point 1) [42].

During periodontitis progression, osteoclastogenesis activation is enabled by the upreg-
ulation of the RANKL receptor (Figure 3, point 2). RANKL stimulates and maintains the
resorption activity of mature osteoclasts by binding its biologically active receptor RANK,
expressed on the membrane of osteoclast precursors and mature osteoclasts (Figure 3, point
3) [43,44]. However, a soluble decoy receptor for RANKL, osteoprotegerin (OPG), inhibits os-
teoclastogenesis (Figure 3, point 4) [43]. Inhibiting OPG expression allows RANKL to interact
with its receptor RANK to facilitate bone degradation and inhibit osteoblasts’ differentiation,
decreasing osteocalcin production and new bone formation (Figure 3, point 5) [2,45].
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Figure 3. Schematic overview of osteoimmunology in the progression of periodontitis. As a result of
amplified immune response and periodontal inflammation reaction, bone homeostasis is disrupted,
causing the exaggerated activation of osteoclastogenesis and the destruction of alveolar bone. Differ-
ent cytokines and chemokines are crucial in bone metabolism, signaling the trafficking of osteoblast
(responsible for bone resorption) and osteoclast (responsible for bone formation) precursors. Receptor
Activator of Nuclear Factor-kappa B (RANK), its ligand (RANKL), and osteoprotegerin (OPG) are the
key regulators involved in periodontitis bone resorption. 1: Bone homeostasis with a dynamic balance
between bone formation and resorption; 2: Upregulation of RANKL receptor as a consequence of
the exaggerated innate and adaptive immune response; 3: RANKL stimulates resorption activity
of mature osteoclasts by binding to RANK; 4: Liberation of the soluble decoy receptor for RANKL,
with OPG inhibiting osteoclastogenesis; 5: Increased RANKL liberation inhibited OPG expression,
allowing RANKL to interact with RANK; 6: Cascade of proinflammatory cytokines involved in
osteoclastogenesis; 7: Role of RANTES/CCL5 as an inflammatory factor essential for communication
between osteoclasts and osteoblasts; 8: Factors influencing periodontitis progression such as peri-
odontal pathogens, proinflammatory cytokines, growth factors, MMPs, and RANKL; 9: Role of bone
morphogenetic proteins (BMPs) as promoters of osteoblast differentiation, and they enhance bone
matrix synthesis and mineralization. This figure was created with BioRender.com. CCL: chemokine
(C-C motif) ligand; GMCSF: granulocyte-macrophage colony-stimulating factor; IL: interleukin; IGF:
insulin-like growth factor; MCSF: hematopoietic growth factor; MMPs: matrix metalloproteinases;
TGF-β: transforming growth factor-beta; TNF-α: tumor necrosis factor-α; TRAP: tartrate-resistant
acid phosphatase. Lines with arrows represent stimulation, while dashed lines indicate inhibition.

RANKL-dependent osteoclastogenesis may be initiated by contact with pathogenic
factors and interaction with TLR and maintained by an overactivated immune response,
infiltration of immune cells, and overproduction of proinflammatory cytokines. A cascade
of inflammatory proteins and enzymes is directly involved in periodontitis’ osteoclastoge-
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nesis, including proinflammatory cytokines such as IL-1β, IL-6, IL-11, IL-17, and TNF-α
(Figure 3, point 6) [40,43,44].

Chemokines are crucial in bone metabolism, signaling the trafficking of osteoblast and
osteoclast precursors [30,46]. They participate in normal bone turnover but may exacerbate
periodontal disease severity. Pathological increases in CCL4, RANTES/CCL5, or CCL7
release from activated osteoblasts may promote local bone resorption by stimulating chemo-
tactic recruitment and RANKL differentiation of pre-osteoclasts (Figure 3, point 7) [47].
RANTES/CCL5 is an inflammatory factor essential for communication between osteoclasts
and osteoblasts [48]. Inflammatory/osteoclastogenic cytokines, such as TNF-α and IL-1β,
can stimulate osteoclastic activity and elevate calcium levels in the bone. When exposed
to these signals, osteoblasts secrete RANTES, which act as a chemokine for preosteoclasts,
promoting their migration to the site of future bone resorption [46,48].

Bone loss associated with periodontitis may be the indirect result of the exacerbated
T-cell response and cellular interactions in the osteoimmune system, dependent on the balance
between positive and negative factors expressed by T cells. Periodontal disease progres-
sion results from a combination of factors, including periodontal pathogens, high levels of
proinflammatory cytokines, growth factors, MMPs, and RANKL (Figure 3, point 8).

A central role seems to be played by two cytokines in periodontitis: TNF-α and IL-1β.
Several cell types synthesize these two cytokines in periodontal tissue, stimulating the
release of numerous mediators, including IL-6, IL-8, MMPs, PGE2, and RANKL [40,42,49].
Bone morphogenetic proteins (BMPs) are a subgroup of transforming growth factor-beta
(TGF-β) known for their osteoinductive potential in bone remodeling [50,51]. They promote
osteoblast differentiation and enhance bone matrix synthesis and mineralization (Figure 3,
point 9) [52]. BMPs indirectly affect bone homeostasis and immune cell differentiation,
activation, and immunoregulatory function, highlighting their role in both anabolic and
catabolic aspects of bone remodeling [53].

Ultimately, periodontitis is a complex disease with a nonlinear pattern that affects
the immune system differently. Despite progress in understanding immune cell function,
much remains unknown about how cells interact regarding the pathogenesis of periodontal
disease. For future management of periodontal disease, it is necessary to identify the critical
interaction between these numerous factors involved in the inflammatory process and
periodontal tissue destruction for an integrated view of its pathogenesis [38].

3. Approaches in Periodontal Therapy
3.1. Strategies in Periodontal Treatment

The treatment for periodontitis involves eliminating infection, reducing inflammation,
and regenerating bone and soft tissue to anchor teeth. Different treatment approaches
are used to prevent and treat the disease with combined therapies, depending on the
stage of the disease (Figure 4) [54–57]. The first step is based on mechanical plaque
removal, and behavior change, scaling, and root planing are the gold standard (Figure 4,
step 1) [57]. Successful periodontal therapy involves the use of adjunctive treatments in
addition to mechanical interventions focused on reducing inflammation, inhibiting bacterial
growth, and promoting tissue repair (Figure 4, step 2). The last step in periodontal therapy
involves surgical interventions like guided tissue regeneration (GTR), which uses barrier
membranes and other biomaterials to guide new tissue growth. This treatment can enhance
angiogenesis promotion, alveolar bone regeneration, or cementum regeneration (Figure 4,
step 3) [19,58,59].



Life 2024, 14, 552 8 of 18

Life 2024, 14, x FOR PEER REVIEW 8 of 18 
 

 

addition to mechanical interventions focused on reducing inflammation, inhibiting bacte-
rial growth, and promoting tissue repair (Figure 4, step 2). The last step in periodontal 
therapy involves surgical interventions like guided tissue regeneration (GTR), which uses 
barrier membranes and other biomaterials to guide new tissue growth. This treatment can 
enhance angiogenesis promotion, alveolar bone regeneration, or cementum regeneration 
(Figure 4, step 3) [19,58,59].  

 

Figure 4. Illustration of the diverse periodontitis treatment approaches available, following gradu-
ated steps. The first-line approach in therapy is mechanical plaque removal (Step 1)—removing su-
pragingival dental biofilm—followed by adjunctive therapies. Adjunctive therapies may include an-
tibiotic and antiseptic drugs—by local or systemic release—or regenerative therapies targeting in-
flammation and regeneration of periodontal tissue lost (Step 2). In more advanced cases, periodontal 
surgical therapy may be necessary to restore gums and supporting tissues, helped by various bio-
materials applied in guided tissue regeneration (GTR) (Step 3). This figure was created with Bio-
Render.com. 

Adjunctive periodontitis therapy has evolved over time to immunoregulation thera-
pies, considering the role of inflammatory responses and immune dysregulation [31]. Var-
ious immunomodulators and host modulatory agents are being developed to improve 
treatment [60,61]. Regenerative therapies based on autologous platelet-rich fibrin (PRF) 
[62–64], concentrated growth factors (CGFs) [65,66], or enamel matrix derivatives (EMDs) 
[67] are used to accelerate healing and regenerate periodontal tissue. Non-steroidal anti-
inflammatory drugs (NSAIDs) [68], tetracycline [69,70], bisphosphonates, growth factors, 
and anti-inflammatory drugs, such as anti-cytokines targeting TNF-α, IL-1, IL-6, T and B 
cells, or TLR inhibitors [60,61], are also available but not practical for periodontal treat-
ment due to high costs and potential side effects [71].  

Therefore, it is crucial to develop effective treatment strategies that consider the fac-
tors contributing to the immunoinflammatory response in periodontal diseases and de-
velop potential drug targets based on the key molecules involved in periodontitis’ innate 

Figure 4. Illustration of the diverse periodontitis treatment approaches available, following graduated
steps. The first-line approach in therapy is mechanical plaque removal (Step 1)—removing supragin-
gival dental biofilm—followed by adjunctive therapies. Adjunctive therapies may include antibiotic
and antiseptic drugs—by local or systemic release—or regenerative therapies targeting inflammation
and regeneration of periodontal tissue lost (Step 2). In more advanced cases, periodontal surgical
therapy may be necessary to restore gums and supporting tissues, helped by various biomaterials
applied in guided tissue regeneration (GTR) (Step 3). This figure was created with BioRender.com.

Adjunctive periodontitis therapy has evolved over time to immunoregulation ther-
apies, considering the role of inflammatory responses and immune dysregulation [31].
Various immunomodulators and host modulatory agents are being developed to im-
prove treatment [60,61]. Regenerative therapies based on autologous platelet-rich fibrin
(PRF) [62–64], concentrated growth factors (CGFs) [65,66], or enamel matrix derivatives
(EMDs) [67] are used to accelerate healing and regenerate periodontal tissue. Non-steroidal
anti-inflammatory drugs (NSAIDs) [68], tetracycline [69,70], bisphosphonates, growth fac-
tors, and anti-inflammatory drugs, such as anti-cytokines targeting TNF-α, IL-1, IL-6, T
and B cells, or TLR inhibitors [60,61], are also available but not practical for periodontal
treatment due to high costs and potential side effects [71].

Therefore, it is crucial to develop effective treatment strategies that consider the
factors contributing to the immunoinflammatory response in periodontal diseases and
develop potential drug targets based on the key molecules involved in periodontitis’ innate
and adaptive immune systems. In addition, further research on immunoregulation in
periodontitis treatment is needed to address these issues and develop more effective and
safe treatments.

3.2. Micro-Immunotherapy Therapeutic Landscape and Its Potential in Periodontitis

Within the framework of adjuvant therapies in periodontitis, immunomodulatory
strategies offer a wide range of possibilities for periodontitis treatment. Immunomodulatory
strategies may be directed to explicitly targeting the elements that articulate the immune-
inflammatory response involved in the onset and progression of the disease.
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As aforementioned, there is an existing network of signaling molecules involved
in the activation and development of immune responses, and the crosstalk within this
network has an enormous impact on the regulation of cellular and tissue functions [72–74].
Moreover, signaling molecules play essential roles in cell–cell communication under both
physiological and pathological processes, and maintaining or recovering these signaling
molecules’ homeostatic equilibrium is fundamental to preventing and/or treating, for
example, inflammatory, allergic, and autoimmune diseases [75].

In this regard, the low/ultra-low dose-based approach of micro-immunotherapy (MI)
constitutes a high-potential approach within the framework of immunomodulation in
periodontitis. Micro-immunotherapy medicines (MIMs) mainly focus on maintaining
and restoring homeostasis using immune signaling molecules, such as cytokines, growth
factors, hormones, neurotransmitters, and/or nucleic acids, prepared in low doses (LDs)
or ultra-low doses (ULD) [76,77]. Within MIM, the quantity of these active ingredients,
expressed through centesimal Hahnemannian (CH) dilutions, directs biological responses
towards either activation or inhibition, contingent upon the CH range utilized [78]. One
of the particularities of this approach resides in lowering the concentration of these im-
mune messengers to overcome the main limitations linked to the traditional use of these
molecules [79–81]. MIM aims to maintain a therapeutic effect while improving treatment
tolerability and reducing side effects. MI formulations either encompass a sole active
substance or a distinctive combination of several ingredients in order to exert a multi-target
approach that aims to modulate multiple targets simultaneously [77]. MIMs are manufac-
tured in the form of homeopathic medicinal products consisting of sugar-based pillules
impregnated with the corresponding active substances and prepared according to a serial
dilution 1:100 process and a kinetic agitation–Serial Kinetic Process (SKP) [82]. They are
intended for oromucosal administration, to be administered in a sequential manner, in
sequences of five or ten different capsules (MIM-1 on Day 1, MIM-2 on Day 2, and so
forth), to provide a unique combination of active substances in chronological order [83–85].
Sublingually administered in the oral cavity, this therapy is interesting as an adjunct to
supportive periodontal therapy as well as a preventive treatment due to its proximity to
gingival tissues, which allows it to act both locally and systemically. The medication dosage
is determined by the patient’s condition’s characteristics and severity, which are evaluated
by the physician and influence the type and dosage prescribed.

This therapeutic approach is based on initiating and/or regulating immunoregulatory
responses [86]. Some studies have proposed that even in low-dose preparations, active
ingredients could act by activating cellular or plasmatic receptors [81]. This is achieved
through cascades of amplification mechanisms, with few molecules per cell needed [87,88].
Many biological systems are sensitive to ultra-low ligand concentrations, including immune
responses, hormonal functions, enzyme activities, and cyclic adenosine monophosphate
(cAMP) production [89–92]. Some studies suggest that the mechanism of action of these
LDs of signaling molecules is related to the phenomenon of hormesis, an adaptive response
characterized by an inverse J-shaped dose–response curve [77,93–96]. Examples of cellu-
lar signaling molecules displaying a hormetic response include growth factor signaling
pathways or cytokines like TNF or IL-6 [97,98].

Several studies show encouraging results of the efficacy of low-dose medicine employ-
ing signaling molecules, such as cytokines at low doses in inflammatory diseases. Similar
to MI, it employs low doses of signaling molecules such as interleukins. For instance,
LD IL-10 and anti-IL1-α antibodies demonstrate promise in colitis [99] and osteoarthritis
models [100], while a combination of IL-4, IL-10, and anti-IL1-α antibodies outperforms
DMARDs in rheumatoid arthritis [101]. LD progesterone and IL-10 also exhibit potential in
endometriosis treatment, suggesting advancements in targeted immunomodulation [102].
This therapy, referred to as Low Dose Medicine (LDM), originates from the concept of
psycho-neuro-endocrine-immunology, consisting of the existing crosstalk between the
immune system and the psycho-neuro-endocrine systems [74].
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Regarding the pleiotropic effects of the cytokines and their implication in a broad
spectrum of chronic systemic immune-mediated diseases, MI could be used in various
disorders, neurological disorders [78,103], infectious diseases [21,104], disorders of the
bones and joints [77,105], autoimmune diseases [76], allergies [106], and as a complementary
treatment for oncology [83].

In recent years, there has also been a notable increase in the number of studies and
scientific articles dedicated to MIM. This growing attention is reflected in the research
delving into both the mode of action and the effectiveness of MIM as an immunoregulatory
treatment, either conducted in vitro or in vivo, and referring to unitary medicines with sole
active ingredients [78,88,107–109] or complex MI formulations [21,76–78,82,83,85,103–106].
Particularly noteworthy are investigations that delve into the study of MIM applied in the
field of inflammatory diseases [77,82,105,106].

An example of MIM application in treating inflammatory diseases is the sequential
medicine 2LARTH®. This medication, containing ultra-low doses (ULDs) of cytokines
TNF-α, IL-1β, and IL-2 along with other immune factors, has already demonstrated anti-
inflammatory effects in vitro, in human peripheral enriched monocytes, by reducing the
levels of proinflammatory cytokines such as TNF-α, IL1-β, and IL-6 in a recent publication
of 2018 [82]. In a collagen-induced arthritis (CIA) murine model of rheumatoid arthritis
(RA), this medicine also exhibited a reduction in arthritis clinical signs and decreased
systemic TNF-α levels [105]. The strategy and therapeutic targets of 2LARTH® in RA
pathogenesis have been equally recently reviewed [77]. In parallel with this, another
in vitro study also showed the anti-inflammatory effects of TNF-α and IL-1β prepared at
ULDs in reducing TNF-α secretion in human primary monocytes and THP-1 cells [88].

Hence, considering that, on one hand, the results of various MIMs in several therapeutic
fields, particularly in inflammation control [77,106] and in modulating immune cell func-
tion [104,107], are crucial dysregulated aspects in periodontitis, and that, on the other hand,
current treatments or preventive solutions for periodontitis are scarce and still limited due to
the side effects and routes of administration of existing therapies [60,61,70,71], the use of MIM
treatments emerges as a highly interesting therapeutic strategy for periodontitis treatment.

Thus, in the context of periodontitis, several studies with MIM have been set to
explore the impact of various proteins, such as BMPs in LDs and ULDs, either in the form
of single MIM formulations or a combination of immune mediators [84,108]. From their
characteristics, these treatments may have the potential to explicitly target the elements that
articulate the immune-inflammatory response involved in disease onset and progression,
but not exclusively, as they might conceivably be useful in promoting the regeneration of
soft tissues, as tissue loss is distinctive of periodontitis progression.

The first study published in the Journal of Periodontology in 2021 was set to evaluate
the beneficial effect of BMPs in LDs for periodontal regeneration and repair [108]. In this
research, a MIM consisting of BMP4 in LD presented anti-inflammatory properties when used
in human gingival fibroblasts (hGFs) in culture. The study also highlighted the impact of the
medicine on collagen metabolism in the same cell. In addition, within a more complex 3D
model, LD BMP4 recovered tissue viability under inflammatory conditions, thus concluding a
potential long-term effect of the MIMs promising approach for treating periodontitis.

In line with this study, the effect of a more complex formula with a specific combination
of immune mediators was also evaluated [84]. In hGF culture, anti-inflammatory properties
and positive impacts on collagen metabolism were also confirmed and, in the 3D model of
oral mucosa, this sequential complex formula increased collagen content. Such elevation in
collagen levels could be beneficial as it promotes the regeneration of gingival tissue and
restoration of periodontal health, thereby enhancing the function and stability of the affected
teeth. The active substances of this sequential complex formula share the presence of LD
BMP-2 and BMP-4 among other substances such as the cytokines IL-1β, IL-6, and TNF-α
in ULD or TGF-β in LD. These results manifest the opportunity of combining different
active ingredients with different specific potential targets, each related to periodontitis
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immunopathology, like substances that can help decrease and resolve inflammation or
substances acting on the extracellular matrix.

Therefore, these results demonstrate anti-inflammatory and regenerative properties in
two in vitro soft-tissue models of periodontitis. As mentioned, sustained inflammation in
the gingival tissues results in collagen degradation, contributing to the loss of structural
and functional support for the teeth. In this regard, MIM based on BMPs and cytokines
at LD and ULD has demonstrated anti-inflammatory properties that could modulate the
proteolytic response of the collagen and may benefit soft tissue healing. Nevertheless, the
specific mechanism of action for this MIM still needs to be thoroughly evaluated.

In practical terms, combining available strategies, such as mechanical or surgical
treatments, with the MI approach could be an effective and comprehensive strategy to
address the complexity of periodontitis. The synergy between treatments may maximize
benefits for the regeneration of affected tissues. However, it is crucial to conduct additional
studies that explore the efficacy of this combined approach.

Lastly, it should be mentioned that another cytokine involved in periodontitis im-
munopathology is RANTES/CCL5. This cytokine is responsible for regulating the migra-
tion and activation of various immune cells, including T cells, monocytes, and dendritic
cells, within inflamed tissues [110,111]. Under these considerations, a MIM consisting of
ULD of RANTES may have the potential to modulate chemokines overexpression, as well as
be involved in bone resorption and the overproduction of proinflammatory cytokines [109].

A preliminary follow-up study treated patients suffering from systemic immune-
mediated diseases (SIDs) who underwent dental surgery for fatty-degenerative osteolysis
jawbone (FDOJ) cavitations with unitary ULD RANTES MIM treatments. These patients
showed altered CCL5 levels, implicated in forming inflammatory infiltrates [112]. Although
a larger cohort of patients and placebo controls are still necessary, this study showed a
reduction in RANTES levels for the patients treated with MIM [109]. For a more thor-
ough understanding of ULD RANTES MIM’s specific interaction in periodontitis, further
comprehensive testing is needed.

As a summary, Figure 5 schematically and graphically presents various immunomodu-
lators employed in MIM, both in LD and/or ULD, that have been studied for the treatment
of periodontitis. These active substances have been investigated both individually and/or
as integral components of more complex formulations, exploring their potential role in the
immunoregulation of this condition.

The studies shared in this review demonstrate promising results, especially consid-
ering that periodontitis is intricately linked to immunopathology. These findings suggest
that immunomodulatory interventions hold significant promise in the management of peri-
odontitis, potentially offering novel therapeutic avenues for addressing the immunological
aspects of this condition.
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immunopathology periodontitis. Representation of the immunopathological processes underlying
periodontitis and the potential of micro-immunotherapy medicines (MIMs) in areas that could
intervene as an adjunct and novel therapeutic approach for treating periodontitis. Red arrows could
minimize the cascade of proinflammatory cytokines involved in the progression of periodontitis.
Green arrows could stimulate the regenerative and osteoinductive potential of immunoregulators.
This figure was created with BioRender.com. BMP: bone morphogenetic protein; CCL: chemokine
(C-C motif) ligand; GMCSF: granulocyte-macrophage colony-stimulating factor; IGF: insulin-like
growth factor; IL: interleukin; IFN-γ: interferon gamma; MCSF: hematopoietic growth factor; PGE2:
prostaglandin E2; RANK: receptor activator of nuclear factor kappa-B; RANKL: receptor activator
of nuclear factor kappa-B ligand; TGF-β: transforming growth factor-beta; Th: T helper; TIMP-1:
tissue inhibitor of metalloproteinases-1; TNF-α: tumor necrosis factor-α; TRAP: Translating Ribosome
Affinity Purification; RANTES: regulated on activation, normal T cell expressed and secreted. Lines
with arrows and green lines represent stimulation, while dashed lines and red lines indicate inhibition.

4. Conclusions and Future Directions

This review focuses on the main etiopathogenetic mechanisms involved in periodonti-
tis and on the currently available and developing therapeutic solutions for those patients
suffering from this gingival inflammatory-mediated disease. The second part of the review
discusses more deeply the potential of MI as a valuable therapeutic solution for periodon-
tal health management. As highlighted, MI emerges as a versatile and promising field
with implications for diverse health conditions. A wide range of preclinical and clinical
studies are presented to demonstrate the effectiveness of immunotherapy in LD, suggest-
ing a multifaceted role for MI. Studies concerning the potential of MI in the context of
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inflammatory-related diseases, allergy inflammation diseases, immune cell modulation,
viral infections, and dermatological conditions are presented.

Now, the current evidence on MI allows us to explore its potential in the context of
periodontitis as a tool to target those pathways involved in the progression of the disease
(Figure 5). Immune mediators used in LD or ULD like IL-1β, TNF-α, IL-6, or chemokines
RANTES/CCL5 are implicated in the activation of neutrophil migration and stimulation of
non-resident inflammatory cells, responsible for the growing cascade of proinflammatory
cytokines leading to tissue destruction. On the other hand, the employment of LD and/or
ULD of cytokines such as IL-4, IL-12, and interferon-gamma (INF-γ), which presented
T-cell stimulatory capacity and the modulation of T-cell subpopulations, could also be
suitable therapeutic targets related to the adaptive response involved in the progression
of periodontitis. In relation to the process of bone remodeling, several cytokines, such as
BMPs, RANTES, IL-1β, IL-6, IL-11, or TNF-α, are employed at LD or ULD in MI formulas;
thus, they can offer therapeutic benefits in balancing the process during periodontitis
progression towards optimal bone regeneration and tissue repair.

Finally, collagen metabolism also plays an important role in the maintenance of
the extracellular matrix to prevent damage to gingiva connective tissue. Therefore, it
is important to highlight the studies with LD immune mediators that have shown the
prevention of collagen destruction and improved tissue viability. At the same time, these LD
and ULD-based treatments also demonstrate anti-inflammatory properties that contribute
to the prevention of tissue damage. These studies are the first one that relates the use of LD
immune mediators and the treatment of periodontitis.

While our study offers valuable insights into the potential of MI in managing peri-
odontitis, it is important to recognize certain limitations inherent in the current body of
clinical evidence and follow-up procedures. The review draws upon available clinical trials
and studies on MI; however, the relatively limited number of these resources could suggest
areas for further exploration and research. Furthermore, the relatively short follow-up
duration in some studies presents an opportunity for future investigations to delve deeper
into the long-term effects and sustainability of MI in periodontitis management.

Therefore, although it is necessary to fully understand LD immunomodulatory and
immunostimulant capacity in the context of periodontal disease with further research, the
incorporation of LD immunotherapy as an adjunct to periodontal therapy introduces a
novel approach to addressing periodontitis. In conclusion, MI emerges as a versatile and
promising field with implications for diverse health conditions. The findings presented
in this exploration offer valuable insights into the potential applications of MI in the
periodontal disease context. As the field advances, continued research in preclinical and
clinical trials is imperative to solidify the evidence base, ensuring the safe and effective
integration of MI into clinical practice.
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