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Abstract: A necessary, but not sufficient, mathematical condition for the coexistence of
short replicating species is presented here. The mathematical condition is obtained for a
prebiotic environment, simulated as a fed-batch reactor, which combines monomer recycling,
variable reaction order and a fixed monomer inlet flow with two replicator types and two
monomer types. An extensive exploration of the parameter space in the model validates the
robustness and efficiency of the mathematical condition, with nearly 1.7% of parameter sets
meeting the condition and half of those exhibiting sustained coexistence. The results show
that it is possible to generate a condition of coexistence, where two replicators sustain a linear
growth simultaneously for a wide variety of chemistries, under an appropriate environment.
The presence of multiple monomer types is critical to sustaining the coexistence of multiple
replicator types.
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1. Introduction

Many models of early life demonstrate competition among chemical species, which leads to processes
of natural selection and, eventually, to a decrease in the chemical diversity [1,2]. However, sustaining
a rich and diverse chemical environment may have been necessary to develop complex biological
functions. Here, an early stage in evolution is considered, prior to the emergence of any function, focused
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on the balance between natural selection via replication efficiency and the possibility of a sustained
diversity of the chemical inventory. In this context, a space of chemical and environmental parameters
is defined, where different types of autocatalytic replicators can coexist simultaneously over long
periods of time.

Much of the literature on replicator dynamic modeling has focused on the case where monomer
resources are lost when a replicator decomposes [1,3,4]. However, due to limited monomer resources
in the environment, monomer recycling may have been important or even necessary for evolution,
by reusing the monomer released after replicator decomposition [5–8]. Modern biopolymers require
enzymes to catalyze their ligation and strand separation. In the absence of such enzymes, a possible
prebiotic scenario is that of non-enzymatic replication of alternative chemistries with less stable
backbones [9–12]. In this case, replicator degradation would be higher, so recycling would be even
more important.

The species considered in this study are short biopolymers, of order 10–100 monomers—large
enough to store significant information and possess potential for catalytic function, but limited in
size by the instability of their associations. Such macromolecules or assemblies are not expected
to follow kinetics based on elementary reaction orders, but rather, may possess observed non-integer
reaction orders dependent upon nucleation kinetics and conformation [13–15]. Many replicator dynamic
models assume elementary reaction kinetics [3,16], in which all replicators have the same elementary
reaction orders, such that only the rate constants are important for characterizing the replicator kinetics.
Non-integer reaction orders on the replicator concentration have been included in a limited number of
replicator dynamic models [4,17], but only for the replicator concentration, not monomer concentration.
A unique feature of the model proposed here is the variable, non-integer reaction order on the monomer
building materials, representing the dynamic coupling between replicator and monomer concentrations.
The replicators do not interact directly with each other through cross-catalysis, only indirectly through
the monomer concentrations. This coupling to the environment via the time-varying building material
concentration defines a scenario in which no single replicator always has the highest replication rate.
Thus, the most fit replicator is context-dependent.

The coupling to the environment is defined via a fixed inlet flow rate of building materials into the
system, different from many closed-mass models [5,8] in prebiotic chemistry. Fixed inlet flow rates have
been previously considered in replicator modeling [4,16,18]. Scheuring and Szathmary [19] investigated
the case where fixed flow rates are combined with a monomer recycling dynamic via the replicator
decomposition. This coupling between the replicator and monomer dynamics creates a more complex
scenario, which may or may not sustain the coexistence of multiple replicators. A third alternative for
modeling the environmental coupling is to assume a fixed monomer composition [1]. By definition, there
are no monomer dynamics in this case, simplifying the analysis.

The combination of these three key effects—recycling, variable reaction order, and fixed monomer
inlet flow—creates a dynamic scenario similar to a continuous stirred tank bioreactor with immobilized
enzymes [20]. When a necessary resource is limiting, a linear growth regime is possible, in which
growth is limited by the inlet flow rate of that resource [21]. For selection and evolution to be
possible, coexistence should not be a transient phenomenon, but rather, the chemical and environmental
conditions must sustain multiple replicators over long periods of time. This concept is used here to
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define coexistence as a scenario in which multiple replicators can grow with linear profiles over long
periods of time. This definition of coexistence for autocatalytic replicators contrasts other biological
models, like the Lotka-Volterra model, to explain mutualism [22] (i.e., predator-prey model), where
the explicit interaction between the species lead to a coexistence scenario with oscillatory populations.
More recent work in ecological models has focused in competitive scenarios for coexistence between
multiple predators and a single prey specie [23–25], analyzing the potential equilibria between multiple
oscillatory behaviors. However, these models do not contain some of the monomer recycling features
from replicator decomposition that are explored in prebiotic scenarios.

Of course, the environment would not be expected to be constant over long periods of time,
and modeling work has also considered the case of randomly fluctuating conditions [6] and direct
perturbations to the replicator population [16]. In fact, random environments might promote coexistence,
since each replicator type might be the most fit at a distinct sampled condition. However, in this
paper, a more stringent scenario for coexistence is considered, in which the environmental conditions
are constant.

Analysis of the reaction model for the two-replicator, two-monomer case provides a criterion for
coexistence, according to the linear growth definition. From the chemical parameters and the inlet
conditions, one can compute whether or not the linear growth solution is feasible. A search through many
parameter sets supports the case that this criterion is, in fact, necessary for coexistence. Furthermore,
about half of the scenarios satisfying this condition do, in fact, exhibit coexistence in simulation. Those
that do not may be rationalized in terms of the stability of the linear growth solution. This criterion for
coexistence provides a design tool to guide experimental studies. It also illustrates that most of these
multi-dimensional parameter sets will not lead to coexistence. However, the set of parameters enabling
coexistence is still infinite and could be discovered by a complex prebiotic soup.

2. Background

2.1. Mathematical Model of a Fed-Batch Bioreactor

The mathematical model of a prebiotic system includes the molar concentrations of two types of
chemical species: n replicator units, (xi, i = 1, . . . , n), which grow in an autocatalytic manner, and
λ monomers (mj, j = 1, . . . , λ), which serve as building materials for the replicators. Figure 1 shows
a simple schematic of the chemical system where these species coexist. The small monomer building
material flows in and out of the system, at volumetric flow rate, F , while the larger replicating units
accumulate inside the constant volume, V , similar to the cells in a well-mixed fed-batch bioreactor [20].
Previous studies in prebiotic chemistry argue that surface confinement and limited diffusion of the
replicators may have been necessary for the replication process, in particular, for template-directed
synthesis [26,27], supporting the assumption that replicators are retained in the system. The equations
to describe the molar concentrations of these species are:

dxi
dt

=

(
kr,i

λ∏
j=1

m
αij
j − kd,i

)
xi, i = 1, . . . , n (1)
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dmj

dt
=
Fmin,j

V
− Fmj

V
−

n∑
i=1

[(
kr,i

λ∏
j=1

m
αij
j − kd,i

)
xiLij

]
, j = 1, . . . , λ (2)

Figure 1. Schematic of the fed-batch system. Monomers mj flow in and out of the reactor
at a volumetric flow rate, F . Monomers are used as building blocks by the replicators, xi, to
grow in an autocatalytic process. The replicators accumulate inside the reactor volume, and
they are not present in the outlet flow.

In Equations (1) and (2), the composition of the replicator units is represented by the parameters, Lij .
For the purposes of this work, two different replicator types, (x1, x2, i = [1, 2]), and two different
monomer types, (ma,mb, j = [a, b]), are included. Each of the replicator units has a composition of
20 building units, such that Lia+Lib = 20. Only the composition of each replicator is directly tracked in
the model. The exact sequence is not directly modeled, although the impact of sequence on the kinetics
could be modeled via the unique kinetic parameters for each replicator type.

In Equation (1), the formation of a new replicator unit, xi, is represented by the constant, kr,i, whereas
the dissociation of a replicator unit into free monomers is controlled by the constant, kd,i. The replicators
do not interact directly, as reflected by the first-order reaction on xi, as well as the lack of xj terms in
Equation (1). The autocatalytic replication rate of a replicator unit depends not only on the magnitude
of kr,i, but also on its own concentration xi and the monomer concentrations, mj , inside the reactor.
In simple reactions, the reaction orders are integer values associated with the stoichiometry coefficients
of the corresponding reaction. This is referred to as an elementary reaction. If the mechanism of
replication for replicator R1 is described by an elementary reaction, according to L1aA+L1bB +R1 →
2R1, then the monomer reaction orders in the reaction rate are α1a = L1a and α1b = L1b. Alternatively,
Equations (1) and (2) employ an observed reaction order [20,28], where the reaction orders can be
non-integer values associated with more complex reaction mechanisms than an elementary reaction. In
practice, the values of αij may be obtained from parameter fits to experimental data (an example of
such mechanism is a rate-limiting step, such a nucleation of a stable core, followed by rapid growth
of the final structure) that lead to such non-integer values. This type of implementation is not new to
the area of prebiotic chemistry. Parabolic replicators [29,30] use a power-law reaction rate, r = kx

1/2
i ,

to represent the growth rate of replicating templates. In our work, the replication rate expression is
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an overall representation of the replication process without assuming a particular mechanism for how
it happens. Evaluating reaction orders of the monomer concentrations in the replicator kinetics is a
departure from the more common analysis of the order of the replicator concentration [4,17,29,30]. For
example, a replicator could have a low sensitivity to changes in the monomer concentration of the system,
and this would be modeled with a low monomer reaction order.

Decomposition of a replicator unit, xi, limits population growth, which could be hydrolysis in a
condensation reaction. This step defines the monomer recycling of the building blocks back to the
available pool of monomer in the system. As shown in Equations (1) and (2), the decomposition
reaction depends only on the concentration of the replicator, xi, neglecting any interaction effects with
other replicators or monomers. The individual n replicators in the model are coupled via sharing of
available building material, described by Equation (2). Thus, they may compete for the limited amount
of monomer that is supplied to the system, or they may even cooperate to best distribute and utilize the
limited building material among the various species.

Equation (2) describes the concentration dynamics of the monomers inside the system. This equation
also represents the dynamic coupling between different replicator units in the model. The monomers flow
in and out of the system at a flow rate, F , at the same time that they are consumed and released from
the replication/dissociation process of the n replicator units. One of the unique features of this model
for origins of life chemistry is that one can explicitly consider environmental dynamics in prebiotic
conditions (i.e., starvation periods or random fluctuations of monomers in the system) using the inlet
flow rate, F , and inlet monomer concentrations, min,j . Changing the values of these parameters during
a simulation allows one to modify the net growth rate of each of the species inside the reactor,and to
explore the potential effects of these environmental conditions in the growth of replicators in the reactor.

The mathematical description in Equations (1) and (2) also resembles the definitions of vesicle-like
compartments or “protocells” [18,31,32], in which the replicators undergo an autocatalytic process in
a confined volume. Although both are open systems (i.e., considering inlets and outlet streams of
monomers) coupled to the surroundings, the model here is macroscopic, so stochastic effects due to
low replicator concentrations are neglected [18].

2.2. A Mathematical Condition for Sustained Diversity

As mentioned in the introduction, the definition of coexistence posed here is that multiple
autocatalytic replicators sustain linear growth rates simultaneously, despite sharing common resources.
Here, a mathematical description of this coexistence scenario is provided, based on the kinetic,
composition and environmental parameters in Equations (1) and (2). In the particular case of the
chemical system described by Equation (1), with n = 2 replicators, x1, x2 and λ = 2, and monomers,
ma,mb, the replicator growth rate is written as:

dx1
dt

= (kr,1m
α1a
a mα1b

b − kd,1)x1 (3)

dx2
dt

= (kr,2m
α2a
a mα2b

b − kd,2)x2 (4)
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According to the proposed linear behavior, one may express the replicator concentration profiles as
x1 = c1t and x2 = c2t, where c1 and c2 represent the constant growth rates of each replicator. The value
of the initial concentration of the replicators inside the system (which would correspond to the intercept
of these lines) is neglected, relative to the long-term replicator populations. Using these proposed linear
replicator profiles, and noticing that dx1

dt
= c1, dx2

dt
= c2, Equations (3) and (4) may be rearranged to

solve for the monomer concentrations:

mα1a
a mα1b

b =

[
1

t
+ kd,1

]
1

kr,1
(5)

mα2a
a mα2b

b =

[
1

t
+ kd,2

]
1

kr,2
(6)

Since the idea is to evaluate the sustained diversity of the replicators over long periods of time, one
can assume that t � 1

kd,i
. Using this assumption, Equations (5) and (6) become a nonlinear system of

equations for the monomer concentrations, ma and mb, that enables the simultaneous linear growth of
both replicators when c1 and c2 are positive. Notice then that the values of the monomer concentrations
depend on the kinetic parameters of the replicators, but not on the composition of either replicator or
on the environmental parameters. The solution of the nonlinear system of equations in Equations (5)
and (6) is:

ma =

[(
kd,2
kr,2

) 1
α2b

(
kr,1
kd,1

) 1
α1b

]γ1
(7)

γ1 =
α1bα2b

α2aα1b − α1aα2b

mb =

[(
kr,2
kd,2

) 1
α2a

(
kd,1
kr,1

) 1
α1a

]γ2
(8)

γ2 =
α1aα2a

α2aα1b − α1aα2b

These long-term monomer concentrations do not depend on variables that change over time.
Equations (7) and (8) suggest that for a linear replicator growth, it is necessary that the monomer
concentrations inside the fed-batch reactor reach a steady-state. The steady-state solution of the
monomer concentration, ma and mb, can be derived by writing dmj

dt
= 0 on the left-hand side of

Equation (2). In addition, the right-hand side of this equation may be expressed in terms of the replicator
growth rates, c1, c2, in order to construct a system of linear algebraic equations to solve for these unknown
replicator growth rates. The steady-state equations for ma and mb, according to Equation (2), are:

Fmin,a

V
− Fma

V
= L1ac1 + L2ac2 (9)

Fmin,b

V
− Fmb

V
= L1bc1 + L2bc2 (10)

Equations (9) and (10) explain the rationale behind the assumption of a linear behavior for
the replicators. At the beginning of the replication process, the replicators exhibit an exponential
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concentration profile, due to the initial concentration of monomers in the bioreactor and the addition
of monomers in the system via the inlet flow Fmin,j

V
. This means that the replicator growth rates, c1, c2,

are positive and increase rapidly. During the simulation, the monomer concentration decreases, due to
the consumption by the replicators and the external outlet flow, Fmj

V
, which allows some food resources

to leave the system. At the same time, the replicator growth rates reach a maximum value and, then,
slowly decrease their value, but they continue to be positive, which means replicators are continuously
being formed inside the bioreactor at a lower rate. Finally, the material balance in Equation (2) starts to
reach a steady-state value as the replicator growth rates become equal to the rate of food supply to the
bioreactor in Equations (9) and (10). The value of this steady-state for the monomer concentration is
provided in Equations (7) and (8). In other words, the monomers A and B are the limiting reactants of
the reactions, and the replication process cannot grow faster than the constant monomer supply rate.

Given the kinetic parameters of the autocatalytic replicators and the composition parameters, L1a,
L1b, L2a, L2b, one may evaluate if the two replicators will exhibit the coexistence linear behavior. If
the replicator growth rates, c1 and c2, in Equations (9) and (10) are both positive, sustained coexistence
may be possible, according to the linear growth definition proposed here. Equations (9) and (10) also
incorporate elements from the environment via the inlet flow rate, F , and monomer concentrations,
min,a,min,b, highlighting the importance of including the environment in the modeling of coexistence.

3. Analysis

Coexistence of distinct species provides a mechanism to increase chemical diversity on the prebiotic
Earth, allowing new species generated through mutation or spontaneous generation to take hold in
the population. The model is used here to identify parameter sets that exhibit coexistence. Once the
parameter sets are identified, suitable chemistries and environments can then be selected or designed.

The analysis is performed for a simple, but illustrative, case, with n = 2 replicator types and λ = 2

monomer types. Each replicator type is formed by 20 monomers. Given these four different chemical
species, the parameter space of the model contains eight kinetic parameters (kr,1, kr,2, kd,1, kd,2, α1a, α1b,
α2a, α2b) and two composition parameters (L1a, L2a). The exploration of the parameter space is made in
two parts; first, a random sample selection is generated, having 10,000 different kinetic parameter sets
using a statistical Latin Hypercube approach [33] with the following upper and lower bounds.

1× 10−4 ≤ kr,i, kd,i ≤ 1× 103 i = 1, . . . , n (11)

0.1 ≤ αj,i ≤ 3 i = 1, . . . , n j = 1, . . . , λ (12)

Then, for each of the 10,000 kinetic parameter sets that have been generated, the ordinary differential
equations (ODE) in Equations (1) and (2) are simulated using multiple combinations of the composition
parameters, Lij . The equations are solved in MATLAB v.R2012a, using solver ode15s, due to the several
orders of magnitude in the evaluated replication and dissociation rate constants that causes stiffness
in the ODEs. The evaluation of Lij is constrained by forcing both replicator types to have at least
one building unit of each monomer type. Therefore, since both replicators have a length of 20 units,
361 (19 × 19) possible combinations of the composition parameters are evaluated for each kinetic
parameter set. Table 1 presents a summary of all nominal conditions for each of these simulations.
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Table 1. Summary of nominal values for the mathematical model in Equations (1) and (2),
n = 2, λ = 2.

Variable Description Units Value

x0,1 Initial concentration, x1 mol/m3 0.1
x0,2 Initial concentration, x2 mol/m3 0.1
m0,a Initial concentration, ma mol/m3 0.5
m0,b Initial concentration, mb mol/m3 0.5
min,a Inlet concentration, ma mol/m3 0.5
min,b Inlet concentration, mb mol/m3 0.5
F Inlet flow rate m3/s 1
V Reactor volume m3 1
tf Simulation time s 1× 107

Lia + Lib Total replicator size monomers 20

Notice in Table 1 that the simulation time, (tf = 1× 107 s), is several orders of magnitude greater
than the decomposition timescales,

(
1
kd,i

)
, in order to ensure the resolution of the system dynamics and

the evaluation of the sustained diversity of the replicators over long periods of time. Although a wide
range of parameters is included here, one should also note that other parameter sets not satisfying these
constraints may also exhibit coexistence, according to the conditions specified in Equations (9) and (10).

4. Results

4.1. Growth of Replicators under a Constant Monomer Supply

To organize the results of the large number of simulations in Section 3 (over 3.5 × 106 ODE
simulations), the final total concentration of replicators, (x1 + x2 at t = tf ), in each simulation is
computed. For each of the kinetic parameter sets, only the combination of composition parameters
that generates the maximum value of x1 + x2 at t = tf is selected, and then, the kinetic parameter
sets are placed in ascendent order according to this value. Figure 2 summarizes the results of this
ranked performance of the kinetic parameter sets. In Figure 2a, 38% of the kinetic parameters drive the
system to have a final total replicator concentration lower than the initial total replicator concentration,
(x0,1 + x0,2 = 0.2 mol/m3). Over a longer simulation time, tf , these parameters lead to the extinction
of the replicators and any information that they may contain.

As for the remaining 62% of the kinetic parameter space, there are two possible scenarios—either
one of the replicator types is able to take over the system as a “single-winner” or both replicator
species are able to coexist over the simulation time. Figure 2b illustrates this aspect by showing the
final concentration of replicator, x1. It is clear from this figure that the most likely result in a constant
monomer supply is a single-winner scenario ('62% of the cases), since high x1 final concentration
matches with the final total replicator concentration in Figure 1a, and low x1 final concentration indicates
that the other replicator has taken over the system.
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Figure 2. Exploration of kinetic parameter space for the replication process in a prebiotic
environment. The parameter set index represents each of the 10,000 kinetic parameter sets
used in this analysis, in ascendent order, according to the total concentration of replicators,
(x1 + x2), at t = 1× 105 s. The kinetic parameter sets inside the green circles indicate cases
where both replicators are able to grow significantly relative to the initial conditions.
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The main focus of this work is on the small fraction of the kinetic parameter space where both
replicators are able to grow, despite sharing the monomers in the system. Among the parameter sets
that exhibit coexistence at the end of the simulation, one of them is highlighted in Figure 2b with a green
arrow, because it shows unique features for the sustained coexistence of both replicators, as shown in
Figure 3. This figure indicates that the replicator concentration profiles are linear, in agreement with
our definition of coexistence. These linear concentration profiles imply that this parameter set exhibits a
balance between the kinetics and composition of the replicators, such that the overall replicator growth
rate is equal to the constant rate at which the monomers are entering into the system. As a result of this
net material balance, the replicator growth rates are sustained in the linear portion of the growth curve,
and the monomer concentration levels off inside the system, reaching a steady state condition for both
monomers, as shown in Figure 3c.

Table 2 shows the values of the kinetic parameters that generate the linear behavior in Figure 3. Notice
that the ratio between the replication and dissociation constants of the replicators is greater than one and
similar in magnitude,

(
kr,1
kd,1

= 1.637× 104, kr,2
kd,2

= 1.566× 104
)

. Therefore, the linear replicator profiles
are based on how the reaction orders, αij , and the composition parameters, Lij , are used to manage the
shared monomer resources.

Finding the right balance between αij and Lij is vital to developing the linear behavior observed
in Figure 3a. For example, a simulation of the chemical system with the values in Table 2 and the
parameters, L1a = L2a = 10, describes a more competitive scenario between the replicators, since both
of them equally require both monomers. In this case, the result of the simulation is a x2 single-winner
scenario. Notice both replicators are less sensitive to the B concentration, given the low reaction orders,
α1b and α2b. To highlight the role of the reaction orders as a metric of the sensitivity of the replicators
to the monomer concentrations, an additional simulation of the parameter set in Table 2 using L1a = 10,
L2a = 1 and α1b = 0.6 was performed, resulting in a x2 single-winner scenario. These examples suggest
that both replicators are in a constant competition for the shared monomers and that replicators with low
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reaction orders are more robust to monomer variations and, therefore, less coupled to the dynamics of
the remaining replicators in the system.

Figure 3. Example of replicator and monomer concentration profiles. These figures
correspond to the parameter set indicated with a green arrow in Figure 2b. Table 1 indicates
the simulation conditions for these figures; Table 2 shows the values of the kinetic parameter
set used in the solution of Equations (1) and (2), L1a = 10, and L2a = 1. Figure 3b,d show
the replicator and monomer concentration profiles on a logarithmic scale to highlight the
initial transient response.
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Table 2. Kinetic parameter set that corresponds to the observed linear replicator profiles in
Figure 3a,c using the nominal values in Table 1.

kr,1 = 388.052 kr,2 = 54.821

kd,1 = 0.0237 kd,2 = 0.0035

α1a = 2.4544 α2a = 2.0325

α1b = 0.3773 α2b = 0.5965

4.2. Condition of Coexistence for Autocatalytic Replicators

Section 2.2 describes how the system of linear equations in Equations (9) and (10) can be used to
explain the observed linear behavior between the replicators for sustained diversity. If the solutions of
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this system of linear equations for the replicator growth rates, c1 and c2, are positive, then the desired
linear behavior is possible. Here, Equations (9) and (10) are evaluated not only to screen for sustained
diversity behavior, but also to screen for the complete extinction scenario.

Table 3 summarizes the comparison between the results from Equations (9) and (10), with the
observed results in each of the 3.61 × 106 different ODE simulations, evaluating all possible replicator
compositions in the case study (i.e., 361 possibilities) for each of the 10,000 parameter sets used to
explore the kinetics of these replicators. Notice that the sum of the percentages in the total column
adds to 92.45%. In addition, 2.19% corresponds to unsuccessful parameter combinations, whose
results presented numerical instabilities during the ODE simulation. The remaining difference (5.36%)
corresponds to the successful simulations where the composition of the replicators was the same,
(L1a = L2a). These results are not included in Table 3, since these combinations do not provide a
unique solution for the system of linear equations in Equations (9) and (10). Nonetheless, the cases
where (L1a = L2a) will be discussed later in this section.

Table 3. Results for the final scenario for two autocatalytic replicators following the
mathematical model in Equations (1) and (2). The observed states correspond to the possible
end results in the simulation: extinction of replicators, single-winner scenario (either x1 or
x2) and coexistence of replicators. The screening states describe the possibilities for the
solutions of the system of linear equations in Equations (9) and (10). The percentages were
calculated over the results from 3.61 × 106 ODE simulations of different kinetic parameter
sets and several replicator compositions, using the nominal values in Table 1.

Observed
Screening

Totalc1 < 0 c1 > 0, c2 < 0 c1 > 0

c2 < 0 c1 < 0, c2 > 0 c2 > 0

Extinction 1.87% 34.89% 0.00% 36.76%
Single Winner 0.00% 53.96% 0.83% 54.79%

Coexistence 0.00% 0.00% 0.90% 0.90%

The diagonal values in Table 3 indicate the percentages of successful identification of the
corresponding observed final states. Notice that the system of algebraic equations provides a 100%
accuracy in the identification of scenarios where both replicators are extinct, given the fact that the
off-diagonal elements in the first column are all zeros. This result indicates that the system of algebraic
equations does not generate a Type I error (or false positives) with its identification.

The screening of the parameter space made by the system of algebraic equations in Equations (9)
and (10) shows significant results for the case of the coexistence scenario. Table 3 indicates that
coexistence between the replicators is only possible when c1 and c2 are both positive values. As for
the quality in the identification of coexistence made by Equations (9) and (10), the probability of a Type
I error for a particular parameter set is about 48%. These results indicate a key feature for the system of
algebraic equations, since 0.9% of the entire parameter space leads to the coexistence of the replicators,
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and the system of algebraic equations is excluding most of the possible parameter combinations that can
be evaluated for coexistence.

Table 4 compiles the results from the ODE simulations in the parameter set exploration, when both
replicators have identical composition (i.e., L1a = L2a). This table indicates that there is not a set of
kinetic and composition parameters that led to the sustained linear behavior. Therefore, the system of
algebraic equations accounts for all possible parameter combinations that exhibit coexistence. Overall,
satisfying the system of linear equations in Equations (9) and (10) is a necessary, but not sufficient,
mathematical condition for the coexistence of autocatalytic replicators in the model.

Table 4. Summary of the final results for two autocatalytic replicators with identical
composition (L1a = L2a) following the mathematical model in Equations (1) and (2). The
observed states correspond to the end results in the simulation: extinction of replicators,
survival of a replicator (only x1 or only x2), and coexistence of replicators. The percentages
were calculated over the results from 3.61 × 106 ODE simulations of different kinetic
parameter sets and replicator compositions, using the nominal values in Table 1.

Extinction Single Winner Coexistence Total

2.18% 3.19% 0.00 5.27%

Table 4 also suggests that it is necessary to have different replicator compositions in order to have
coexistence. When both replicators have the same composition, the competition for monomer resources
increases inside the system. In the case of L1a = L2a, coexistence is never observed, but rather, a single
winner or extinction outcome. Having diverse replicator composition is a way to mitigate the kinetic
competition between the replicators, as an additional degree of freedom in the coexistence of the system.
Figure 4 shows the replicator composition map of the final result of the simulations and the predicted
replicator growth rates for two particular kinetic parameter sets (these parameter sets are indicated in
Tables 2 and 5).

Figure 4a,c present the final results obtained from the simulations. Most of the replicator composition
cases where coexistence is present are located in the upper-left or the lower-right corners of the replicator
composition space. This indicates that the two replicators minimize the competition for the shared
resources in the system, by each of them emphasizing a different monomer type for its replication. For
Figure 4a, x1 requires more monomerA and x2 requires more monomerB. The opposite scenario occurs
for the Figure 4c. In addition, the dependency/coupling of a replicator with the dynamics of a particular
monomer type also depends on the magnitude of the reaction orders in the kinetic law. Notice in
Table 2 that α1a > α2a reinforces the x1 dependency on A, and α2b > α1b reinforces the x2 dependency
on B (the opposite happens with the parameter values in Table 5). In this model, replicators cannot be
completely decoupled from the monomer dynamics, but weakening this coupling provides a significant
advantage for the system to reach the coexistence state. When the reaction orders are low, the replicators
become more robust to variations in monomer concentration, which confers an advantage in a highly
competitive scenario with low monomer concentrations.
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Figure 4. Results from the system of algebraic equations, Equations (9) and (10), for two
different kinetic parameter sets. Figure 4a,b correspond to the parameter set in Table 2,
Figure 4c,d correspond to the parameter set in Table 5. Figure 4a,c indicate with colors the
final result in the simulations of these kinetic parameters for each possible combination of
composition parameters. Figure 4b,d indicate the predicted replicator growth rates, c1 and
c2, from the system of algebraic equations at each replicator composition. All simulations
used the nominal values in Table 1.
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Table 5. Kinetic parameter set values used in Figure 4 as a comparison for the solutions of
the system of linear equations, Equations (9) and (10).

kr,1 = 4.3692 kr,2 = 1.6605

kd,1 = 4.16× 10−4 kd,2 = 4.83× 10−4

α1a = 0.2914 α2a = 0.3585

α1b = 2.6602 α2b = 0.7387

Figure 4b,d show the prediction made by the system of algebraic Equations in (9) and (10) for two
kinetic parameter sets, across the replicator composition space. The empty spots in the diagonal of these
figures correspond to the cases of equal replicator composition, where the equations cannot generate a
prediction. It is clear from these figures that the system of algebraic equations predicts two potential
regions for coexistence of the replicators, in agreement with the ≈50% prediction result in Table 3.
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The system of algebraic equations accurately predicts the coexistence in the area where both the reaction
orders and the composition parameters are reinforcing the decoupling between the replicators, as it was
mentioned previously. These results do not imply that the prediction of coexistence using Equations (9)
and (10) depends on the reaction orders and composition parameters only. Equations (9) and (10) show
that coexistence of autocatalytic replicators requires a balance among all the parameters in the model,
not only αij and Lij . However, the specialization of the replicators towards one particular monomer
type is a conceptual explanation for the observations in Tables 2 and 5, as well as Figure 4, to determine
which of the two quadrants will be the one to exhibit coexistence.

Finally, the conjectures regarding the relationship between kinetics and composition of the replicators
are limited to the scenario where the monomer inlet concentrations, min,a,min,b, and the lengths of
both replicators are equal during the simulation. The system of algebraic equations in Equations (9)
and (10) includes these variables into the parameter set to compute the coexistence condition. In the
search for other coexistence scenarios, Equations (9) and (10) provide the relationship between the
numerous degrees of freedom (kinetic, composition and environment) in this design problem.

5. Discussion

Diversity is a prerequisite for selection and evolution, which motivates this study on chemical
coexistence of replicating species. The kinetic model presented here includes a unique combination
of features: monomer recycling, inlet and outlet monomer flow and variable reaction orders on the
monomer concentration. Reversible linkages are a possible route to non-enzymatic replication in the
prebiotic Earth, and this motivated the inclusion of recycling into the model. The monomer species may
have been scarce in the prebiotic Earth, such that sustained replicator growth would be limited by the
inlet flow rate of monomers into the system. Additionally, monomers may be lost in the outlet flow, so
that a system that efficiently incorporates monomer would maximize its overall population. Monomer
scavenged by one replicator type may be later transferred to another type via the recycling dynamic.
Thus, aspects of cooperation, as well as competition are embodied in this model. The definition of
coexistence presented here, that of sustained linear growth of multiple species, is in contrast to many
common definitions of coexistence based on steady-state or oscillatory populations. This new definition
is motivated by the model, in which the continuous inflow monomers, coupled with the monomer
recycling, can yield a new dynamic behavior with sustained open-ended growth.

In the simulation portion of this study, constraints were placed on the kinetic parameters, and
constant values were used for the environmental parameters and initial conditions. However, the analysis
in Section 2.2 yields an algebraic condition between the kinetics, composition and environmental
parameters that is independent of the constraints used in the simulation study. In fact, it is possible to
compute the steady-state monomer concentrations for any set of kinetic parameters, using Equations (7)
and (8). Thus, any set of replicator chemistries consistent with Equation (1) could potentially exhibit
coexistence. It is the relationship of the kinetic parameters (via the long-term monomer concentrations)
to the composition and environment, that determines if coexistence is possible. As a result, any reversible
linkage chemistry exhibiting replication could be a candidate for coexistence. In the simulation shown,
the concentrations of A and B in the inlet stream were equal, and thus. coexistence was only possible



Life 2013, 3 417

when there was a dominant pairing of replicator and monomer (i.e., 1 − A and 2 − B or 1 − B and
2−A). However, with unequal inlet concentrations, other combinations of kinetic parameters might also
exhibit coexistence.

The algebraic conditions for coexistence do not include the initial conditions of the replicators or
the monomers, and sensitivity of coexistence to the initial conditions was not presented in this paper.
However, simulations from a range of replicator and monomer initial conditions showed no sensitivity
of coexistence behavior to the initial conditions of the system. This suggests that the stability of the
coexistence solution is independent of the initial condition. Observation of the system defined by Table 2
provides a rationalization of coexistence stability based on the relationship between the reaction order
and the composition. A regulating negative feedback is required to stabilize the coexistence, by aligning
the dominant reaction orders with the compositions of the replicators. This argument does not involve
initial conditions and suggests that the basin of attraction of the coexistence solution is either the entire
space or, else, is the empty set.

This study focused on a simple yet dynamically rich scenario with two replicator types and two
monomer types. However, a similar analysis to that presented in Section 2 can be performed for other
cases. For the case with two replicators, but one monomer type, competition dominates the dynamic,
such that only a vanishingly small set of kinetic parameters could exhibit coexistence. This is analogous
to the model of Pross [3], in which coexistence is only possible when the ratio of rate constants is
identical for each replicator. In practice, this would be extremely unlikely.

The dynamic model presented in this paper does not specify any explicit function, other than
replication, and represents a very early stage of evolution. With a sustained pool of replicators, mutations
would invariably also occur, enabling additional species to be generated. Depending upon their kinetics
and composition, relative to the environment, these mutants might also be sustained within the system,
further expanding its diversity. The definition of coexistence based on linear growth does not imply
that the population sizes of the species are similar, only that all are growing. A species with a small
population size could be viewed as insignificant, if population size is the only criterion. However, if that
species has or develops a necessary function, it could be critical to the future performance of the system,
even if its population is not large. Unlike other replicator studies, the model presented here does not aim
to quantify replicator strength, via population size or other metrics, but rather focuses on the system-level
dynamics. A diverse system could later develop complex function through cooperation, such as catalysis
via a hypercycle [1], but this is only possible under coexistence of multiple species. The system could
be the unit upon which selection would act, and a collection of such units could undergo Darwinian
evolution, to develop new functions and evolve according to its environment.

6. Conclusions

Coexistence of diverse replicating species is necessary for evolution, but many replicator models
predict the emergence of a single winner. Here, we present a chemically plausible kinetics model with
a unique combination of effects that exhibits coexistence of two species for approximately 1% of the
parameter space. The replicating species are not directly interacting, but rather, are coupled through
shared monomer resources. The model is specified by parameters for the kinetics, composition and
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environment. The key features of the model are variable monomer reaction order, inlet and outlet
flow of monomers and monomer recycling. Under appropriate parameter values, the populations
of both replicating species grow with a linear profile. Algebraic conditions are derived to predict
which parameter sets can exhibit coexistence, and in the simulation study, over half of the parameter
sets meeting this condition do, in fact, have the stable linear growth solution, indicating sustained
coexistence. Observation of these simulations suggests that the stability of this linear growth solution
requires a weakened coupling between replicators, in which each replicator type is dominantly paired
with one distinct monomer type. The algebraic coexistence conditions indicate that any system
of replicators consistent with the kinetic model could exhibit coexistence—under an appropriate
combination of compositional and environmental parameters. In a diverse prebiotic soup of monomers
and replicators, coexisting replicators could be selected by the environment.
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