Next Issue
Previous Issue

Table of Contents

Life, Volume 6, Issue 4 (December 2016)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-4
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle Screening of a Haloferax volcanii Transposon Library Reveals Novel Motility and Adhesion Mutants
Life 2016, 6(4), 41; doi:10.3390/life6040041
Received: 4 October 2016 / Revised: 4 November 2016 / Accepted: 7 November 2016 / Published: 26 November 2016
PDF Full-text (3372 KB) | HTML Full-text | XML Full-text
Abstract
Archaea, like bacteria, use type IV pili to facilitate surface adhesion. Moreover, archaeal flagella—structures required for motility—share a common ancestry with type IV pili. While the characterization of archaeal homologs of bacterial type IV pilus biosynthesis components has revealed important aspects of flagellum
[...] Read more.
Archaea, like bacteria, use type IV pili to facilitate surface adhesion. Moreover, archaeal flagella—structures required for motility—share a common ancestry with type IV pili. While the characterization of archaeal homologs of bacterial type IV pilus biosynthesis components has revealed important aspects of flagellum and pilus biosynthesis and the mechanisms regulating motility and adhesion in archaea, many questions remain. Therefore, we screened a Haloferax volcanii transposon insertion library for motility mutants using motility plates and adhesion mutants, using an adapted air–liquid interface assay. Here, we identify 20 genes, previously unknown to affect motility or adhesion. These genes include potential novel regulatory genes that will help to unravel the mechanisms underpinning these processes. Both screens also identified distinct insertions within the genomic region lying between two chemotaxis genes, suggesting that chemotaxis not only plays a role in archaeal motility, but also in adhesion. Studying these genes, as well as hypothetical genes hvo_2512 and hvo_2876—also critical for both motility and adhesion—will likely elucidate how these two systems interact. Furthermore, this study underscores the usefulness of the transposon library to screen other archaeal cellular processes for specific phenotypic defects. Full article
Figures

Figure 1

Review

Jump to: Research, Other

Open AccessReview Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System
Life 2016, 6(4), 40; doi:10.3390/life6040040
Received: 18 August 2016 / Revised: 31 October 2016 / Accepted: 1 November 2016 / Published: 4 November 2016
PDF Full-text (874 KB) | HTML Full-text | XML Full-text
Abstract
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as
[...] Read more.
Cellular life is based on interacting polymer networks that serve as catalysts, genetic information and structural molecules. The complexity of the DNA, RNA and protein biochemistry suggests that it must have been preceded by simpler systems. The RNA world hypothesis proposes RNA as the prime candidate for such a primal system. Even though this proposition has gained currency, its investigations have highlighted several challenges with respect to bulk aqueous media: (1) the synthesis of RNA monomers is difficult; (2) efficient pathways for monomer polymerization into functional RNAs and their subsequent, sequence-specific replication remain elusive; and (3) the evolution of the RNA function towards cellular metabolism in isolation is questionable in view of the chemical mixtures expected on the early Earth. This review will address the question of the possible roles of heterogeneous media and catalysis as drivers for the emergence of RNA-based polymer networks. We will show that this approach to non-enzymatic polymerizations of RNA from monomers and RNA evolution cannot only solve some issues encountered during reactions in bulk aqueous solutions, but may also explain the co-emergence of the various polymers indispensable for life in complex mixtures and their organization into primitive networks. Full article
(This article belongs to the Special Issue Origin of Cellular Life)
Figures

Figure 1

Open AccessReview Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects
Life 2016, 6(4), 42; doi:10.3390/life6040042
Received: 22 August 2016 / Revised: 13 November 2016 / Accepted: 25 November 2016 / Published: 30 November 2016
Cited by 1 | PDF Full-text (1065 KB) | HTML Full-text | XML Full-text
Abstract
Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics”
[...] Read more.
Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future. Full article
Figures

Figure 1

Other

Jump to: Research, Review

Open AccessOpinion Piecemeal Buildup of the Genetic Code, Ribosomes, and Genomes from Primordial tRNA Building Blocks
Life 2016, 6(4), 43; doi:10.3390/life6040043
Received: 31 October 2016 / Revised: 21 November 2016 / Accepted: 29 November 2016 / Published: 2 December 2016
Cited by 2 | PDF Full-text (3134 KB) | HTML Full-text | XML Full-text
Abstract
The origin of biomolecular machinery likely centered around an ancient and central molecule capable of interacting with emergent macromolecular complexity. tRNA is the oldest and most central nucleic acid molecule of the cell. Its co-evolutionary interactions with aminoacyl-tRNA synthetase protein enzymes define the
[...] Read more.
The origin of biomolecular machinery likely centered around an ancient and central molecule capable of interacting with emergent macromolecular complexity. tRNA is the oldest and most central nucleic acid molecule of the cell. Its co-evolutionary interactions with aminoacyl-tRNA synthetase protein enzymes define the specificities of the genetic code and those with the ribosome their accurate biosynthetic interpretation. Phylogenetic approaches that focus on molecular structure allow reconstruction of evolutionary timelines that describe the history of RNA and protein structural domains. Here we review phylogenomic analyses that reconstruct the early history of the synthetase enzymes and the ribosome, their interactions with RNA, and the inception of amino acid charging and codon specificities in tRNA that are responsible for the genetic code. We also trace the age of domains and tRNA onto ancient tRNA homologies that were recently identified in rRNA. Our findings reveal a timeline of recruitment of tRNA building blocks for the formation of a functional ribosome, which holds both the biocatalytic functions of protein biosynthesis and the ability to store genetic memory in primordial RNA genomic templates. Full article
Figures

Figure 1

Journal Contact

MDPI AG
Life Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Life Edit a special issue Review for Life
loading...
Back to Top