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Abstract: In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame
maintenance. The idea was based on the notion of comma-free codes. Although Crick’s hypothesis
proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such
codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular
code theory has invariably evoked great interest and made significant progress. In this article,
the codon distributions in maximal comma-free, maximal self-complementary C3 and maximal
self-complementary circular codes are discussed, i.e., we investigate in how many of such codes
a given codon participates. As the main (and surprising) result, it is shown that the codons can be
separated into very few classes (three, or five, or six) with respect to their frequency. Moreover, the
distribution classes can be hierarchically ordered as refinements from maximal comma-free codes
via maximal self-complementary C3 codes to maximal self-complementary circular codes.

Keywords: genetic code; comma-free codes; circular codes; codon usage; evolution of
the genetic code

1. Introduction

The genetic code as it is today is a product of a long evolutionary process. It can be seen as
a kind of dictionary that translates information from the world of nucleic acids into the world of
proteins. As such, it is involved in the transmission of information, the translation process, and thus,
plays an essential role in the process that defines the central dogma of molecular biology. During this
process, degeneracy is one of the most conserved features of the genetic code. It can be postulated
that this is for a good reason, since degeneracy is the fundamental ingredient in any error-detecting
and error-correcting system [1,2]. Therefore, for example, the self-referential model for the formation
of the code is based on an original regionalization of characters through the concerted superposition
of the two components of the encodings. With this approach, the degeneracy of the genetic code and
clusters of similar amino acids corresponding to similar triplets should be explained [3].

The preservation of the genetic information is impossible without an error-correcting system
(this can even be proven by the methods of information theory) and cannot be guaranteed just by
DNA replication. There are different hypotheses for how such error-correction may happen. In [4],
the so-called ambush hypothesis is examined. According to this hypothesis, off-frame stops terminate
frameshifted translation, potentially decreasing energy and resource waste on nonfunctional proteins.
Moreover, codons with more potential to form hidden stops (off-frame stops) have greater usage
frequency and bias in their favor among synonymous codons. In [5], a model of an amino acid
composed of a constant part and of a variable part is considered, and it was concluded that the kinetic
energetic disturbance caused by the substitution of the variable part of an amino acid is minimized.
In [6], error prevention and mitigation as forces in the evolution of genes and genomes are postulated.
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Errors in the translation process can occur in several ways, e.g., mutation of the genetic
information or insertion/deletion of nucleotides. In the late 1950s, biologists tripped over another
essential source of errors, the so-called frameshift problem: a sequence of nucleotides can be translated
correctly into a chain of amino acids only when it is read in the correct frame. The first reaction to
this problem was the new concept of “codes without commas”, nowadays called comma-free codes,
suggested by Crick, Griffith and Orgel [7]. They hypothesized that only a subset of codons is actually
used for the translation. The strong property of such codes is the immediate detection of the wrong
reading frame. Each out-of-frame codon in a sequence of codons from a comma-free code is outside
the code and has therefore no meaning. In particular, the use of a comma-free code would re-establish
the correct reading frame within a window of three nucleotide bases. Unfortunately, after the discovery
of the standard genetic code lexicon by Nirenberg and Matthaei [8] (see also Khorana [9]), it became
clear that the elegant theory of Crick et al. is not valid in the form proposed. For instance, the
trinucleotide TTT, an excluded trinucleotide in a comma-free code, codes phenylalanine [8].

The motivation to study comma-free codes again came after the discovery of so-called circular
codes, which are a weaker version of comma-free codes. In Arquès and Michel [10], a set
X0 of 20 codons was identified by statistical analysis of genes of prokaryotes and eukaryotes.
These 20 codons appear preferentially in the correct reading frame and have the property of
detecting frame shifts not immediately, but eventually. In fact, at most 13 consecutive nucleotides
in a sequence of codons from the code X0 are enough to detect the correct reading frame. In 2015, by
quantifying the approach used in 1996 and by applying massive statistical analysis of gene taxonomic
groups, the circular code detected in 1996 was rediscovered extensively in genes of prokaryotes and
eukaryotes and now also identified in the genes of plasmids and viruses [11]. The codes discovered by
Arquès and Michel in nature have even more interesting properties. With each codon, its anticodon
is also in the code (self-complementarity), and they also have the error detection property in frame
1 and 2 (C3-property). Such codes are called self-complementary C3 codes and have been completely
classified in [10,12] and [13]. A weaker version of such codes are self-complementary circular codes,
which are self-complementary, but cannot recognize if the reading-frame is shifted by one or two
bases. Any comma-free code, self-complementary C3-code or self-complementary circular code
can contain at most 20 codons (see, e.g., [14]), and all such maximal codes have been completely
classified by computer calculations: there are exactly 216 maximal self-complementary C3 codes,
exactly 408 maximal comma-free codes and exactly 528 maximal self-complementary circular codes
(see [10,14–18]). None of the maximal comma-free codes, however, can be self-complementary.

In the present work, we first discuss some ancient genetic codes, e.g., the primeval code, the RNY
code, SNS code and the NNS code, that have been postulated in several theories about the evolution
of the genetic code as a predecessor of the current standard genetic code (see [19–24]). This is by
far not a complete list of such hypothesized codes, but serves as a motivating list of examples based
on biological concepts, the RNY code being the most important one, since it has been statistically
observed in genes on the two-letter alphabet {R, Y}. We show that all of these ancient genetic
codes that used only some of the 64 codons always contain a large comma-free code that codes for
almost all of the amino acids involved. This shows that in predecessors of the current genetic code,
Crick’s hypothesis on the usage of a comma-free code was much more likely and could have been
true. However, nowadays, the genetic code has become too complex to use such strong codes (in
the sense of having strong error-detecting properties, i.e., recognizing a frameshift immediately), and
therefore, nature moved on to the weaker circular codes. Thus, it is very likely that the circular codes
have evolved from the comma-free codes in some way. In this article, we give some hints for this
hypothesis, which would shed more light on the evolutionary development of the genetic code and
why it is as it is.

We consider the three classes of codes: maximal comma-free, maximal self-complementary
circular and maximal self-complementary C3 codes. For each codon, except for the excluded
AAA, CCC, GGG, TTT, we calculate how many codes of the three classes considered it can appear in;
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this is called the frequency class number of the codon with respect to a class of codes. After preparing
definitions (see Section 2), the main results of the article are presented in Section 3. Surprisingly, it
turns out that for each of the above classes of codes, there are very few frequency class numbers of
codons with respect to it (see also [16,17] for the data). It is even more surprising that the frequency
classes of codons for self-complementary C3 codes are refinements of the classes for comma-free codes,
and those for self-complementary circular codes are refinements for the corresponding classes of
self-complementary C3 codes. Thus, the number of different frequency classes of codons increases
parallel to the decrease of error-detecting properties of the codes. The fact that the frequency classes
of the codons for maximal self-complementary C3 codes are refinements of the classes for maximal
comma-free codes is a strong hint that the maximal self-complementary C3 codes used in the current
genetic code could have evolved from the maximal comma-free codes, which were very likely used
in earlier times, since these two classes of codes are disjoint. This means that there is no obvious
mathematical reason for this refinement property.

Our results strengthen the supposition that the modern codes originated from ancient
(self-complementary) comma-free codes (see [23,24]) and, as a consequence, a weaker version of the
Crick et al. theory.

2. Definitions and Notations

The genetic code is written with words of three letters, called codons, built over an alphabet:

B := {U(T), C, A, G}

of four letters, nucleotide bases uracil (thymine), cytosine, adenine and guanine, in short U(T), C, A and
G. In recent studies, e.g., [11,12,14,18,25], the structure of certain sub-codes of the genetic code that
are assumed to play a role in nature were investigated. The first class of codes was suggested by
Crick et al. in [7].

Definition 1. A trinucleotide code X ⊆ B3 is called comma-free if any given two codons x1, x2 ∈ X, any
sub-codon of the concatenation x1x2, except x1, x2 themselves, does not belong to X. We will call a trinucleotide
comma-free code X maximal if it contains exactly 20 codons.

Being comma-free means that a frameshift of one or two bases is detected after reading of three
nucleotide bases (see Figure 1). We would like to mention at this point that our point of view of
the frameshift problem is an information theoretical point of view. In living cells, a frameshift is of
course also “detected” because of the mistranslated protein product that is produced and its potential
phenotypic consequences.

Figure 1. For comma-free codes, a frameshift is detected immediately. All codons highlighted in gray
in the second and the third row are not in the code.

Clearly, a comma-free code cannot contain the periodical codons AAA, CCC, GGG or TTT since,
for example, a frame shift in a sequence of adenines could not be detected. Moreover, for any codon
B1B2B3 from a comma-free code, the shifted codons B2B3B1 and B3B1B2 cannot be in the same code.
For instance, if ACG is in the code, then CGA and GAC must not be in the same code, because they
appear in frameshift 1 and 2 of the:

ACGACGACGACG...
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ACGACGACGACG...

ACGACGACGACG...

The two shift operations are commonly denoted by α1 and α2, i.e., α1(B1B2B3) = B2B3B1 and
α2(B1B2B3) = B3B1B2 for any codon B1B2B3 ∈ B3 (see, for instance, [12]). Thus, any comma-free
code can at most contain one codon out of the three ACG, CGA and GAC and similarly for any other
codon. Thus, the maximal number of codons in a comma-free code is 20 = 64−4

3 , as required in the
above Definition 1.

Maximal comma-free codes have been completely classified by computer calculations, and it
turned out that there are exactly 408 such codes (see [15]).

At this point, we would like to discuss some examples of ancient codes, i.e., genetic code tables
that were suggested as a predecessor of the current standard genetic code in some theory about the
evolution of the genetic code. These codes coded only for a few amino acids and very often also used
only some of the codons and not all. Surprisingly, most of these codes contained a large comma-free
sub-code that codes for almost all of the amino acids or were even themselves comma-free. Note that
any comma-free code can code for at most 13 amino acids ([16]; see also Table 4 in [26]), while a
circular code can code for at most 18 amino acids [27].

Example 1.

• In the generalized co-evolution theory by Di Giulio [20,21], the SNS code (the letter S stands here for
the strong nucleotide bases C or G, in contrast to weak nucleotide bases A or T) was suggested and consists
of the following codons coding for the seven amino acids valine, glutamine, alanine, asparagine, glycine
and serine:

XSNS =

{
CTC, CCC, CAC, CGC, CTG, CCG, CAG, CGG,
GTC, GCC, GAC, GGC, GTG, GCG, GAG, GGG

}

It contains the comma-free sub-code:

YSNS = {CTC, GGC, GTC, CTG, CAC, GTG, GAC, CAG, GAG, CGC}

which is as large as possible (of size 10), because there are two codons of the form NNN in XSNS, and four
codons have a cyclically-equivalent codon in the code. It codes for all but one amino acid, namely alanine.

• In the generalized co-evolution theory by Di Giulio [20,21], the NNS code was suggested and consists of
the following codons coding for the seven amino acids valine, glutamine, alanine, asparagine, glycine and
serine plus the stop signal:

XNNS =


TTC, TCT, TAC, TGC, TCG, TAG, AGG, CTC,
CCC, CAC, CGC, CTG, CCG, CAG, CGG, ATC,
ACC, ACA, ACG, ATG, ACG, AAG, GTC, GCC,
GAC, GGC, GTG, GCG, GAG, GGG


It contains the comma-free sub-code:

YNNS = {CTC, GGC, TTC, GTC, CTG, TAC, GAA, GAC, CAG, GAG, ATC}

which is as large as possible (of size 11) and codes for all except one amino acid, namely alanine, and
the stop signal.
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• The RNY code [19] consists of the eight amino acids glycine, threonine, asparagine, serine, valine, arginine,
isoleucine and alanine and the 16 codons:

XRNYl =

{
GGT, GGC, ACT, ACC, AGC, AGT, GAC, GAT,
GTC, GTT, AAT, ATT, AAC, ATC, GCT, GCC

}

This code is comma-free.

• The theory of Jolivet and Rothen [22] yields another primeval code, which codes for the amino acids tyrosine,
alanine, phenylalanine, arginine, valine, asparagine, aspartate, leucine, glutamate, glycine, glutamine
and isoleucine:

Xprimeval =


TTC, TAC, CTC, CTG, CAG, ATC, AAC,
GTT, GTC, GTA, GCC, GAT, GAC, GAG,
GAA, GGC


The code is even a C3 code (see below). Moreover, it contains a comma-free sub-code of size 11 (as large as
possible) that codes for all amino acids, except for two, namely alanine and arginine:

Yprimeval = {CTC, GGC, TTC, AAC, GTC, CTG, TAC, GAC, CAG, GAG, ATC}

As mentioned in the Introduction, this list of examples of predecessor codes is by far not
complete, and most of these codes are based on biological concepts. The most important code is
the RNY code [19], which has also been statistically observed in genes on the two-letter alphabet
{R, Y}. It is comma-free, and it was already shown in [10] that the RNY code can be also constructed
by looking at the preferential frame of the RNY codons in genes. In fact, in [10], the authors
assigned to each codon a preferential frame (which then led to the discovery of the first maximal
self-complementary C3-code), and taking the average frame of the RNY codons, it was pointed out
by the authors that this is in fact Frame 0 (see [10], Table 3a–c and the corresponding discussion).

As we can see, the ancient codes discussed in the above Example 1 always contain a large
sub-code that is comma-free and encodes almost all of the amino acids used in the code. This is impossible
in the current standard genetic code, as we have seen above.

Since Crick’s hypothesis on the usage of comma-free codes consequently had to fail in nature,
the next class of codes that was investigated is the class of maximal self-complementary C3 codes.

Definition 2. We will call a set of codons X ⊆ B3 a trinucleotide circular code if any word over the alphabet B
written on a circle has at most one decomposition into words from X. By word written on a circle, it is intended
that after the last letter, the word starts again (from its first letter). We will call a trinucleotide circular code X
maximal if it contains exactly 20 codons.

Circular codes do not allow the detection a frameshift immediately as comma-free codes do,
but eventually, after a few codons (see Figure 2). Thus, it is obvious that any comma-free code is
also circular.

Figure 2. For circular codes, a frameshift is detected after a few codons. The codons highlighted in
gray in the second and the third row are not in the code.

The first maximal circular code that was found in nature by Arquès and Michel [10] is:
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X0 =


AAC, AAT, ACC, ATC, ATT, CAG, CTC, CTG,
GAA, GAC, GAG, GAT, GCC, GGC, GGT, GTA,
GTC, GTT, TAC, TTC


The code X0 had even stronger properties. The first one says that the code is not just

error-detecting in the normal reading frame, but also in shifts 1 and 2.

Definition 3. Let X ⊆ B3. We will say that X is a C3 code if X, as well as X1 and X2 are circular, where
X1 := α1(X) and X2 := α2(X).

Moreover, the code found by Arquès and Michel was also invariant under forming the anticodons
of its members.

Definition 4. Let X ⊆ B3. We will call X self-complementary if with each codon x ∈ X, its anticodon
is also in X.

Again, computer calculations showed that there are exactly 528 maximal self-complementary
circular codes containing exactly 216 maximal self-complementary C3 codes (see [10,13,28]).

In the recent investigations of comma-free and circular codes, the group of permutations
(bijective transformations) of bases played a significant role (see, for example, [12,29]). Recall that
a permutation of the bases from B is just a bijective shuffling of the bases. Formally, the symmetric
group on the set B is defined as:

SB = {π : B → B | π is bijective}

with the group operation of function composition. Bijective transformations π : B → B can be
applied componentwise to x ∈ B3 and, thus, induce a bijective map B3 → B3, which we will denote
also by π. Hence, π systematically exchanges bases in a codon or sequence of codons, and there are
exactly 24 such transformations. The complementing map plays a very essential role:

c : B → B

with
c(A) = T, c(T) = A, c(C) = G, c(G) = C

which assigns to each basis its complementary basis. An important property of permutations is the
following (see [12,29]):

Any permutation preserves comma-freeness and circularity, hence the C3 property. (1)

However, self-complementarity is not always preserved, but is by eight of the 24 permutations.
These permutations, among which we find the complementing map c, were characterized in [12]
and form a subgroup of the symmetric group SB . Finally, the so-called reversing permutation, which

reverses a codon, i.e.,
←−−−−−−−
(B1, B2, B3) := (B3, B2, B1), Bi ∈ B, also preserves self-complementarity

(see [12]). Note that the anticodon of a codon x can be expressed as
←−−
c(x). Thus, we have:

If X is a comma-free code, then its reversed code
←−
X and its code of anticodons

←−−
c(X) (2)

are both comma-free, as well;

If X is a circular self-complementary code, then its reversed code
←−
X and its code of (3)

anticodons
←−−
c(X) are both circular self-complementary, as well.
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We would like to draw the reader to very interesting works by Seligmann [30–33] that are related
to the bijective transformations SB . In fact, it was shown by Seligmann that parts of actual DNA and
RNA sequences are replicated by systematic exchanges of nucleotides, i.e., by applying one of the 24
bijective transformations to it. These sequences are called swinger sequences, and convergence between
swinger sequences detected are based on classical PCR sequencing methods.

3. Distribution of Codons in Maximal Error-Detecting Codes

In this section, we will mainly consider three classes of error-detecting and error-correcting codes
that have appeared in the development and theory of the genetic code: the class COM of all maximal
comma-free codes, the class CIRC of all maximal circular self-complementary codes and the class C3
of all maximal self-complementary C3 codes. We are interested in the frequency of codons appearing
in such codes, i.e., we will determine for each codon the number of codes from the above three classes
in which it appears. We start with the following:

Definition 5. Let x ∈ B3 be a codon, and let K be either the class COM of all maximal comma-free
codes, or the class CIRC of all maximal circular self-complementary codes, or the class C3 of all maximal
self-complementary C3 codes. Then:

uK(x) =| {K ∈ K : x ∈ K} |

denotes the number of codes K from the class K, such that x belongs to K. The number uK(x) is called
the frequency class number of x with respect to K.

A first easy observation is that for any codon x and any of the above classes K, the frequency

number of x with respect to K is the same as the frequency number of the anticodon
←−−
c(x) with respect

toK, as well as that of the reversed codon←−x of x with respect toK (for comma-free codes this follows
from Equations (2) and (3) above):

uK(x) = uK(
←−x ) = uK(

←−−
c(x)) (4)

Moreover, by the maximality of the codes in all of the above classes, we also have:

uK(x) + uK(α1(x)) + uK(α2(x)) =| K | (5)

for all codons x and classes K = COM, K = C3, K = CIRC. Recall that α1(x) and α2(x) are
the circular permutations of x.

We now show all equivalence numbers of codons with respect to the three classes of codes
CIRC, C3 and COM. Recall first that there are exactly 408 maximal comma-free codes and that
clearly any codon contained in a comma-free code either consists of three different bases or has exactly
two identical bases. Thus, the cases in the following theorem cover all possible codons.

Theorem 6. Let x ∈ B3 be a codon and K = COM the class of all maximal comma-free codes. Then, the
following statements are true:

1. If x = B1B2B1 with B1, B2 ∈ B and B1 6= B2, then:

uK(x) = 184

2. If x = B2B1B1 or x = B1B1B2 with B1, B2 ∈ B and B1 6= B2, then:

uK(x) = 112

3. If x = B1B2B3 with B1, B2, B3 ∈ B and B1 6= B2, B1 6= B3, B2 6= B3, then:

uK(x) = 136
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In particular, there are only three different frequency class numbers 112, 136 and 184 for codons with respect
to the class COM of all maximal comma-free codes.

The following Table 1 illustrates the result from the above Theorem 6 showing the frequency
class numbers of codons with respect to COM. Recall that the trivial codons AAA, CCC, GGG, TTT
can never be part of any error-detecting system; hence, there are only 60 codons shown in the next
table. Codons colored in the same color have the same frequency class number.

Table 1. The table shows all non-trivial codons and their frequency class number with respect to
maximal comma-free codes. Codons colored in the same color have the same frequency class number.

ACA 184 CGA 136 CCG 112
AGA 184 ACG 136 GCC 112
GTG 184 GTA 136 CGG 112
CAC 184 TAG 136 GGC 112
GAG 184 CGT 136 AGG 112
TGT 184 AGC 136 GGA 112
TCT 184 TCG 136 AAG 112
CTC 184 GCA 136 GAA 112
GCG 184 TGC 136 CAA 112
CGC 184 GCT 136 AAC 112
ATA 184 ATC 136 CCT 112
TAT 184 CTA 136 TCC 112
AGT 136 CAT 136 ACC 112
CAG 136 ATG 136 CCA 112
GAC 136 TAC 136 CTT 112
ACT 136 GAT 136 TTC 112
TCA 136 AAT 112 GGT 112
TGA 136 TAA 112 TGG 112
GTC 136 ATT 112 GTT 112
CTG 136 TTA 112 TTG 112

Theorem 6 was obtained by computer calculations, but proofs of some parts of Theorem 6 can
be found in Appendix A. However, it is easy to see why there are only three different frequency class
numbers. The reason for this is of a group theoretic nature. Since any permutation π ∈ SB carries
a maximal comma-free code into a maximal comma-free code, it follows that for any codon x ∈ B3,
we have uCOM(x) = uCOM(π(x)). Thus, all codons consisting of three different bases must have
the same frequency class number with respect to COM. Moreover, those with two identical bases
in positions 1 and 3 must have the same frequency class number, and finally, the codons with two
identical bases in positions 1 and 2, as well as in positions 2 and 3 must have the same frequency class
numbers. The latter follows from Equation (4).

The following Table 2 illustrates the result from Theorem 6 above showing the distribution of
codons with respect to COM in the standard genetic code table.

The next theorem gives the same characterization of frequency numbers with respect to the class
CIRC of maximal circular self-complementary codes. Note that the number of such codes is exactly
528. Moreover, note that any codon has either two identical bases, and then, the third basis is the
complementary one (Cases (1) and (2) in the next theorem), or the third basis is not the complementary
one (Cases (3) and (4) below), or the codon has three different bases and in these cases, two of them
must be complementary to each other (Cases (5) and (6)). Thus, the case distinction in the following
theorem covers all possible codons.
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Table 2. The table of codons and their frequency numbers with respect to the class COM of all
maximal comma-free codes. The class 184 is highlighted in yellow, 112 in blue and 136 in green.

T C A G

T

TTT Phe
TTC Leu
TTA Phe
TTG Leu

TCT Ser
TCC
TCA
TCG

TAT Tyr
TAC Tyr
TAA Stop

TAG Stop

TGT Cys
TGC Cys
TGA Stop

TGG Trp

C

CTT Leu
CTC
CTA
CTG

CCT Pro
CCC
CCA
CCG

CAT His
CAC His
CAA Gln
CAG Gln

CGT Arg
CGC
CGA
CGG

A

ATT Ile
ATC Ile
ATA Ile
ATG Met

ACT Thr
ACC
ACA
ACG

AAT Asn
AAC Asn
AAA Lys
AAG Lys

AGT Ser
AGC Ser
AGA Arg
AGG Arg

G

GTT Val
GTC
GTA
GTG

GCT Ala
GCC
GCA
GCG

GAT Asp
GAC Asp
GAA Glu
GAG Glu

GGT Gly
GGC
GGA
GGG

Theorem 7. Let x ∈ B3 be a codon and K = CIRC the class of all maximal circular self-complementary
codes. Then, the following holds:

1. If x = B1c(B1)B1 with B1 ∈ B, then:
uK(x) = 0

2. If x = B1B1c(B1) or x = c(B1)B1B1 with B1 ∈ B, then:

uK(x) = 264

3. If x = B1B1B2 or x = B2B1B1 with B1, B2 ∈ B, B1 6= B2, B2 6= c(B1), then:

uK(x) = 187

4. If x = B1B2B1 with B1, B2 ∈ B, B1 6= B2, B2 6= c(B1), then:

uK(x) = 154

5. If x=B1B2c(B1) with B1, B2 ∈ B, B1 6= B2, B2 6= c(B1)., then:

uK(x) = 234

6. If x = B1c(B1)B2 or x = B1c(B2)B2 with B1, B2 ∈ B, B1 6= B2, B2 6= c(B1), then:

uK(x) = 147

In particular, there are only the six different frequency class numbers, 0, 147, 154, 187, 234 and 264, for codons
with respect to the class CIRC of all maximal circular self-complementary codes.

The following Table 3 illustrates the result from Theorem 7 above showing the frequency class
numbers of codons with respect to CIRC. Again, recall that the trivial codons AAA, CCC, GGG, TTT
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can never be part of any error-detecting system; hence, there are only 60 codons shown in
the next table.

Table 3. The table shows all non-trivial codons and their frequency class number with respect to
maximal circular self-complementary codes.

ACA 154 CGA 147 CCG 264
AGA 154 ACG 147 GCC 264
GTG 154 GTA 147 CGG 264
CAC 154 TAG 147 GGC 264
GAG 154 CGT 147 AGG 187
TGT 154 AGC 147 GGA 187
TCT 154 TCG 147 AAG 187
CTC 154 GCA 147 GAA 187
GCG 0 TGC 147 CAA 187
CGC 0 GCT 147 AAC 187
ATA 0 ATC 147 CCT 187
TAT 0 CTA 147 TCC 187
AGT 234 CAT 147 ACC 187
CAG 234 ATG 147 CCA 187
GAC 234 TAC 147 CTT 187
ACT 234 GAT 147 TTC 187
TCA 234 AAT 264 GGT 187
TGA 234 TAA 264 TGG 187
GTC 234 ATT 264 GTT 187
CTG 234 TTA 264 TTG 187

As for Theorem 6, the results of Theorem 7 were found by computer calculations, but a
mathematical proof of some parts of the theorem can be found in Appendix B. Again, group theory
shows why there are only a few different frequency class numbers. However, this time, there are only
eight transformations π ∈ B that carry self-complementary circular codes into self-complementary
circular codes. These eight transformations were classified as the dihedral group L in [12]. Thus, for
these eight transformations and any codon x ∈ B3, we have uCIRC(x) = uCIRC(π(x)). Thus, all
codons consisting of three different bases must have the same frequency class number with respect
to CIRC if they can be mapped onto each other by a permutation from L. The same holds for those
codons with two identical bases in two out of the three positions.

The following Table 4 illustrates the result from Theorem 7 above showing the distribution of
codons with respect to CIRC in the standard genetic code table.

A surprising fact is that the frequency class numbers of codons with respect to the class CIRC
of all maximal circular self-complementary codes is a refinement of the frequency class numbers of
codons with respect to the class COM of all maximal comma-free codes. This is not at all clear, since
the two classes COM and CIRC are disjoint. No maximal comma-free code is self-complementary.
We will come back to this point after the next theorem and its illustration.

We finally show the frequency class numbers of codons with respect to the class C3 of all maximal
self-complementary C3 codes. Note that the number of such codes is exactly 216. Moreover, note that
as above, the case distinction in the following theorem covers all possible codons.
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Table 4. The table of codons and their frequency numbers with respect to the class CIRC of all
maximal circular self-complementary codes. The class 264 is highlighted in light blue, 187 in dark
blue, 234 in light green, 154 in light yellow, 147 in dark green and 0 in dark yellow.

T C A G

T

TTT Phe
TTC Phe
TTA Leu
TTG Leu

TCT Ser
TCC
TCA
TCG

TAT Tyr
TAC Tyr
TAA Stop

TAG Stop

TGT Cys
TGC Cys
TGA Stop

TGG Trp

C

CTT Leu
CTC
CTA
CTG

CCT Pro
CCC
CCA
CCG

CAT His
CAC His
CAA Gln
CAG Gln

CGT Arg
CGC
CGA
CGG

A

ATT Ile
ATC Ile
ATA Ile
ATG Met

ACT Thr
ACC
ACA
ACG

AAT Asn
AAC Asn
AAA Lys
AAG Lys

AGT Ser
AGC Ser
AGA Arg
AGG Arg

G

GTT Val
GTC
GTA
GTG

GCT Ala
GCC
GCA
GCG

GAT Asp
GAC Asp
GAA Glu
GAG Glu

GGT Gly
GGC
GGA
GGG

Theorem 8. Let x ∈ B3 be a codon and K = C3 the class of all maximal self-complementary C3 codes.
Then, the following holds:

1. If x = B1B1c(B1) or x = c(B1)B1B1 with B1 ∈ B, then:

uK(x) = 108

2. If x = B1c(B1)B1 with B1 ∈ B, then:
uK(x) = 0

3. If x = B1B1B2 or x = B2B1B1 or x = B1B2B1 with B1, B2 ∈ B, B1 6= B2, B2 6= c(B1), then:

uK(x) = 72

4. If x = B1B2c(B1) with B1, B2 ∈ B, B1 6= B2, B2 6= c(B1), then:

uK(x) = 98

5. If x = B1c(B1)B2 or x = B1c(B2)B2 with B1, B2, B3 ∈ B, B1 6= B2, B2 6= c(B1), then:

uK(x) = 59

In particular, there are only the five different frequency class numbers, 0, 59, 72, 98 and 108, for codons with
respect to the class C3 of all maximal self-complementary C3 codes.

As for Theorems 6 and 7, the results in Theorem 8 were discovered by computer calculation;
however, some parts of the above theorem are proven in Appendix C. As for Theorem 7, the action of
the dihedral group L on the set C3 explains why there are only a few different frequency classes.

The following Tables 5 and 6 illustrate the result from the above Theorem 8 showing the
frequency class numbers of codons with respect to C3 and their distribution in the standard genetic
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code table. Recall once more that the trivial codons AAA, CCC, GGG, TTT can never be part of any
error-detecting system; hence, there are only 60 codons shown in the next table.

Table 5. The table shows all non-trivial codons and their frequency class number with respect to
maximal self-complementary C3 codes.

ACA 72 CGA 59 CCG 108
AGA 72 ACG 59 GCC 108
GTG 72 GTA 59 CGG 108
CAC 72 TAG 59 GGC 108
GAG 72 CGT 59 AGG 72
TGT 72 AGC 59 GGA 72
TCT 72 TCG 59 AAG 72
CTC 72 GCA 59 GAA 72
GCG 0 TGC 59 CAA 72
CGC 0 GCT 59 AAC 72
ATA 0 ATC 59 CCT 72
TAT 0 CTA 59 TCC 72
AGT 98 CAT 59 ACC 72
CAG 98 ATG 59 CCA 72
GAC 98 TAC 59 CTT 72
ACT 98 GAT 59 TTC 72
TCA 98 AAT 108 GGT 72
TGA 98 TAA 108 TGG 72
GTC 98 ATT 108 GTT 72
CTG 98 TTA 108 TTG 72

Table 6. The table of codons and their frequency numbers with respect to the class C3 of all maximal
self-complementary C3 codes. The class 108 is highlighted in light blue, 72 in dark blue, 98 in light
green, 59 in dark green and 0 in dark yellow.

T C A G

T

TTT Phe
TTC Phe
TTA Leu
TTG Leu

TCT Ser
TCC
TCA
TCG

TAT Tyr
TAC Tyr
TAA Stop

TAG Stop

TGT Cys
TGC Cys
TGA Stop

TGG Trp

C

CTT Leu
CTC
CTA
CTG

CCT Pro
CCC
CCA
CCG

CAT His
CAC His
CAA Gln
CAG Gln

CGT Arg
CGC
CGA
CGG

A

ATT Ile
ATC Ile
ATA Ile
ATG Met

ACT Thr
ACC
ACA
ACG

AAT Asn
AAC Asn
AAA Lys
AAG Lys

AGT Ser
AGC Ser
AGA Arg
AGG Arg

G

GTT Val
GTC
GTA
GTG

GCT Ala
GCC
GCA
GCG

GAT Asp
GAC Asp
GAA Glu
GAG Glu

GGT Gly
GGC
GGA
GGG
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Since the maximal self-complementary C3 codes are a subset of the set of maximal circular
self-complementary codes, it is clear that the splitting of codons with respect to their frequency
class numbers cannot be significantly different. Nevertheless, as we can see, it is not completely
the same. The Classes (3) and (4) from Theorem 7 merge to one class in Theorem 8 (Class (3)), due
to the additional C3-property. Thus, the frequency class numbers of codons with respect to the class
CIRC is a refinement of the ones with respect to the class C3.

4. Results, Discussion and Conclusions

In this work, we have investigated the frequency class numbers of codons with respect to
the three important classes of error-detecting codes that play a role in the theory of the genetic code:
the class COM of all maximal comma-free codes, the class C3 of all maximal self-complementary C3

codes and finally, the class CIRC of all maximal self-complementary circular codes. The results show
two surprising facts. Firstly, for each of the classes COM, C3 and CIRC, there are only very few
frequency class numbers of codons. Secondly, the frequency class numbers yield partitions of the set
of codons that become finer when passing from the class COM via the class C3 to the class CIRC
(see the Table 7 below for a visualization of this refinement).

Table 7. The table shows all non-trivial codons with their frequency class number with respect to the
classes COM, C3 and CIRC.

The existence of only a few frequency class numbers for each of the classes COM, C3 and CIRC
is explained by a mathematical theory using group theory. Moreover, parts of the main Theorems 6–8
are given in the Appendix. The main result, however, is the refinement property shown in the table
above. Since the class C3 of maximal self-complementary C3 codes is a subclass of the class CIRC
of all maximal self-complementary circular codes, the refinement property of the corresponding
frequency class numbers is a consequence. However, the first refinement from the class COM
of all maximal comma-free codes to the class C3 of all maximal self-complementary C3 codes is a
surprise. No maximal comma-free code is self-complementary; hence, the two classes COM and C3
(even COM and CIRC) are disjoint. That the frequency class numbers with respect to C3 are still a
refinement of the frequency class numbers with respect to COM is a clear hint at a relation between
the two classes of codes and supports the theory that the genetic code in its present form evolved
from earlier ancient codes in a way that stronger error-detecting and error-correcting properties were
weakened to codes that still allow error-detection and error-correction, but in a less effective form.
Ancient codes used less codons and coded for less amino acids; hence, comma-free codes that detect
a frameshift in a reading window of only three bases, hence immediately, could be incorporated.
As soon as the genetic codes got more complex involving all codons and coding for a larger number
of amino acids, the weaker circular codes that detect frameshifts eventually and in a larger reading
window (of 13 nuclear bases) had to take over the error-detection and error-correction function.
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Appendix A. Proof of Theorem 6

Proof. Clearly, any codon x ∈ B3\{AAA, CCC, GGG, TTT} is either of the form B1B2B1, or B1B1B2,
or B1B2B2, or B1B2B3 with Bi ∈ B all different, i.e., either the codons consist of three different
nucleic bases or two bases are identical. Thus, Cases (1)–(3) of Theorem 6 form a complete
case distinction. Moreover, since any bijective transformation π ∈ SB , as well as the reversing
transformation←− preserve comma-freeness, it is obvious that any two codons x, x′ ∈ B3 must have
the same frequency class numbers uCOM(x) = uCOM(x′), provided they can be mapped onto each
other by such transformations. We now first prove that this is indeed the case in all three cases of
Theorem 6.

(1) Let x, x′ ∈ B3 be two codons of the form x = B1B2B1 and x′ = B′1B′2B′1 with B1, B2, B′1, B′2 ∈ B,
such that B1 6= B2 and B′1 6= B′2. Obviously, the bijective transformation π ∈ SB with:

π(B1) = B′1 and π(B2) = B′2

maps x onto x′.
(2) Let x, x′ ∈ B3 be two codons of the form x = B1B1B2 and x′ = B′1B′1B′2 with B1, B2, B′1, B′2 ∈ B,

such that B1 6= B2 and B′1 6= B′2. As above, the bijective transformation π ∈ SB with:

π(B1) = B′1 and π(B2) = B′2

maps x onto x′. The same holds for codons x, x′ ∈ B3 of the form x = B1B2B2 and x′ = B′1B′2B′2.
Finally, if x, x′ are of the form x = B1B1B2 and x′ = B′1B′2B′2, then we use the reversing
map←− concatenated with the following map σ to map x onto x′:

σ(B1) = B′2 and σ(B2) = B′1

(3) Let x, x′ be two codons of the form x = B1B2B3 and x′ = B′1B′2B′3 with Bi, B′i ∈ B, such that
B1 6= B2, B1 6= B3, B2 6= B3 and B′1 6= B′2, B′1 6= B′3, B′2 6= B′3. Similar to the other two cases, we
define the bijective transformation δ ∈ SB the following way:

δ(B1) = B′1, δ(B2) = B′2, and δ(B3) = B′3

We have thus shown that there are only three possible frequency numbers for codons with
respect to the class COM of maximal comma-free codes. The exact values of these frequency class
numbers have been found by computer calculations. However, for Case (3), we even have a proof.
Given a codon x = B1B2B3 ∈ B3 with all Bi different, it is readily seen that the shifted codons
α1(x) and α2(x) are of the same form. Thus, we have uCOM(x) = uCOM(α1(x)) = uCOM(α2(x)).
Equation (5) implies that uCOM(x) = 408 : 3 = 136. Moreover, there is a relation between the
frequency numbers u1, u2 of codons from Case (1) and Case (2). Given a codon x = B1B2B1 ∈ B3 from
Case (1) the shifted codons α1(x) = B2B1B1 and α2(x) = B1B1B2 are codons of the form described in
Case (2). Thus, it follows that:

u1 = 408− 2 · u2

In particular, if u2 = 112, then u1 = 408− 2 · 112 = 184.

Appendix B. Proof of Theorem 7

Proof. It is easy to see that the cases described in Theorem 7 give a complete case distinction for the
set of codons B3\{AAA, CCC, GGG, UUU}. In fact, any such codon has to be of one of the forms
described in (1)–(6). As in the proof of Theorem 6, it suffices to show that codons of the same form
can be mapped onto each other by some bijective transformation or the reversing transformation
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←− in order to show that the corresponding frequency class numbers are the same. However, since
we are dealing with the class CIRC of all maximal self-complementary circular codes, we need to
find bijective transformations that preserve self-complementarity. These permutations have been
classified in [12] as a subgroup L of the permutation group SB . In fact, the group L consists of the
following eight transformations:

L := {id, c, p, r, πCG : (A, C, G, U) 7→ (A, G, C, U), πAU : (A, C, G, U) 7→ (U, C, G, A),

πACUG : (A, C, G, U) 7→ (C, U, A, G), πAGUC : (A, C, G, U) 7→ (G, A, U, C)}.

where:

id : (A, U, C, G)→ (A, U, C, G) is the identity ;

SW (or c) : (A, U, C, G)→ (U, A, G, C) is the strong/weak (SW) or complementary transformation ;

YR (or p) : (A, U, C, G)→ (G, C, U, A) is the pyrimidine/purine (YR) transformation and ;

KM (or r) : (A, U, C, G)→ (C, G, A, U) is the and keto/amino (KM) transformation .

We now show that indeed in any of the cases of Theorem 7, (1)–(6), we can find such a permutation
π from L.

(1) If x = B1c(B1)B1 ∈ B3 and x′ = B′1c(B′1)B′1 ∈ B3, then either π = id (in case B1 = B′1) or one of
the three permutations c, p, r (in case B1 6= B′1) does the job.

(2) As in Case (1), either the identity id or one of the three permutations c, p, r does the job in
combination with the reversing transformation←−.

(3)–(6) Similarly to Cases (1) and (2), one can define permutations in L that do the job.

As in Theorem 6, the exact values of the frequency class numbers have been determined by computer
calculations. However, in Case (1), it is also easy to see that the frequency class number is zero.
To see this, let x = B1c(B1)B1, B1 ∈ B be a codon in a maximal self-complementary circular code.
It follows that also its anticodon x′ = c(B1)B1c(B1) is in the code due to self-complementarity.
However, then the word xx′ = B1c(B1)B1c(B1)B1c(B1) has two decompositions when read on the
circle. This contradicts the circularity of the code (compare also [12]). Thus, no codon of the form
B1c(B1)B1, B1 ∈ B can be contained in a code from CIRC, and therefore, its frequency class number
is zero.

Moreover, as in the proof of Theorem 6, one can show that the frequency class numbers u1 - u6

from the Cases (1)–(6) of Theorem 7 satisfy the following equations:

u1 + 2 · u2 = 528, and 2 · u3 + u4 = 528 as well as 2 · u6 + u5 = 528

In particular, it follows that u2 = 528−0
2 = 264.

Appendix C. Proof of Theorem 8

Proof. As in the proof of Theorem 7, we can show that the cases in Theorem 8 form a complete case
distinction and that the frequency class numbers are the same for codons of the same forms described
in (1)–(5) of Theorem 7. The exact values are once more determined by computer calculations. In fact,
we have for the frequency class numbers u1 to u5 from the cases of Theorem 8 that:

2 · u1 + u2 = 216 and 3u3 = 216 as well as u4 + 2 · u5 = 216

In particular, we have u1 = 216−0
2 = 108 and u3 = 216

3 = 72.
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