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Abstract: The reductive tricarboxylic acid (rTCA) cycle is among the most plausible candidates
for the first autotrophic metabolism in the earliest life. Extant enzymes fixing CO; in this cycle
contain cofactors at the catalytic centers, but it is unlikely that the protein/cofactor system emerged at
once in a prebiotic process. Here, we discuss the feasibility of non-enzymatic cofactor-assisted
drive of the rTCA reactions in the primitive Earth environments, particularly focusing on the
acetyl-CoA conversion to pyruvate. Based on the energetic and mechanistic aspects of this reaction,
we propose that the deep-sea hydrothermal vent environments with active electricity generation in
the presence of various sulfide catalysts are a promising setting for it to progress. Our view supports
the theory of an autotrophic origin of life from primordial carbon assimilation within a sulfide-rich
hydrothermal vent.
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1. Introduction

The non-enzymatic processing of the reductive tricarboxylic acid (rTCA) cycle-type carbon
assimilation has been among the most challenging themes in the field of the origin of life [1-4].
Various abiotic mechanisms to realize the reaction have been proposed, including the pyruvate
formation from carbon monoxide (CO) and cyanide anion (CN~) in the presence of Ni** [5],
a high pressure condensation of alkyl thiols and formic acid to pyruvate catalyzed by FeS [6],
and the photo-electrochemical CO; reduction and fixation into rTCA compounds on ZnS colloidal
semiconductor under UV irradiation [7-9]. However, their contributions to life’s origin have
been questioned [10] because large discrepancies exist between the proposed mechanisms and the
corresponding metabolic processes. In the biological rTCA cycle, CO, fixation is operated by the
two enzyme cofactors (Figure 1): thiamine pyrophosphate (TPP) assists the conversion of acetyl-CoA
to pyruvate and succinyl-CoA to a-ketoglutarate [11,12], whereas biotin mediates the formations
of oxaloacetate and oxalosuccinate from pyruvate and «-ketoglutarate, respectively [13,14]. The
two cofactors have been deduced to participate in autotrophic metabolism from the very beginning
of the life’s evolution, at least from the stage of the last universal common ancestor (LUCA) that
could have lived in deep-sea hydrothermal systems [15]. Remarkably, replacement of heteroatoms
in their ring structures with others (e.g., O or N vs. S) does not inactivate, or in some cases even
improves, their functional properties [16-18]. Various heterocyclic compounds with structural features
resembling the two have been synthesized under simulated primitive environmental conditions [19-21].
Therefore, an alternative possibility is that prebiotic analogs of TPP and biotin with simpler structures
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that are initially formed via inorganic processes, facilitated the primordial carbon fixation that
preceded the origin of life, were incorporated into proto-enzymes in the course of functional evolution,
and eventually developed into the modern counterparts.
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Figure 1. Structure of the reductive tricarboxylic acid (rTCA) cycle (left), in which the CO, fixations
leading to the pyruvate and «-ketoglutarate formations are mediated by thiamin pyrophosphate (TPP),
whereas to the oxaloacetate and oxalosuccinate formations are by biotin (right).

In this manuscript, we discuss the feasibility of this scenario with a special attention to the
second part; the non-enzymatic cofactor-assisted CO; fixation. Our study focused on the acetyl-CoA
conversion to pyruvate on TPP because thiolated acetate derivatives (thioacids; R-COSH, thioesters;
R-COS-R’), plausible ancient forms of acetyl-CoA [22], were possibly present on the primitive
Earth [23,24]. Although recent geochemical surveys of the present-day submarine hydrothermal
fields observed no evidence of their abiotic formations [25-27], the results do not necessarily
deny their presence in the Hadean ocean hydrothermal ones because the geological situations are
likely largely different from each other. For instance, it has been shown that a high-temperature
basalt-seawater interaction in a CO,-rich condition results in the increase of solution pH to highly
alkaline (pH > 12; [28,29]). Owing to a denser distribution of metals in the ancient deep-ocean [30,31]
derived from much greater hydrothermal activity than the present level [32], the alkaline fluid-seawater
mixing in the early basalt-hosted hydrothermal systems could have precipitated metal sulfides as
the main body of hydrothermal mineral deposits [33]. This environmental setting favors the abiotic
production of thioester [24]. The thioester/thioacid conversion to pyruvate corresponds to the initial
step of the rTCA cycle. Thus, no development of the subsequent proto-metabolism is expected unless
an effective geochemical route to the pyruvate formation was established. Citrate can be a source
of oxaloacetate and pyruvate [34], but a proposed abiotic synthesis of citrate requires pyruvate [35].
Note that a simple heating of thioacids and thioesters in water in a range of temperature and pH
results in the hydrolysis of the thioester bond [36,37], and no experimental evidence has been reported
for the mineral-promoted CO, fixation into them in the prebiotic context [38], although approximately
three decades have passed since the possibility was first proposed [1,39]. These facts motivated us to
search the organic catalysts for the initiation of the primordial carbon assimilation.
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2. Energetics of Pyruvate Synthesis

We initially examine the energetics of pyruvate synthesis using ethylthioacetate (ETA) as
a prebiotic counterpart of acetyl-CoA to clarify the environmental condition necessary for it to be driven
thermodynamically. Figure 2 shows the calculated Eh-pH relationship of the pyruvate formation
(ETA + CO, + H* + 2e~ — pyruvate + ethanethiol (EtSH)), together with those of the Hy /H*, H,S/S
and mackinawite/pyrite (FeS/FeS,) redox couples, at 25, 60, and 100 °C (see Appendix A for the
calculation procedure). S (solid sulfur) is used as the H,S oxidation product because the H,S/S redox
couple provides a major potential control in the sulfide-rich hydrothermal vent environments [40].
The concentrations of Hy and H,S were assumed to be 1 mmol~kg’1, whereas that of CO, to be
20 mmol-kg~!. 1 mmol-kg ! is the representative H and H,S concentrations in the serpentine-hosted
hydrothermal systems on land [41] and on the ocean-floor [42] that have been argued to be the most
plausible settings for the origin of life [33,43,44], whereas 20 mmol~kg’1 corresponds to the steady-state
CO, concentration in the early ocean [45,46]. For organic compounds, 0.1 mmol-kg~! was arbitrarily
chosen because of no definitive constraint; calculations with different initial settings (Figure B1) showed
that higher organics’ concentrations result in slightly lower Eh values.

It can be seen in Figure 2 that H,S does not generate the potentials required to drive the pyruvate
formation over the examined aqueous conditions, while the lines of the H, /H* and FeS/FeS; redox
couples intersect with the threshold. At 25 °C, the H; and FeS oxidations provide favorable conditions
for the CO, fixation at pH 5.5-10.5 and 3-10, respectively. The pH ranges gradually shrink at higher
temperature owing to the negative shift of the necessary potential with an increasing temperature.
Hj; loses its thermodynamic advantage at around 60 °C (Figure 2b), whereas FeS does at around
100 °C (Figure 2c). The H, and FeS-driven pyruvate syntheses are therefore energetically possible only
in a cool to warm and near neutral aqueous solution. Plausible conditions for the accumulation of
pyruvate to a proto-metabolically significant extant may be further restricted by the unstable character
of pyruvate in acidic pH [47].

0.2 T T T T T T T T T T T T

— 2H'+2e - H,
08| S+H +2e - HS .
FeS,(s) + H* + 2e~ — FeS(s) + HS-

—— ETA + CO, + H* + 2e~ — Pyr + EtSH

E [V vs. the standard hydrogen electrode]
s
N

|
-
o

) 4 6 8 10 12 4 6 8 10 12 4 6 8 10 12
pH pH pH
Figure 2. Eh-pH relationships of the pyruvate formation from ethylthioacetate and CO, (red) and
of the Hy /H" (blue), HpS/S (green) and mackinawite/pyrite (black) redox couples at (a) 25, (b) 60,
and (c) 100 °C. See text and Appendix A for the calculation conditions and procedures.

3. TPP-Assisted Pyruvate Synthesis: A Mechanism

Then, is pyruvate producible non-enzymatically under sufficiently reductive conditions, such as
nearby a Hj-rich hydrothermal vent discharging FeS precipitate continuously, aided by TPP or its
prebiotic analogs? Note that the direct coupling of FeS oxidation with CO, reduction and fixation is
unlikely to occur due to the high activation energy even when the overall process is thermodynamically
favorable [48].

In the biological rTCA cycle, pyruvate synthesis is catalyzed by an iron-sulfur enzyme called
pyruvate:ferredoxin oxidoreductase (PFOR), or 2-oxoacid:ferrdoxin oxidoreductase (OFOR) [11,49-51].
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The catalytic center of all the known enzymes contains TPP as an essential cofactor for the one-carbon
transfer. The process starts with the deprotonation of the C2 carbon in the thiazolium ring, followed
by the nucleophilic attack of the resulting carbanion on the carbonyl carbon of acetyl-CoA to form
a tetrahedral intermediate (Figure 3). The intermediate then undergoes CoA release, and one electron
transfer from a reduced iron-sulfur cluster yields the hydroxyethyl-TPP (HE-TPP) radical. A second
electron addition reduces it to the HE-TPP C2« carbanion, and its nucleophilic attack to CO, makes
lactyl-TPP that finally produces pyruvate.

The stability and reactivity of the reaction intermediates have been examined using TPP that is
unbound to enzymes. The proton dissociation from the thiazolium C2 position occurs with the pK,
of 17-19 [52], while alkaline pH (>9.40) favors the opening of the thiazolium ring [53]. Acetyl-TPP,
a one-electron oxidation product of the HE-TPP radical [54], hydrolyzes rapidly to acetate and TPP at
neutral and alkaline pH (e.g., t; /, = 58 s at pH 7.0 and 24 °C [55]). The pyruvate release from lactyl-TPP
competes with the decarboxylation of lactyl-TPP to HE-TPP; the decarboxylation predominates at
pH < 9.5 (25 °C) [56]. When the sulfur atom in the thiazolium ring is replaced with nitrogen, it increases
the stability against ring-opening, while it suppresses the ylide formation [16].

In PFOR and OFOR, a conserved Glu residue stimulates the deprotonation of the thiazolium
C2 at the TPP-binding site with a low dielectric constant (¢, = 13-15 [57]). Electrons are provided by
[4Fe-4S] ferredoxins and are transported from the external enzyme surface to the catalytic center via
optimally arranged single or multiple [4Fe-4S] cluster(s) [11]. The proximal [4Fe-4S] cluster that locates
within 15 A from TPP [58-60] allows for rapid electron transfer to the adducts of TPP immediately
after they are formed, thereby prohibiting the intermediates from decaying. Although the bacterial
and archaeal enzymes differ in the subunit composition and overall structure, the proximal [4Fe-4S]
cluster is conserved [60], indicating the importance of this electron transfer pathway in the enzymatic
processes. The [4Fe-4S] cluster possesses the potential as low as —540 mV (vs. standard hydrogen
electrode; SHE [61]) that is sufficiently low to drive the energetically up-hill acetyl-CoA carboxylation.
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Figure 3. Thiamin pyrophosphate (TPP)-assisted pyruvate formation operated in pyruvate:ferredoxin
oxidoreductase (PFOR) (solid arrows) illustrated on the basis of the reported models [11,39-41] and the
side reactions that disrupt the overall process (dashed arrows).
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4. Discussion: Feasibility of Abiotic Pyruvate Synthesis in a Geological Setting

The above summary clearly indicates that the TPP-assisted pyruvate formation never takes
place in single aqueous condition. In contrast, at the mineral-water interface with a low dielectric
constant (e, = 26-53 [62]), the thiazolium ylide and the HE-TPP carbanion are expected to be stabilized
significantly [57], while such condition accelerates the decarboxylation of lactyl-TPP [56,63]. It has been
shown that imidazolium species, which contain nitrogen atom at the place of sulfur in the thiazolium
structure, effectively catalyze the CO, reduction to CO and formate on FeS,, and to ethylene glycol on
gold under an externally applied negative electric potential (at —0.85 V (vs. SHE)) [64,65]. The CO,
activation was inferred to be induced by the imidazolium ylide formation on the negatively charged
electrodes, followed by the CO; binding at the C2 position [64,65]. FeS could also provide reactive
surface and electric energy by coupling with its oxidation to FeS,, as was demonstrated for the H,S
reduction to Hp [66,67], nitrogen oxides to ammonia [68,69], ethyne to ethane, and ethane [70], and the
reductive amination of x-keto acids [71]. Interestingly, freshly precipitated FeS has the point of zero
charge (pHzpc) of around 7.5 [72], whereas the pHzpc of FeS; is around 1.5 [73,74]. FeS is thus
expected to provide a wide range of surface pH in the course of its oxidation even under a constant
aqueous condition, and controls the speciation of adsorbed molecules [75-77]. A drawback of the
FeS-driven CO, fixation is that the electron supply ceases when the FeS surface is fully oxidized.
Organic molecules thus need to be transported onto fresh FeS via diffusion and/or convection to
continue their reductions.

Wider and diverse electrochemical environments are available in sulfide-rich hydrothermal
systems on the ocean floor [78], where the potential gradient between the hydrothermal fluids and
seawater across the sulfide deposits drives the flow of electric current, and promotes redox reactions
at the vent-seawater interface by the continuous electron supply in the presence of various mineral
catalysts (Figure 4) [40,79,80]. If 1 mmol kg~! H, in hot and alkaline hydrothermal fluids serves as the
electron source, it generates the potential (e.g., —0.84 V (vs. SHE) at 100 °C and pH 12) well below
the desired value for the pyruvate synthesis at 25 °C and slightly acidic to neutral pH (—0.3~—0.4 V
(vs. SHE); Figure 2). Water molecules in an external electric field have a low dielectric property [81,82].
The geo-electrochemical setting thus could provide reaction conditions resembling the electron transfer
system in PFOR and OFOR in terms of the direct donation of low-potential electrons from metal-sulfur
clusters to the catalytic center with a low dielectric constant.

Figure 4. Geo-electrochemical pyruvate formation in the early ocean hydrothermal vent environment

as a possible initial step of the primordial carbon fixation.
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The hydrothermal setting also favors the abiotic amino acid synthesis [83,84] and
polymerization [19,85-87]. Amino acids and short peptides in some cases improve the stability
and activity of electrocatalysts [88-91]. Peptides with 10-20 monomers long have the capability
of recognizing TPP [92] and biotin [93]. These evidences may imply an early-stage interaction of
peptides and cofactors near the vent surface that could have played a positive role in the selective and
efficient progress of the primordial carbon assimilation [94-96]. A conclusion for the abiotic origin
of the TPP-mediated pyruvate synthesis must await the time when the aforementioned possibilities
are experimentally tested under simulated primordial geo-electrochemical conditions. As a future
experimental study, it is of particular importance to examine whether prebiotically producible
heterocyclic compounds with structural features resembling TPP [19-21] can assist the CO, fixation
in the proposed environment. The pyrimidine and pyrophosphate parts of TPP may be replaced
with simpler structures (e.g., -CHjz) without deactivation, and imidazolium and perhaps oxazolium
rings could serve as electron carriers in a manner similar to the thiazolium one in TPP. If primitive
analogs of TPP can catalytically provide pyruvate in a geological setting, the situation will also favor
the C4 to C5 conversion (i.e., succinyl-CoA — a-ketoglutarate; Figure 1). Although extant organisms
employ two distinct enzymes for the pyruvate and «-ketoglutarate syntheses, the primordial system
could have used a single catalyst for the two reactions and have later developed the optimally-tuned
enzymes for each, as was proposed for the evolution of many enzymes [97]. For the other CO, fixation
steps (pyruvate — oxaloacetate, x-ketoglutarate — oxalosuccinate; Figure 1), the energetically most
difficult process is the tautomerization of reactants from the keto to the enol forms [98]. This problem
may be overcome by borate [10,99] given the substantial amounts of boron released into ocean in
the course of the early submarine hydrothermal activities (1.8-4.5 x 10'® mol-year! [100]) and
its accumulation on seafloor clay minerals [101]. Alternatively, there is a possibility that the TPP
and biotin-mediated system is a genuine biological invention with no relic of the relevant prebiotic
processes [102]. Without these cofactors, no effective CO, fixation through the rTCA cycle is expected,
and thus, the early autotrophs would have had completely different metabolic strategies from those
as we know [103]. In either case, the origin of life scenario must connect smoothly the current and
progressively updated knowledge of the ancient geochemistry and biochemistry [104].

Finally, we discuss the suitability of other inorganic carbon compounds than CO; as a precursor
for the abiotic pyruvate production. The reaction could be facilitated in the presence of aldehydes
because the usage of acetaldehyde instead of acetyl-CoA skips the route of the unstable HE-TPP
radical formation [105]. Aldehydes also serve as a carbon source of thioesters through the oxidative
coupling with thiols [106,107], and the reaction is catalyzed by thiazolium compounds [108]. However,
the availability of aldehydes in the early-ocean hydrothermal systems remains controversial [109-111].
Formate may be a more realistic C1 source because formate has occasionally been observed in
the present-day hydrothermal systems with high concentrations of up to ~0.7 mM [27,112,113].
Actually, the enzyme “pyruvate formate-lyase (PFL)” catalyzes the reversible conversion of
pyruvate and CoA into acetyl-CoA and formate; the system plays a central role in anaerobic
glucose fermentation in diverse Eukarya and Bacteria [114,115]. A drawback of the formate
fixation is that it is a highly thermodynamically up-hill reaction (the standard Gibbs energy of
reaction (A,G°) = ~—21 kJ-mol~1; [116]) with the equilibrium constant of 2 x 10~%. The net PFL
reaction is neither oxidation nor reduction; hence the energy barrier cannot be overcome by the
geo-electrochemical mechanism discussed above. The low reactivity of formate, which is a much poorer
electrophile than CO, [117], is another problem to be solved. PFL activates the formate condensation
by a radical mechanism using two cysteine and one glycine residues as radical carriers [118-120]. It is
unclear whether such a radical process can be operated non-enzymatically in water or on minerals
with the aid of prebiotically available short peptides.
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5. Concluding Remarks

Abiotic CO, fixation is among the most fundamental steps for life to originate, but no
geochemically feasible process that drives the reaction has been acknowledged [121]. If the
above-discussed mechanism occurs with prebiotically producible cofactor analogs, favorable
conditions for it to progress could have distributed widely on the early ocean floor because the
global thermal convection at that time is considered to be much greater than the present level [32].
It can also be envisioned that the geochemical CO; fixation is a common phenomenon on terrestrial
planets and satellites because hydrothermal activity is widespread in our solar system including
on Europa, Enceladus, and the ancient Mars [122-124]. Future experimental study that mimics the
conditions of the proposed model is expected to provide insights into the universality of autotrophic
metabolism and its underpinning life systems in the cosmos.
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Appendix A

The Eh-pH relationship of the ethylthioacetate conversion to pyruvate, and of the Hy /H*, H,S/S
and FeS/FeS, redox couples (Figure 2) were calculated, respectively, using the following equations:

E, = ;T-} (AfGO(HZ) + RTay, — 2RTlnucH+), (A1)

Ey = 5t (x (AfGO(H25> + RTlnucst) +(1-x) (AfGO(HS_) + RTlntXHS*) (A2)
—AfGO(S) -1+ x)RTlnocH+),

E, = ET} (AfGO(FeS) + x(AfGO(HZS) + RTlnocH25> +(1—x) (AfGO(HS*) + RTZHOCHS’) (A3)

—AsGO(FeSy) — (1+ x)RTlnvcH+),
and

E, = %(y(AfGO(P]/r) + RTlnoch) +(1-y) (AfGO(Pyr’) + RTlnzxpyrf)—l-
z(AGO(EESH) + RTInagss ) + (1 - 2) (AfGO(EtS™) + RTlnagys- )+
(1—n)A;G°(H,0) — (AfG"(ETA) + RTlnaETA) - n(AfG"(COZ) + RTlnocc()Z) - (A4)
m(A;G?(HCO3 ) + RTIntgco: ) — (1 —n — m)(87G*(CO3™ ) + RTlnagp )~
2+y+z—m—2n)RTInay+).

In these equations, T, R, and F stand for temperature in kelvin, the gas constant
(8.31447 J-mol~1.K~ 1), and the Faraday constant (96,485 ] mol~! V1), respectively. a; represents

the activity of the species i. x, y, z, n, and m signify the mole fraction of H,S (= ﬁ),
25TV Hs—

: : _ MPyr : _ MEis _ MC02 —
pyruvic acid (= " s Y ), ethanethiol (= Mt + Mo ), CO, (= Mo, +MHco§ +Mco§* ), and HCO3

(= Mycor
Mco, +MHC05 TM2-

), respectively (M; denotes the molality of the species 7). In addition, A/G’(i)

represents the standard molal Gibbs energy of formation of the species i at desired temperature,
which were calculated according to the revised HKF equations of state [125] together with the
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thermodynamic data and the revised HKF parameters reported in [126] for H, and H,S, in [127]
for HS™, in [128] for ethylthioacetate, pyruvate and pyruvic acid, and in [129] for ethanethiol.
The A¢G’ value for ethanethiol anion (EtS™) was estimated using the value of A¢G’ for ethanethiol
in combination with its ionization constant as a function of temperature [130]. The temperature
dependences of A¢G’ for S (solid sulfur) and FeS; were calculated as follows:

T T P
AGY T = AGS ¢ — % 1 (T—Ty)+ /T CodT —T /T CY dinT + /P V24P (A5)

where AG}, 1 and S} 1, respectively, represent the standard molal Gibbs energy and entropy at the
reference temperature (T, = 298.15 K) and pressure (P, = 1 bar). CI%V represents the standard molal
heat capacity at P;, and V; denotes the standard molal volume at the temperature of interest. In the
present calculation, the values of AG%r,Ty' S%V,Tr' and C%r as a function of temperature for S and FeS,
were taken from [131] and [132], respectively, while the value of V} was assumed to be constant in the
range of temperature of our interest. The A¢G’ for FeS was estimated from the equilibrium constant of
FeS dissolution (FeS + 2H* — Fe?* + H,S [133]) together with the AfG® for Fe%* (referred from [127])
and for H,S. The values of x, y, z, n, and m are expressed, respectively, as:

x = r)/HS_aH+ i (A6)
YHs- A5+ + YH,sKH,s
_a
y = 'YPyr Ht ) (A7)
Ypyr-Ag+ + YpyrKpyr
7 = YEts-AH+ , (AS)
Yets—ag+ + YEtsHKErsH
2
YHCco; Tcor 4+
n= ; s O : (A9)
THco; Yooz g+ T 70 Yeoz Keo,15tm+ + 70, YHeo; Keo, 2nd
and K
YCO,Yco2—KCO,,15tAH+
m— s (A10)

2
YHco; Yeor T+ + 7o, Teoz Kcoy15tam+ + 70, Trco; Keo, 2na

Therein, v; represents the activity coefficient of the species i (a; = M; x ;) and K; the dissociation
constant of i (i — i~ + H*), whose values were calculated as:

ArGo(i) — AfGO(i7)
K; —exp< f RTf (A11)
for H,S, pyruvic acid, and ethanethiol, and as:
A¢G°(HCO3 ) — A¢G°(CO,) — ArG°(H0)
Kcoy 1t = exp( (A0 ) — 40K ! (A12)
and
AfG° (cogf) — A;G°(CO,) — AfG°(H,0)
Kco,ond = exp RT (A13)

for CO,. The AfGO for H,O was referred from [134]. In all calculations, the values of y; were calculated
with the extended Debye-Hiickel equation [135] setting the ionic strength to be 0.1 (NaCl). The pressure
was set to 1 bar. >~ and the ion pair NaHS were not considered in this calculation because these are
expected to be minor S and/or Na species in the examined aqueous conditions [136,137].
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Appendix B

See Figure B1.

_ T= with 0.01 mmol kg~' _|
0.4 e ~_ - of organic compo%nds
with 1 mmol kg™ s

E [V vs. SHE]

of organic compounds \‘\\ =

-0.6 =

——2H"+2e"—H,

S + H* +2e- — HS- =

0.8~ FeS,(s) + H* + 2e- — FeS(s) + HS- N

—— ETA + CO, + H" + 2e~ — Pyr + EtSH
-1.0 1 1 1 1

2 4 6 8 10 12

pH

Figure B1. Figure 2b was re-calculated with the organic compounds’ concentrations of 1 mmol-kg !
and 0.01 mmol-kg 1.
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