Next Issue
Volume 2, December
Previous Issue
Volume 2, June
 
 

Life, Volume 2, Issue 3 (September 2012) – 3 articles , Pages 229-273

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
597 KiB  
Article
Venus-Earth-Mars: Comparative Climatology and the Search for Life in the Solar System
by Roger D. Launius
Life 2012, 2(3), 255-273; https://doi.org/10.3390/life2030255 - 19 Sep 2012
Cited by 4 | Viewed by 12989
Abstract
Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans—all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from [...] Read more.
Both Venus and Mars have captured the human imagination during the twentieth century as possible abodes of life. Venus had long enchanted humans—all the more so after astronomers realized it was shrouded in a mysterious cloak of clouds permanently hiding the surface from view. It was also the closest planet to Earth, with nearly the same size and surface gravity. These attributes brought myriad speculations about the nature of Venus, its climate, and the possibility of life existing there in some form. Mars also harbored interest as a place where life had or might still exist. Seasonal changes on Mars were interpreted as due to the possible spread and retreat of ice caps and lichen-like vegetation. A core element of this belief rested with the climatology of these two planets, as observed by astronomers, but these ideas were significantly altered, if not dashed during the space age. Missions to Venus and Mars revealed strikingly different worlds. The high temperatures and pressures found on Venus supported a “runaway greenhouse theory,” and Mars harbored an apparently lifeless landscape similar to the surface of the Moon. While hopes for Venus as an abode of life ended, the search for evidence of past life on Mars, possibly microbial, remains a central theme in space exploration. This survey explores the evolution of thinking about the climates of Venus and Mars as life-support systems, in comparison to Earth. Full article
Show Figures

Figure 1

288 KiB  
Concept Paper
“In Space” or “As Space”?: A New Model
by Charles H. Smith and Megan Derr
Life 2012, 2(3), 243-254; https://doi.org/10.3390/life2030243 - 31 Aug 2012
Cited by 4 | Viewed by 7011
Abstract
In this analysis natural systems are posed to subsystemize in a manner facilitating both structured information/energy sharing and an entropy maximization process projecting a three-dimensional, spatial, outcome. Numerical simulations were first carried out to determine whether n × n input-output matrices could, once [...] Read more.
In this analysis natural systems are posed to subsystemize in a manner facilitating both structured information/energy sharing and an entropy maximization process projecting a three-dimensional, spatial, outcome. Numerical simulations were first carried out to determine whether n × n input-output matrices could, once entropy-maximized, project a three-dimensional Euclidean metric. Only 4 × 4 matrices could; a small proportion passed the test. Larger proportions passed when grouped random patterns on and within two- and three-dimensional forms were tested. Topographical patterns within 31 stream basin systems in the state of Kentucky, USA, were then similarly investigated, anticipating that the spatial configuration of elevations within each basin would provide evidence of evolutionary control when interpreted as internal group relations. Twenty-eight of thirty-one of the systems pass the test unambiguously, with the remaining three approaching or reaching passage when sampling density is increased. Two measures of subsystem-level redundancies are also introduced; these show: (1) surprisingly, minimized internal redundancy levels at the four subsystems level of analysis of the stream systems (as opposed to the five or six, in contrast with the simulations), and (2) much lower average levels than those obtained in the simulations at the same dimensions, both suggesting a preferred evolutionary path under real world conditions. Full article
(This article belongs to the Special Issue Feature Paper)
Show Figures

Figure 1

158 KiB  
Review
Survival of the Fittest: Overcoming Oxidative Stress at the Extremes of Acid, Heat and Metal
by Yukari Maezato and Paul Blum
Life 2012, 2(3), 229-242; https://doi.org/10.3390/life2030229 - 23 Aug 2012
Cited by 12 | Viewed by 7422
Abstract
The habitat of metal respiring acidothermophilic lithoautotrophs is perhaps the most oxidizing environment yet identified. Geothermal heat, sulfuric acid and transition metals contribute both individually and synergistically under aerobic conditions to create this niche. Sulfuric acid and metals originating from sulfidic ores catalyze [...] Read more.
The habitat of metal respiring acidothermophilic lithoautotrophs is perhaps the most oxidizing environment yet identified. Geothermal heat, sulfuric acid and transition metals contribute both individually and synergistically under aerobic conditions to create this niche. Sulfuric acid and metals originating from sulfidic ores catalyze oxidative reactions attacking microbial cell surfaces including lipids, proteins and glycosyl groups. Sulfuric acid also promotes hydrocarbon dehydration contributing to the formation of black “burnt” carbon. Oxidative reactions leading to abstraction of electrons is further impacted by heat through an increase in the proportion of reactant molecules with sufficient energy to react. Collectively these factors and particularly those related to metals must be overcome by thermoacidophilic lithoautotrophs in order for them to survive and proliferate. The necessary mechanisms to achieve this goal are largely unknown however mechanistics insights have been gained through genomic studies. This review focuses on the specific role of metals in this extreme environment with an emphasis on resistance mechanisms in Archaea. Full article
(This article belongs to the Special Issue Extremophiles and Extreme Environments)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop