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Abstract: The Halobacteria are a well-studied archaeal class and numerous investigations 

are showing how their diversity is distributed amongst genomes and geographic locations. 

Evidence indicates that recombination between species continuously facilitates the arrival of 

new genes, and within species, it is frequent enough to spread acquired genes amongst all 

individuals in the population. To create permanent independent diversity and generate new 

species, barriers to recombination are probably required. The data support an interpretation 

that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating 

geographically localized variation than dispersal and invasion are at homogenizing genetic 

differences between locations. Therefore, we suggest that recurrent episodes of dispersal 

followed by variable periods of endemism break the homogenizing forces of intrapopulation 

recombination and that this process might be the principal stimulus leading to divergence 

and speciation in Halobacteria. 

Keywords: Haloarchaea; speciation; biogeography; homologous recombination; horizontal 

gene transfer; population genetics 

 

  

OPEN ACCESS 



Life 2015, 5 1406 

 

 

1. Background 

In our search to understand the biological universe, a deep appreciation of diversity is required. This 

is, however, somewhat of an ambiguous declaration as diversity is multifaceted and occurs at many 

levels: alleles at a locus, genes in genomes, individuals in a population, populations comprising species, 

species in a community, etc. Though excellent arguments for the gene, or the individual as being the 

most basic unit in evolution [1,2], not until we examine and compare genetic diversity within populations 

or species are expansive patterns measured and revealed. Thus, species attracts our attention when 

contemplating the meaning of diversity. There is, however, a debate on how to define the term species, 

or which species concept is best [2–4], or even if they exist at all [5,6]. Nonetheless, species can be 

highly relevant for conceptualizing the stability of an ecosystem to perturbations, or for determining the 

impact of humans on the environment, or understanding the structure and function of any two 

communities. Further, it seems less complicated to identify when two individuals belong to different 

species—especially if they are distantly related—than it is to know when they belong to the same species. 

Unambiguously circumscribing species is a difficult undertaking: evolution is a never-ending process 

that generates incipient species inside incipient species. Therefore, we are tasked with attempting an ever 

better understanding of the speciation process in order to better recognize species. 

Critical to understanding the process of speciation is recognizing how gene diversity is distributed 

amongst individuals so that the forces of evolution shaping that diversity can be elucidated. An important 

question to ask is: what are the evolutionary forces that produces individuals more similar in appearance 

to each other than to any other organisms—for instance, which evolutionary processes generate the 

observed clusters in phylogenetic trees? A second valuable question is: which processes promote the 

independent accumulation of variation and the formation of incipient lineages—i.e., generate multiple 

closely related phylogenetic clusters? 

Much of what is known about speciation comes from the study of plants and animals [2–4]. For 

sexually reproducing organisms, recombination is tied to reproduction, and genetic homogenization of 

species occurs via random mating. When individuals from the same species randomly mate, and alleles 

at different loci evolve independently (i.e., are randomly associated), genetic diversity is thoroughly 

mixed. Therefore, arbitrary mating prevents the accumulation of independent diversity and the formation 

of new lineages. Should biases in mating occur (for instance in populations that maintain large habitation 

zones where individuals on the periphery mate infrequently with those on the opposite side), genetic 

differences would then accumulate separately to form diverged populations within the species. If a 

geographic effect persists for extended periods of time, speciation might occur. For sexually reproducing 

organisms, geographic isolation (allopatric speciation) is overwhelmingly the most common mechanism 

for speciation [7]. Since allopatric speciation is based on physical barriers to random gene flow, natural 

selection is not required to induce the accumulation of independent diversity and is therefore considered 

the null hypothesis for the generation of species. Some species have highly limited ranges of habitation 

and, therefore, geographic isolation does not occur. Yet, speciation (sympatric) can still proceed when 

random mating is disrupted by genetic characteristics [8,9]. For instance, mate choice can have a strong 

impact on biasing mating and sympatric speciation [10]. Unlike allopatry, the mechanisms for sympatric 

speciation require natural selection to act on traits that generate mating biases [9,11]. 
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Speciation in asexually reproducing organisms is much more complicated. In fact, it is thought that 

species may not exist in organisms for which sexual reproduction does not occur [3]. However,  

absolute asexuality is rare with perhaps only bdelloid rotifers being the exclusive example of long-term 

clonality [12], signifying that any evidence for species in asexual organisms suggests also the presence 

of at least occasional sex. Interestingly, asexuality in eukaryotes seems to continually evolve from sexual 

ancestors, and genomic analyses are pointing towards the last universal ancestor of all eukaryotes having 

the capability for sexual reproduction [13]. Therefore, when looking for the evolutionary origins of 

sexuality, prokaryotes are likely to yield unexpected results. 

It seems somewhat paradoxical that two of three domains of life reproduce asexually, and yet there 

exists abundant evidence for discontinuity in the distribution of genotypic and phenotypic traits in those 

groups [14–28]. It was proposed long ago that asexual populations evolve through population-wide 

fixations of genomes [29,30]. In the absence of gene flow, genes on a chromosome are permanently 

linked and share the same fate. For instance, any advantageous mutation that occurs at one locus would 

rise in frequency within the population due to natural selection. Because all loci are linked on the same 

genome, their frequency in the population would rise at the same rate. Theoretically, a genome with a 

single advantageous trait would outcompete the other genomes in the population until all individuals 

without the mutation were extinct and all survivors would have an identical chromosome [29,30]. These 

events are called clonal sweeps, or periodic selection events, and have been proposed to be the 

evolutionary homogenizing force preventing the accumulation of diversity in an asexually reproducing 

species. Clonal sweeps in bacteria were reported by Atwood and colleagues [31] when they noticed 

genetic replacement of mutants in Escherichia coli cultures. Further, E. coli population genetics studies 

using enzyme electrophoresis demonstrated very low rates of recombination amongst strains [32], which 

supported the hypothesis for clonal sweeps as the dominant evolutionary force homogenizing and 

maintaining prokaryote species [33]. It had been proposed that adaptation to an environment in which 

no direct competition between individuals from the ancestral population occurred prevented clonal 

sweeps and thus allowed the accumulation of independent mutations and the emergence of clustered 

diversity (i.e., species), each experiencing localized clonal sweeps [14]. However, little or no evidence 

for clonal sweeps has been discovered [34–37]. Rather, extensive data support alternative hypotheses 

for the origin and maintenance of phylogenetic clusters in prokaryotes, e.g., [19,21,25,34–40]. 

Though prokaryotes reproduce asexually, they can and do acquire DNA from other sources and use 

it to undergo genetic recombination. In fact, the discovery of DNA as the genetic material of all life 

might have taken much longer to determine. Frederick Griffith, later followed by Avery and colleagues 

in their now classic experiment, observed the effects of gene transfer, now called natural transformation, 

when they injected into mice a mixture of a live non-virulent Streptococcus with the components of  

heat-killed virulent Streptococcus [41,42]. Though the results seemed clear, there was some lingering 

doubt: DNA seemed too simple of a molecule for the complexities of inheritance. Another experiment 

using radiolabeled bacteriophages removed any remaining reservations regarding the role of DNA [43] 

and also discovered the transfer of DNA from a phage into a host, what is now referred to as transduction. 

While these experiments were instrumental in demonstrating the role of DNA for coding inheritance, for 

the purposes here, they were also investigations showing the discovery of important modes (natural 

transformation and transduction) for acquiring genetic information in prokaryotes, what we call now 

horizontal gene transfer (HGT). The role of gene transfer in the evolution of bacteria and archaea has 
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taken a long time to uncover and has sometimes been controversial [44,45], but there seems to be little 

doubt as to the importance of frequently moving genes between cells. Can it account, however, for the 

observation of species? 

In sexually reproducing organisms, it is a general principle that individuals mate only within their 

own species, though hybridization between species certainly occurs (e.g., [46]). Therefore, gene flow is 

biased almost exclusively to members of the same species, with some low amount occurring between 

closely related species. Similar concepts have been applied to prokaryotic species. The role of biased 

gene flow in prokaryotes has a long history of investigation and abundant evidence from several model 

systems supports the concept. Approximately 50 years ago, analyses of strains of Pneumococcus and 

Streptococcus [47] and different Bacillus species [48,49] demonstrated a strong positive correlation 

between genetic relatedness and the frequency of gene transfer in laboratory experiments: the more 

distantly related two strains were, the less efficient the recombination. A connection between the 

frequency of genetic exchange and speciation in bacteria was quickly made [50]. Later, the relationship 

between gene exchange frequency and genetic divergence was shown to be log-linear, where small 

changes in relatedness resulted in enormous drop-offs in homologous recombination (HR: Typically, 

HR in prokaryotes means the replacement of a homologous locus in a non-reciprocal process, but the 

actual process may be more complicated. For instance, a cell could gain, via non-homologous processes, 

an extra gene copy, maintain both copies for an extended period of time, but then lose the original.  

In such a case, it might be considered HR, though the process was not.) For example, transfer efficiency 

between closely related species like E. coli and Salmonella typhimurium (now called S. enterica, subsp. 

enterica), incurred a loss of more than four logs compared to intraspecies transfer [51]. Heavily biased 

HR frequency has broad implications for genetically isolating species, and was the basis for a biological 

species concept developed from the analysis of E. coli more than two decades ago [17]. Before moving 

on, it is important to note that horizontal gene transfer (HGT: HGT often refers the exchange of any gene 

between species by any process, but it can also refer specifically to HR-independent mechanism 

exchanges like those induced by phages, or transposons.) between species occurs, commonly traversing 

very large genetic distances, and inter-phylum and inter-domain transfer is well documented. For 

instance, a large fraction of core genes (i.e., genes common to all members of a group, typically highly 

conserved genes for replication, transcription and translation) from the deep branching bacterial order 

Thermotogales originated from archaeal and clostridial sources: horizontally transferred core genes 

outnumber the genes considered to have evolved from a common ancestor with the Aquificales [52]. 

Recently, it was suggested that HGT events from bacteria into archaea might be responsible for the 

origin of at least 13 archaeal orders [53]. The transfer efficiency across great genetic distances can be 

below our ability to detect them in laboratory transformation experiments, but over long time periods, 

the effect is real and causes dramatic changes in evolutionary trajectories, especially in comparison to 

the effects of mutation alone. 

Besides demonstrating bias in gene transfer, it was also discovered that the frequency of 

recombination was high enough within many species to unlink genes on a chromosome i.e., random 

allelic associations at different loci, or linkage equilibriums (e.g., [18,54–60]. The detection of high gene 

flow within many different populations signifies that recombination is a widespread homogenizing force 

preventing genetic divergence in bacteria and archaea. Further, it indicates that barriers to gene flow are 

likely required to promote speciation. Therefore recombination can be both a diversifying and 
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homogenizing force, depending on the source of DNA (e.g., within vs. between species). To estimate 

the amount of recombination required to produce a random association of alleles at different loci in 

natural populations, the relative rates of recombination to mutation (r/m) were compared. Perhaps 

unexpectedly, linkage equilibrium in prokaryotes is often achieved with an r/m estimated to be around 

one. In the free-living marine cyanobacterium Microcoleus chthonoplastes, populations were measured 

to have random allelic associations [56], and in a separate study were estimated to have an r/m ratio of 

0.8 [61]. Similar observations are made in Sulfolobus islandicus, where populations are considered to be 

in linkage equilibrium [60] and to have an r/m ratio of 1.2 [61]. The values measured in nature are very 

close to those determined in computer simulations of bacterial population evolution: r/m values in which 

recombination is a homogenizing force were determined to be as low as 0.25, and as high as 4.0 [19].  

It is frequently considered that recombination in prokaryotes is too low to break up gene linkage in 

comparison to eukaryotes (e.g., [14]); however, the estimated r/m for many animals (including humans [62], 

and Caenorhabditis [63]), and plants (including Arabidopsis [64], Brassica [65] and pines [66]) is below 

one, indicating that the relative r/m rates in many prokaryotes is largely equivalent to, or higher than 

their sexually reproducing counterparts. 

As with sexually reproducing randomly mating eukaryotes, the observation of random allelic 

associations in prokaryotic species means that individual loci are not linked and evolve independently. 

This lack of linkage combined with natural selection can cause an advantageous allele to rise in 

frequency at a locus yet have little or no effect on the variation at other loci [67], depending on the size 

of the recombining fragments [68]. Sweeps of individual genes in E. coli, a species not known for 

rampant HGT, were first reported over 30 years ago [69]. Recent population studies using advanced 

high-throughput sequencing techniques of DNA and proteins (e.g., genomics, metagenomics, 

proteomics and metaproteomics) provide additional examples of independent gene fixation events in 

marine organisms [37,70] and extremophiles [15]. For instance, comparative genomic analysis of 20 

marine Vibrio strains from two recently diverged natural populations demonstrated that individual loci 

were being swept to fixation on a constant basis due to the combined effects of recombination and 

selection [37]: no evidence for genome wide fixation of genes in the population was observed. In Shapiro 

et al. [37], it was reported that in the time since the initial divergence of the two Vibrio populations 

neutral recombination was so frequent that any evidence for a clonal signature had been obscured, and 

that no single bifurcating tree exemplified the evolution of more than 1% of the core genes. It was 

suggested that adaptation to different niche spaces inhibited unbridled recombination and allowed the 

insipient lineages to diverge, which makes prokaryotic speciation more like eukaryotes than previously 

envisioned. 

2. The Haloarchaea 

Halophilic archaea, officially called Halobacteria, comprise an entire class within the domain  

Archaea [71,72]. Quite frequently, the synonym haloarchaea is used though the term has no taxonomic 

standing [73]. They are primarily characterized by their obligate requirement for high concentrations of 

NaCl. Metabolically, they are mostly aerobic heterotrophs [73] that thrive in moderate (15%–20% NaCl) 

to saturated brines (~35% NaCl), which are often anaerobic. They can experience a wide range of 

temperatures in a single location, but are known to thrive in the environment above 45 °C [74], and 
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below zero (e.g., Deep Lake, Antarctica [75]). Further, many live in neutral or alkaline waters as well [76]. 

Therefore, this group encounters a wide variety of environmental conditions to which they must be 

adapted. Many haloarchaea utilize light energy to pump protons across their membrane via a 

rhodopsin/retinal system, which allows them to generate ATP [77,78]. However, none have been 

implicated in the ability to reduce carbon dioxide. The haloarchaea are typically the dominant group in 

environments containing greater than 15%–20% NaCl, in some cases comprising 90% of the total 

number of cells [79] and often encompassing a vast majority of sequencing reads in metagenomic  

studies [80–84]. Because haloarchaea use high intracellular salt concentrations (KCl), rather than 

producing energetically costly organic compatible solutes like ectoine or glycerol to equalize osmotic 

pressure [85], they likely gain a metabolic advantage in this environment over bacterial and eukaryal 

competitors. It is a rare circumstance that a single taxonomic order is restricted to a specific 

environmental condition (e.g., extremely high NaCl concentrations), and is also the dominant group in 

that habitat. In some sense, this unique condition provides an interesting opportunity to investigate the 

process of speciation. Further contributing to the species investigatory cause is the highly diverse abiotic 

conditions of brine pools and their widespread but patchy distribution, which provide a Galapagos 

Islands-like system for microbial evolutionary research. 

3. HGT and Haloarchaeal Evolution 

The haloarchaea as a group have an established reputation for undergoing a lot of HGT and  

HR [57,67,71,72,75,80,86–90]. Because the haloarchaeon Halobacterium sp. NRC-1 was amongst the 

first to have its genome sequenced it was identified early on that HGT was rampant in this group [91]. 

In the genome study by Ng et al. (2000) it was observed that a ‘substantial’ number of genes acquired 

by Halobacterium were from the Domain Bacteria, most notably from the radiation resistant species 

Deinococcus radiodurans and the Gram-positive genus Bacillus. Interestingly, among the identified 

transfers thought to be from bacterial sources was a cohort of genes necessary for aerobic respiration.  

A more recent study confirmed those observations of ‘substantial’ HGT from bacterial sources, and 

further indicated those gene transfer events were not exclusive to Halobacterium sp. NRC-1 but were 

widespread, and perhaps more interestingly occurred before the haloarchaeal last common ancestor [71]. 

Phylogeny of many conserved genes indicates that the ancestor of all haloarchaea was a  

methanogen [71,92,93] and the origin of the order Halobacteria is now hypothesized to have been 

induced by transfer events from bacterial sources that changed an autotrophic anaerobe into a 

heterotrophic aerobe [71]. Since its ancient origins, horizontal gene transfer seems to have been a major 

evolutionary process for haloarchaea. 

Gene transfer across large genetic distances is not exclusively a process of non-homologous acquisition 

as might be expected from transformation experiments between species [19,51,94–96]. More than a 

decade ago, it was demonstrated that haloarchaea are quite capable of recombining homologous 

fragments of rRNA genes that originated from distantly related haloarchaeal genera [97], a process 

considered unlikely as radical changes to gene sequence in any aspect of the ribosome should ordinarily 

cause the death of a cell that experiences them [98–100]. The observation that such events occurred in 

haloarchaea suggests that homologous replacement happens all the time but that only a few events 

provide benefit and survive the selection gauntlet. Studies on halobacterial species that preserve highly 
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divergent rRNA operons (e.g., 6% sequence difference) indicate that they are expressed under different 

environmental conditions [101], which offers an explanation for their maintenance in the same cell, and 

why gene conversion has not homogenized the divergent copies. Similar selective forces may have been 

key in retaining newly acquired divergent homologous rRNA replacement fragments observed by 

Boucher et al. (2004). 

Evidence from a recent study on haloarchaeal genomes indicates that intergenus homologous 

recombination happens frequently at most loci [102]. Using a concatenated ribosomal protein gene 

phylogeny as a proxy for estimating the evolutionary history of the haloarchaea, Williams and colleagues 

showed that gene families common to all haloarchaea were recombined across great genetic  

distances [102]. In agreement with a selection hypothesis against highly divergent DNA while also 

generating “hopeful-monsters” [103], the frequency of gene exchange among haloarchaea was 

demonstrated to have a log-linear relationship with genetic relatedness, but that the slope was not steep 

and there were no absolute barriers to homologous recombination. Every haloarchaeal genome examined 

was capable of HR with any other haloarchaeon irrespective of relatedness, only the probability of it 

occurring changed. Living together in similar habitats, and at high cell density may contribute to frequent 

gene exchange, but homologous replacement between very distantly related organisms is unlikely to be 

restricted to the haloarchaea. Two other important observations were made by Williams et al. [102]:  

(i) genes originating from even distant relatives were almost certainly replaced through HR processes, 

rather than through the acquisition of a second copy followed by the loss of the first; and (ii) that single 

genes, or fractions of them were being replaced, as apposed to multiple adjacent genes, or operons. 

Indeed, single gene replacements within operons were evident. That single genes were observed as being 

replaced seems slightly mysterious because the only mechanism demonstrated for gene transfer in 

haloarchaea has shown that enormous DNA fragments (>500 kb) are recombined [86]. Similar large 

recombination fragments were observed in natural populations from Antarctica: DNA as large as 35 kb 

were observed to be recombined across genera [75]. Therefore, it seems enigmatic that evidence for 

large multi-gene DNA fragments are lost when a wide range of haloarchaeal diversity is examined. 

Which evolutionary processes obscure large fragment exchange events? Maybe mating more frequently 

recombines gene-sized fragments as the Naor et al. [86] experimental conditions required large 

fragments to be recombined, and any small fragments went undetected? Perhaps mating is not the 

dominant HGT mechanism, with viruses and conceivably natural transformation transferring smaller 

DNA fragments and playing a much larger role? Certainly, more investigation into the mechanisms of 

mating, transduction and natural transformation are needed to answer these questions. 

The frequency of homologous replacement of loci between species appears to be higher in the 

haloarchaea than in other tested bacterial model organisms. A laboratory study that measured directly 

the frequency of recombination between Haloferax volcanii and Haloferax mediterranei that exhibit 

~14% nucleotide sequence divergence across shared orthologous genes demonstrated a drop in 

efficiency less than two orders of magnitude compared to intraspecies measurements [86]. In contrast, 

recombination between E. coli and S. typhimurium (S. enterica subsp. enterica), and between different 

species of Bacillus, which are similarly divergent, showed about four orders of magnitude difference 

between, compared to within species [51,96]. However, there are limited numbers of studies that 

estimate the frequency of recombination directly using model organisms, most of which have been 

detailed above. With the low cost of DNA sequencing, estimates for recombination are not measured 
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directly but obtained from populations and derived from the relative r/m rates. Sequence data from 

population genetic studies suggests that haloarchaea experience modest rates of recombination compared 

to many others [61]. Now that many more genetic systems are available for directly measuring 

recombination versus genetic distance, haloarchaea may eventually lose their status of highest gene 

replacement rates for a model organism. 

Population genetics analysis on closely related strains (<1% nucleotide sequence divergence for five 

core genes) that formed tight phylogenetic clusters called phylogroups indicated that many species of 

the genus Halorubrum are highly recombinogenic. Using multilocus sequence analysis (MLSA) 

featuring the PCR amplification and sequencing of five conserved loci (16S rRNA, atpB, 

bacteriorhodopsin, EF-2 and radA) from hundreds of strains revealed several important observations 

regarding the evolution of the haloarchaeal genus. Of notable consequence was the observation that three 

different Halorubrum populations, probably representing three unique species depending on which 

sequence cutoffs were applied [67], were undergoing HR frequently enough that each of them was in 

genetic equilibrium [57,88]. Genetic equilibrium as a reminder occurs when all alleles at the observed 

loci are randomly associated, which is the expectation for sexually reproducing randomly mating species. 

To estimate the r/m required to attain a random association amongst alleles, single locus variant analysis 

was employed [104,105]. This analysis determined that for every mutation detected, recombination 

changed eight nucleotides [88]. Further evidence supporting a strong HR homogenizing effect was the 

observation that the same bacteriorhodopsin allele was found in all strains of two Halorubrum spp. 

phylogroups, while the other four loci examined had high diversity [88]. Furthermore, because each 

studied locus had differing amounts of variation, each one must have been fixed in their respective 

populations at different times. This indicates that advantageous genes are being obtained constantly, 

either through mutation or gene transfer from other species, and being continually independently fixed 

in the population. Therefore, the loci on all the chromosomes within each population are unlinked by 

recombination and fixed by natural selection (and possibly genetic drift; [106]) one locus at a time. 

New alleles in a population can originate within the population by mutation, or they can be acquired 

by HGT. If mutations are the dominant source of fixed variation, then the expectation is that most genes 

would have a similar phylogenetic signal both within and between species. However, if HGT is the 

dominant source of fixed variation, then all individuals inside the population would be related to each 

other, and different loci would have alternative evolutionary relationships between species. In the case 

of Halorubrum isolates detailed above, the phylogeny of each gene reconstructed the same phylogroups. 

However, each gene phylogeny showed a different relationship between the phylogroups, and all 

possible relationships were robustly recovered. Furthermore, some genes had strongly supported 

multiple phylogenetic signals, indicating smaller intragenic DNA fragments were transferred [67,88]. 

Until genomes are analyzed, it is difficult to know the extent of interspecies gene transfer within 

Halorubrum populations, however it does appear from MLSA that a significant fraction of core gene 

diversity is derived from acquiring other species’ genes, and then fixed in the population. 

Chromosome dynamics amongst the haloarchaea due to HGT, genome rearrangement, and gene loss 

is a powerful evolutionary force. Evidence for this was first witnessed from the analysis of metagenomic 

sequence data obtained from a saltern crystallizer pond (e.g., saturated brine with precipitated NaCl) in 

Santa Pola, Spain that is comprised almost exclusively of Haloquadratum sp. cells [79,81,82]. This data 

was compared to the sequenced genome of Haloquadratum walsbyi strain HB001 cultivated from the 
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same pond [80,107]. Analyses showed that the isolated strain, which was derived from a single 

environmental cell, had multiple regions in its chromosome that were not represented elsewhere in the 

environmental Haloquadratum population DNA (i.e., were unique to that strain, called genomic  

islands) [80,83]. Finding these genomic islands profoundly suggests that each cell in the environment 

might contain a distinct genome [108]. In a limited test of that hypothesis for haloarchaea, a recent study 

reported the diversity of Halorubrum and Haloarcula strains cultivated at the same time on the same 

media using water from the same few microliters of hypersaline lake brine [89]. The study showed that 

strains sharing >99% sequence identity for five core genes also had unique genomes. Whole genomes 

were fingerprinted by implementing primers that annealed randomly to the chromosome, which 

amplified arbitrary fragment numbers and sizes. Gel electrophoresis revealed banding patterns generated 

by the amplification process, and thus provided a genomic fingerprint. Remarkably, even strains with 

identical haplotype sequences had different genomic fingerprints [89]. Genome sequencing of a selected 

subset of those strains confirmed that each genome was distinct by revealing that each one had a different 

size, even those that had identical core gene sequence data were different by up to 500 kbp [109]. These 

analyses using different methodologies and genera suggest haloarchaeal genome flux is faster than the 

rate of neutral mutation, and speculatively as frequent as every generation. 

The above observations for haloarchaea support an evolutionary scenario of constant and high inter- 

and intra-species recombination that breaks linkage of loci in populations. Selectively advantageous 

newly transferred alleles rise in frequency in the population until all cells have the same copy, suggesting 

fixation occurs faster than the neutral mutation rate can cause a mutation in the new allele. Successful 

HR events are also more likely if the DNA originated from closer relatives, with intra-species gene 

exchange the most efficient. Once fixed, neutral mutations begin to accrue providing diversity at the 

locus. Most loci get an advantageous allele from HR rather than from mutations within the species. 

Further, the species gene content variation (i.e., pan-genome) is enormous with the distinct possibility 

that every cell in a population is unique. This variation may possibly be acquired every generation by 

gene transfer and loss. Despite clonal reproduction, evidence for two strains being identical is absent 

from the data. The observed maintenance of phylogenetic lineages in the face of extensive interspecies 

and intergenera recombination is more than likely determined by who the frequent trading partners are—

intra-species occurs more frequently than inter-species, which is more frequent than intergenus and 

interfamily transfer [110]. 

4. Haloarchaeal Speciation 

It is fair to avoid a long discussion of species, other than to say taxonomically speaking species 

descriptions for the Halobacteria are based on the analysis of a type strain, which is deposited into a 

culture collection and to which all subsequent strains are compared when trying to decide if a strain 

belongs to a previously described or undescribed species [73,111]. Any strain with greater than 3% 16S 

rRNA gene sequence divergence from any type strain is considered a new species [112]. For those strains 

with less than 3% divergence, if they have less than 70% DNA-DNA hybridization values compared to 

any type strain, they are considered a new species. This is a technical and pragmatic solution to a 

complicated problem, and, therefore, does not consider the diversity of individuals in a species nor the 

evolutionary forces that sculpted the divergence. For the permanent accrual of independent variation in 
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highly recombinogenic populations such that two new species are recognized by the taxonomic code, 

gene exchange trading partners must become biased, either sympatrically or allopatrically. How might 

this occur? 

Sympatric speciation for highly recombinogenic bacterial populations has been modeled on adapting 

to a new niche [25,39,113,114]. Lawrence (2002) argues persuasively and supports his ideas with  

data [113–115] that sympatric speciation can occur. His model requires that a cell obtains a gene or 

operon via HGT that is required for survival in a new niche, and therefore if lost, will result in the death 

of the cell. Because the cost of losing the gene is high, this localized region of the chromosome cannot 

be homogenized by recombination with cells in the population that do not have the gene, and therefore 

neutral mutations begin to accrue in the flanking regions. Meanwhile, HR and homogenization continues 

with close relatives throughout the rest of the chromosome. As HR in that localized region declines and 

neutral mutations increase, a ratchet effect occurs that extends the size of the non-recombining region. 

As time progresses, it is feasible that mutations will eventually accrue to the point that they alone can 

drive speciation. However, if additional HGT events occur and seed further regions of limited 

recombination, speciation is expedited. Recent analyses by Friedman and colleagues using computer 

simulations to assess sympatric speciation found echoes of Lawrence’s concepts in that they show an 

effective solution for permanent divergence can be initiated by the acquisition of a small number of niche 

adaptive genes that promote ecological differentiation [39]. While adaptive genes might promote 

sympatric speciation in haloarchaea, there is no study demonstrating evidence for such a process. Data 

does exist showing that closely related species co-occur and have apparent ecological differences,  

e.g., [75,116], but this is not evidence of speciation in the same place. 

The null hypothesis of geographic isolation providing barriers to recombination may prove fruitful as 

a mechanism for generating species. Hypersaline environments are scattered across the earth’s surface, 

and on sea floors. This irregular distribution means that for a species to exist genetically thoroughly 

mixed everywhere (i.e., panmixis), dispersal to all locations must be fast and constant. If, on the other 

hand, the accumulation of genetic differences (e.g., localized HGT and mutations) is faster than the rate 

of dispersal, then location-specific variation will accrue and allopatric speciation could occur. There are 

no studies testing either of these conditions directly, however several studies are beginning to show 

evidence favoring a biogeographic effect. 

First, it is important to point out similar genera and species are found widely distributed, perhaps 

carried by seabirds [117]. For instance, the genus Halorubrum is frequently reported in different 

hypersaline environments located in geographically distributed locations e.g., [81,88,118–123], and  

the species Haloquadratum walsbyi is described from two strains cultivated from Australia and  

Spain [107,124–126]. Indeed, a wide distribution for Haloquadratum walsbyi is reported [123]. These 

data indicate that dispersal occurs, that it likely happens at a high rate, and it may prevent geographic 

isolation. 

However, there are several lines of evidence that not everything is everywhere, and that the rate of 

evolution may be faster than the rate of dispersal. Beginning with community composition, it has been 

shown that studies comparing geographically separated hypersaline environments are quite dissimilarly 

composed. A metagenome study comparing two different solar salterns located on different coasts of 

Spain (one on the Mediterranean, the other on the Atlantic) reported that communities were very 

different from each other, likely the result of ecological conditions at each site [81]. Analysis of 
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community structure using cell sorting based on DNA stain fluorescence and light scatter and 16S rRNA 

gene sequencing showed that haloarchaeal communities from three different saturated saltern ponds 

located in Spain, Tunisia and California had statistically differently community structures, and that 

sequences found in California and Tunisia were mostly unique to their locations [127]. Further, the same 

study showed that the California site was unexpectedly composed of a wide diversity of bacteria, and 

that bacteria comprised approximately 50% of the analyzed community. Another study from a solar 

saltern in Baja California, Mexico showed that saturated brine pond communities were different from 

those in Spain, and like the community in California from the Zhaxybayeva et al. (2013) study, contained 

an unexpectedly wide diversity of bacteria [128]. These studies indicate that communities are 

differentially composed, and that conditions exist that prohibit the dispersal and invasion of certain 

species at every location. Remarkably, all of the studies detailed above are from brines originating from 

seawater, meaning the salt concentrations and ratios are highly alike. If comparably structured 

hypersaline environments were to exist, seawater derived solar salterns would have the highest 

probability of having such a community. Natural lakes are typically composed of salts carried from the 

surrounding geological strata and can vary significantly from lake to lake, therefore they are not expected 

to have similar community structure. Similar arguments could also be made for salt springs and deep-sea 

brine pools too. Therefore, we predict that while hypersaline environment will have some species and 

genus overlaps between some of them, they are each uniquely composed. Analyses which may shed light 

on this subject would be to examine metagenomic data for identical sequences in different locations, or 

to construct phylogenetic trees of metagenomic data and search for clusters containing sequences located 

from one location or another. 

The genus Halorubrum is the largest of the haloarchaea, currently represented by 28 species [119] 

and is typically a dominant or co-dominant member of hypersaline environments with the genus 

Haloquadratum [81,129]. Examination of Halorubrum strains that appear to be representatives of the 

same species but which were cultivated from different locations show patterns of geographic differences. 

For instance, analysis of ~150 Halorubrum strains cultivated from Spain and Algeria, and which were 

greater than 99% identical for five MLSA loci demonstrated allelic and haplotype distribution patterns 

consistent with geography: the vast majority of alleles and haplotypes were unique to the site of 

cultivation [88]. Out of all the strains sequenced for five genes, only one haplotype was found common 

to each site, indicating that dispersal was certainly happening but not frequently enough to prevent  

site-specific accumulation of diversity. A recent study that analyzed the genomes of Halorubrum isolates 

cultivated from the Aran-Bidgol Lake in Iran, and Halorubrum genomes in the public databases also 

revealed evidence for a geographic effect. Phylogenetic clusters that had greater than 99% MLSA DNA 

sequence identity and greater than 96% average nucleotide identity (ANI) across all shared orthologs 

were only coherent groups when using additional analyses if they were cultivated from the same  

location [109]: all the strains cultivated from Aran-Bidgol that formed species like phylogenetic clusters 

also had similar tetramer frequencies and G+C content. One cluster, phylogroup D, exhibited statistically 

relevant differences in tetramer frequency and G+C content, and was composed of strains originating 

from different geographic locations. Of high interest was that Phylogroup D, while clearly exhibiting 

species-like characteristics in that they had >99% MLSA and >96% ANI similarity (which conformed 

to species cutoffs as being the same species [24,130]), was actually comprised of four different named 

species, meaning there were enough differences amongst those strains, including the gold standard of 
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taxonomy, <70% DNA-DNA hybridization, to be differentiated taxonomically. Whether or not they are 

the same species is not at issue, only that there are statistically relevant differences between the strains, 

and that those differences were not observed when strains of similar sequence diversity were cultivated 

from the same location. Since they were cultivated from different locations, the simplest explanation for 

the accumulation of independent variation is that they were recently geographically isolated. Along 

similar lines, the species Halorubrum chaoviator represented by three strains cultivated from three 

locations in Greece, Australia and Mexico, all show clear differences in their polar lipid content [122], 

suggesting geographic isolation is driving phenotypic variation in an otherwise genotypically coherent 

species. Extensive analysis of Halorubrum genomes, and polar lipids, from strains that form tight 

phylogenetic clusters and cultivated from many different locations could impart additional insight into 

how diversity is distributed and whether or not geographic patterns are robust. 

Haloquadratum is also a widely distributed dominant or co-dominant genus in hypersaline 

environments [79,123,129,131]. Haloquadratum seems to have restricted diversity in comparison to 

Halorubrum, containing only one species, Haloquadratum walsbyi [126]. Genome analysis of the two 

cultivated strains that represent Haloquadratum walsbyi (one from Spain and the other from Australia) 

showed limited 16S rDNA (99.9%) as well as genome-wide orthologous gene sequence diversity 

(98.6%), and that the genomes were largely syntenic differing primarily by gene gain and loss [132]. 

These observations led the authors to conclude Haloquadratum walsbyi is efficiently dispersed globally. 

However, genome assemblies derived from metagenomic data collected at Lake Tyrrell, Australia 

indicate that the local Lake Tyrrell Haloquadratum genomes are more closely related to themselves than 

they are to the cultivated Haloquadratum walsbyi strains [116]. This suggests the possibility that 

genotypic variation can accumulate independently in different sites separated by only a couple hundred 

miles (e.g., distance from Lake Tyrrell to Cheetham Salt Works where the Australian Haloquadratum 

walsbyi was cultivated). Though 1.4% DNA sequence divergence across shared orthologous genes for 

each of the cultivated strain’s genomes is not very much, to us, it suggests those two strains could belong 

to different species. For instance, analysis of hundreds of Halorubrum isolates using MLSA demonstrated 

they always formed phylogenetic clusters with less than 1% sequence divergence [88,89,133]. Further, 

analysis of lipid composition, which is a typical conserved marker important for taxonomy, showed that 

one of the two Haloquadratum walsbyi strains did not contain phosphatidylglycerol [126]. While it is 

reasonable to consider the above details as evidence for a considerable amount of intraspecies 

Haloquadratum walsbyi diversity, Halorubrum strains in comparison tend to be more similar to each 

other when they come from the same location, than strains cultivated from different sites [88,109,122] 

suggesting Haloquadratum diversity might also reflect a biogeographic signature. Because 

Haloquadratum walsbyi is difficult to cultivate, reliance on metagenomic data for analyses between sites 

is likely the only solution to testing geographic hypotheses. 

Though Salinibacter ruber is not a haloarchaeon, it can provide insight into spatial distributions since 

it co-exists with haloarchaea, and it is often a dominant bacterial species in the hypersaline environment [79]. 

A study detailing the distribution of genetic and phenotypic diversity of Salinibacter ruber isolates from 

around the Mediterranean Sea, the Canary Islands and Peru indicated that it was difficult to detect 

phylogenetic patterns of geography, but a more sensitive technique analyzing strain metabolites 

(metabolomics) showed clear data displaying geographic patterns, and not just for the most distant 
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places: even sites from the Mediterranean Sea were differentiated [134]. The accumulation of independent 

variation within strains of S. ruber by site is consistent with limitations to dispersal and allopatric speciation. 

Temporal studies are suggesting that haloarchaeal communities are highly stable, changing only in 

abundances of species according primarily to ionic concentrations, and, therefore, are resistant to 

invasion by dispersed cells. In a study from Lake Tyrrell, Australia, seasonal sampling and deep 

sequencing of community DNA revealed that Haloquadratum and Halorubrum were co-dominant 

genera, and negatively correlated with each others abundances, which were correlated to Mg2+ 

concentrations [129]. Similar results were obtained from the Sfax solar saltern in Tunisia where analysis 

showed a highly stable community structure through the seasons, and years, and that ion concentrations 

and temperature could explain 95% of the observed changes [135]. Stable microbial communities are 

resistant to invasion [136,137] and the observations of established haloarchaeal communities changing 

only in relative abundance suggest that even if dispersal should occur, invading might be very difficult. 

Imagine that one million cells from the same species recently dispersed to a new location that was filled 

with an established community, in which every niche is filled. To found a new population high enough 

to be detected, those million cells would need to out compete a vast proportion of the cells already 

existing (assume 107/mL density, and 1000 L) and, presumably, optimally adapted to those conditions. 

Invasion inevitably happens, but the odds are stacked against it. These data support the hypothesis that 

localized evolution is faster at creating divergence between geographic populations than dispersal and 

invasion is at homogenizing them. 

It goes almost without saying that more work needs to be done on populations representing closely 

related strains cultivated from different locations, and metagenomic sequence data obtained from around 

the globe in order to obtain a more robust vision of how diversity is distributed. That said, from the data 

in hand, it is possible to see evidence of geographic patterning, and this suggests that the rate of dispersal 

is slower than the rate of evolution for haloarchaea. Geographic barriers to gene flow therefore probably 

represent the simplest explanation (i.e., the null hypothesis) for how divergence is initiated and 

speciation might proceed. Once a small amount of divergence has accumulated, the data indicate that 

maintaining a genetically separated status is fairly straightforward, despite the possibility for populations 

to recolonize the same location, as cells recombine more frequently with more similar genotypes. 
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