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Abstract: We report the heterologous expression and molecular characterization of the first extremely
halophilic alpha-glucosidase (EC 3.2.1.20) from the archaeon Haloquadratum walsbyi. A 2349 bp
region (Hgrw_2071) from the Hqr. walsbyi C23 annotated genome was PCR-amplified and the
resulting amplicon ligated into plasmid pET28b(+), expressed in E. coli Rosetta cells, and the resulting
protein purified by Ni-NTA affinity chromatography. The recombinant protein showed an estimated
molecular mass of 87 kDa, consistent with the expected value of the annotated protein, and an
optimal activity for the hydrolysis of «-PNPG was detected at 40 °C, and at pH 6.0. Enzyme activity
values were the highest in the presence of 3 M NaCl or 3-4 M KCL. However, specific activity
values were two-fold higher in the presence of 34 M KCl when compared to NaCl suggesting
a cytoplasmic localization. Phylogenetic analyses, with respect to other alpha-glucosidases from
members of the class Halobacteria, showed that the Hgr. walsbyi MalH was most similar (up to 41%)
to alpha-glucosidases and alpha-xylosidases of Halorubrum. Moreover, computational analyses for
the detection of functional domains, active and catalytic sites, as well as 3D structural predictions
revealed a close relationship with an E. coli Yicl-like alpha-xylosidase of the GH31 family. However,
the purified enzyme did not show alpha-xylosidase activity. This narrower substrate range indicates
a discrepancy with annotations from different databases and the possibility of specific substrate
adaptations of halophilic glucosidases due to high salinity. To our knowledge, this is the first report
on the characterization of an alpha-glucosidase from the halophilic Archaea, which could serve as a
new model to gain insights into carbon metabolism in this understudied microbial group.
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1. Introduction

Haloguadratum walsbyi is a squared-shaped, extremely halophilic member of the Euryarchaeota,
which has been described as the dominant representative of the microbiota present in aquatic
hypersaline (>32% NaCl) environments [1-3]. The organism was first described in 1980 by Walsby [4].
However, subsequent studies employing conventional and molecular techniques have reported
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Haloquadratum walsbyi as the dominant lineage across a variety of environments with high osmotic
stress including hypersaline pools [2,5], salt lakes, and saltern crystallizer ponds. Pure cultures of this
archaeon were independently isolated from solar salterns in Spain and Australia by Bolhuis et al. [5]
and Burns et al. [1], respectively. The Spanish strain was designated HBSQO001 and the Australian strain
as C23. The species was formally described as Hgr. walsbyi in 2007 by Burns et al. [1]. Hqr. walsbyi grows
optimally at 45 °C under strictly aerobic conditions in defined media (pH 7) with 18% (w/v) NaCl
and supplemented with pyruvate as the only carbon source [1]. Nevertheless, as many as 43 genes
with predicted functions related to carbohydrate metabolism, including a putative alpha-glucosidase
encoded by an open reading frame (ORFs) Hqrw_2071 and HQ1911A, have been described in both
strains [5].

Alpha-glucosidases (EC. 3.2.1.20) are a diverse group of enzymes capable of hydrolyzing
1,4-alpha-glucosidic linkages of terminal residues of D-glucose in a variety of oligosaccharides [6,7].
They are known to carry out the release of glucose from maltose and maltodextrins and to mediate
glycoprotein processing in living systems. Moreover, some of these enzymes are of biotechnological
and industrial value since they can conjugate sugars with biologically useful materials and also
facilitate the production of food-related oligosaccharides [8,9].

The first archaeal alpha-glucosidase was purified from Sulfolobus solfataricus strains 98/2 and
P2 [10]. Subsequently, several alpha-glucosidases from members of the hyperthermophilic Archaea
(Sulfolobus shibatae and S. solfataricus, Pyrococcus furiosus, P. woesei, and Thermococcus litoralis) have been
have been characterized [11-13]. Several members of the halophilic archaea (mainly Haloferax and
Halogeometricum) are capable of using alpha-linked sugars as carbon sources [8,9,14].

There are relatively few studies that deal with the purification and characterization of halophilic
enzymes. Published examples include an extracellular serine protease produced by Natrialba
madagii [15]; a-amylases from Haloarcula hispanica [16], Haloferax mediterranei [17], and Halomonas
meridiana [18]; a glucose dehydrogenase from Haloferax mediterranei [19]; an alcohol dehydrogenase
from Natronomonas pharaonis [20], and an extremely halophilic 3-galactosidase from Haloferax
lucentense [21,22]. However, to our knowledge, there are no reports on the characterization of an
extremely halophilic alpha-glucosidase. In this work, we describe the cloning and characterization of
an alpha-glucosidase gene from Hgr. walsbyi C23, the dominant haloarchaeon in most solar saltern
systems according to metagenomic surveys [2].

2. Materials and Methods

2.1. Microbial Strain

Cultures of Haloquadratum walsbyi type strain C23 (DSM 16854) were kindly provided by
Dr. Mike Dyall-Smith (University of Melbourne, Melbourne, Australia).

2.2. Construction of the Expression Plasmid

Genomic DNA from Hgqr. walsbyi C23 was extracted as previously described [23]. The resulting
pellet from 2 mL of liquid culture was resuspended in 500 uL of lysis solution (sterile deionized water)
and heated at 70 °C for 10 min. Primers flanking the Hgrw_2071 locus in Hqr. walsbyi strain C23 were
designed for the subsequent amplification, cloning and the expression of this gene. These primers
were checked against the genome of strain HBQOO01 and were also complementary to flanking regions
of HQ1911A. Protein sequences predicted from both target loci were of equal length (782 amino acids),
but differed by 10 amino acid substitutions. The putative alpha-glucosidase gene was PCR-amplified
using TaKaRa La Taq DNA polymerase (Takara Bio, Mountain View, CA, USA). The sequences of
forward and reverse primers containing Nhel and Xhol recognition sites (underlined positions) were:
5'-CCA TAG CTA GCA TGT GGT TGG 3’ and 5'-CGT CTC GAG ACC TCA GGA AGT ATT GG-3/,
respectively. The PCR product was cloned into pET28b(+) expression vector (Novagen, Madison, WI,
USA), which was pre-digested with Ndel and Xhol (New England Biolabs Inc., Ipswich, MA, USA).
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The ligation was performed using T4 DNA Ligase (Promega Inc., Fitchburg, WI, USA). The resulting
recombinant plasmid was called pET-malH.

2.3. Protein Expression and Purification

The recombinant plasmid (pET-malH) was transformed into E. coli Rosetta™ cells, and grown
at 37 °C in 4 L of Luria Bertani broth (LB) containing 34 pg/mL chloramphenicol and 30 pug/mL
kanamycin. When cultures reached late log phase (ODg of 0.6-0.8), they were induced with 1 mM
Isopropyl B-D-1-thiogalactopyranoside (IPTG) for 3 h. Cells were harvested by centrifugation
(4000 rpm x 20 min, at 4 °C), resuspended in sodium phosphate buffer (NaH,PO,, pH 8.0; 3 M NaCl,
10 mM imidazole), and lysed by sonication on ice (100 W, 1 s of sonication vs. 2 s pause, 500 cycles).
The cell lysate was then centrifuged (13,000 rpm, 15 min, 4 °C). The resulting supernatant was loaded
into a chromatography column packed with Ni-NTA agarose (Qiagen, Venlo, Germany), and washed
with sodium phosphate at increasing imidazole concentrations of up to 80 mM. The elution was
performed using sodium phosphate containing 250 mM of imidazole. Eluted fractions were tested
for alpha-glucosidase activity as described in Section 2.4. The alpha-glucosidase containing fractions
were resolved by Polyacrylamide Gel Electrophoresis (SDS-PAGE) using 10% polyacrylamide gels,
stained with Bio-Safe™ Coomasie Stain (BioRad Inc., Hercules, CA, USA). Protein concentration
was determined using the Pierce BCA Protein Assay (ThermoScientific Inc., Bridgewater, NJ, USA),
using bovine serum albumin (BSA) as a standard.

2.4. Enzymatic Assays

The alpha-glucosidase activity was determined by measuring the formation of p-nitrophenol
(pPNP) (OD at 420 nm, 40 °C) from the hydrolysis of p-nitrophenyl «-D-glucopyranoside
(PNPG, a  chromogenic «-glucosidase substrate) and 4-nitrophenyl o-D-xylopyranoside
(PNPX, a chromogenic «-xylosidase substrate) [10,21,24]. The activity assays were initiated by
adding samples of the crude extract or the purified enzyme to a reaction mixture consisting of 10 mM
of each substrate, 50 mM 2-(N-morpholino)ethanesulfonic acid (MES), 3 M of KCI or NaCl (pH 6.0).
Reactions were terminated after 30 min by the addition of 500 pL, 1 M NayCOs.

2.5. Effects of Salinity, pH, and Temperature

The effect of salinity was determined using one-fold increments of KCl (04 M) and NaCl (0-5 M)
in 50 mM MES (pH 6.0) at 40 °C. The optimal temperature was determined by carrying out assays
incubated independently at 10, 25, 30, 40, 50, and 60 °C. The optimal pH was determined at 40 °C using
the following buffers: citric acid (pH 2.5-3.5), sodium acetate (pH 4.0), MES (pH 5-6), Tris-HCl (pH 7-8),
Nap,HPOy (pH 9.0), and N-cyclohexyl-3-aminopropanesulfonic acid (CAPS) (pH 10.0) supplemented
with 3 M KCl. All enzymatic assays were performed at conditions described in Section 2.4.

2.6. Phylogenetic Analyses

Protein sequences of alpha-glucosidases from Archaea, Bacteria and Eukarya were retrieved
from the Pfam protein family database [25], except that encoded by Hgr. walsbyi C23, which was
obtained from the KEGG database [26]. Amino acid sequence alignments were generated using
ClustalW [27] while and Neighbor-joining and maximum likelihood (data not shown) phylogenetic
trees (2000 bootstrap replications) were constructed with MEGA 6 (http://www.megasoftware.
net/)) [28-30] using the p-distance and JTT matrix-based models, respectively.

2.7. In Silico Functional Characterization of the Hqr. walsbyi Alpha-Glucosidase

The predicted amino acid sequence of the putative glycosyl hydrolase from Hqrw_2071 was
screened for the presence of functional domains using the NCBI's CDD/SPARCLE Tools [31]. In order
to detect functional features with respect to protein structure, the COBALT program [32] was
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used to generate an anchored multiple sequence alignment (MSA) based on functional constraints
derived from 3D structure information contained in NCBI-curated domains. The alignment
was generated by importing COBALT’s output into the Graphic View interphase of the BioEdit
software package (http://www.mbio.ncsu.edu/BioEdit/page2.html) [27] and manually edited based
on CDD annotations in a rich text file using a word processor and included sequences from
archaeal alpha-glucosidases previously purified and characterized at the molecular level (Table 1).
Additional searches for the presence of functional domains were conducted with the CDD tool using the
Pfam and InterPro databases [25,26]. Moreover, structural models of the Hgr. walsbyi alpha-glucosidase
were predicted using the Phyre2 www.sbg.bio.ic.ac.uk/~phyre/html/page.cgi?id=index) and (PS)2-V2
(ps2.lifenctu.edu) modelling servers. The resulting structures were visualized using the iCn3D
web-based 3D structure viewer (https://www.ncbi.nlm.nih.gov/Structure/icn3d /full.html).

3. Results and Discussion

3.1. Identification of a Putative Alpha-Glucosidase Gene in the Hqr. walsbyi C23 Genome

Previous studies from our laboratory have demonstrated that Hgm. borinquense has the ability
to utilize maltose as a sole carbon source. Phylogenetically, Hqr. walsbyi is closely related to Hgm.
borinquense [1], and we hypothesized that these organisms might have a similar physiology for
carbohydrate metabolism. Therefore, the genomes of Hgr. walsbyi HBSQO001 (DSM 16790) and Hgr.
walsbyi C23 (DSM 16854) were searched for the presence of putative alpha-glucosidase gene sequences
using the KEGG database (http://www.genome.jp/kegg/pathway.html). This resulted in the detection
of a gene (Hgrw_2071) annotated as a putative alpha-glucosidase in the genome of Hgqr. walsbyi
strain C23 as well as in that of its homolog (HQ1911A) in strain HBSQ001. Through the use of
different databases (Pfam, Expasy Proteomics Server, PROSITE, Inter Pro Scan, NCBI Conserved
Domains), it was determined that the region comprised by nucleotide positions 1,126,713 to 1,129,061
of the Hqr. walsbyi C23 chromosome encoded an ORF with a predicted amino acid sequence of 782
residues [25,26,33]. The inferred amino acid sequence of Hgrw_2071 was compared to that of other
previously described or annotated alpha-glucosidases from members of the Archaea. Table 1 shows
detected domains of Hgrw_2071 from Hgr. Walsbyi, which are 35% identical with respect to those
present among representatives of the Family 31 of the glycosyl hydrolases and the family of galactose
mutarotase-like 2. Galactose mutarotases act as catalyzers in the interconversion of either «- and
-anomers of galactose to glucose [34].

Table 1. Archaeal members encoding hydrolases with conserved domains associated with
alpha-glucosidases. The identity percentages of these conserved regions with respect to those detected
in the amino acid sequence of the Halogquadratum walsbyi MalH are shown. The comparisons are based
on searches against the Pfam repository.

Conserved Domains

Archaea Species Percent Identity (%)
Galactose Mutarotase-Like 2 Glycosyl Hydrolases Family 31
Haloquadratum walsbyi 161-222 243-670 This study

Halorubrum kocurii 156-217 238-668 43
Halorubrum terrestre 162-223 244-672 41
Halorubrum arcis 162-223 244-672 41
Halorubrum litoreum 162-233 244-672 41
Halorubrum distributum 162-233 244-672 41
Halorubrum lipolyticum 160221 242-670 40
Halothermothrix orenii 144-211 232-672 29
Thermoplasma volcanium 177-244 265-697 27
Thermoproteus uzoniensis 67-136 157-602 27
Pyrobaculum aerophilum * 67-133 152-612 27
Haloterrigena turkmenica 126-193 226-696 26

Sulfolobus islandicus 61-127 148-608 26
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Table 1. Cont.

Conserved Domains

Archaea Species Percent Identity (%)
Galactose Mutarotase-Like 2  Glycosyl Hydrolases Family 31

Sulfolobus solfataricus * 161-222 243-670 26
Thermoproteus tenax 69-135 155-616 26
Pyrobaculum arsenaticum 68-134 154-613 26
Pyrobaculum calidifontis 67-133 153-610 26
Thermoplasma acidophilum 147-214 234-667 25
Sulfolobus acidocaldarius 59-124 145-574 25
Sulfolobus tokodaii * 56-122 143-586 25
Metallosphaera sedula 57-123 144-598 25
Pyrobaculum islandicum 67-133 153-612 25
Picrophilus torridus * 58-123 144-572 24

* Molecularly characterized and purified [35-38].

3.2. Biochemical Characterization of the Recombinant Alpha-Glucosidase from Hqr. walsbyi

After IPTG induction, crude extracts from Escherichia coli cells were analysed for the detection of
alpha-glucosidase activity at salinity concentrations ranging from 0 to 5 M. Crude extracts from cells
containing the pET-malH plasmid showed alpha-glucoside activity in assays carried out at 40 °C and
supplemented with 3 M NaClL In contrast, extracts from cells transformed with an empty vector or
from cells with no vector were unreactive (data not shown).

Purification of the recombinant alpha-glucosidase was performed by loading 1 mL of concentrated
crude cell extract into a Ni-NTA agarose column (Qiagen, Venlo, Germany) and eluted with imidazole
as described by the manufacturer. The quality and purity of the recombinant protein was verified
using SDS-PAGE (Figure 1).

250 kDa rance

150 kDa

100 kDa

75kDa mmp

Figure 1. SDS-PAGE gel (10% polyacrylamide) of «-glucosidase containing fractions. Lane 1:
Ladder Precision Plus Protein Kaleidoscope (BioRad Inc., Hercules, CA, USA); Lane 2: Crude extract
of E. coli Rosetta™ cells (pET-malH) after induction with IPTG; Lane 3: purified MalH showing a size of
approximately 87 kDa.

As seen in Figure 2, optimal activity conditions for the recombinant enzyme were observed
at 40 °C, pH 6.0, and 3 M KCL. These results are in agreement with Hgr. walsbyi growth conditions [1].
Interestingly, recombinant MalH showed a higher activity when KCI was used in the buffer instead of
NaCl. This result is consistent with a cytoplasmic enzyme, as halophilic Archaea accumulate high levels
of K* in their cytoplasm to compensate for the high concentration of Na* in their environment [39].
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Figure 2. Optimal temperature (A), salinity (B), and pH (C) conditions for the hydrolysis of
p-nitrophenyl «-D-glucopyranoside (PNPG) by the Hgr. walsbyi MalH. Conditions were tested as
follows: (A) optimal temperature was determined using the following: 10, 25, 30, 40, 50, 60 (°C) in
a 3 M KCl, 50 mM MES (pH 6.0) reaction buffer; (B) optimal salinity was determined using KCI (0-4 M)
and NaCl (0-5 M) as salt variables in a reaction buffer containing 50 mM MES (pH 6.0) at 40 °C;
(C) optimum pH was determined at 40 °C with 3 M KCl in the following range: 2.5, 3.5, 4.0, 5.0, 6.0, 7.0,
8.0,9.0, and 10.0. The graphs are representative of an average of four independent trials performed in
order to describe the optimal conditions of the protein under study.
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3.3. In Silico Functional Chracterization and Phylogenetic Analysis of the Hqrw_2071 Gene Product

With regard to global relationships, structurally-constrained sequence alignments revealed that
MalH was nearly 50% identical to the partial sequence of an halophilic glycosidase detected in
the metagenome of an Australian hypersaline lake [40] and aproximately 36% identical to putative
alpha-glucosidases from H. kocurii and H. litoreum [41]. Despite the detection of functional traits
shared with xylosidases, MalH only shared 26% amino acid identity with respect to its closest database
match with a similar domain architecture, an E. coli Yicl alpha-xylosidase [42]. However, similar to
theYicl alpha-xylosidases (PDB 2F2H), MalH seems capable of forming homo-multimers since residues
potentially associated with binding of homotrimers (T353, G352, and E361) and homohexamers
(R485, F488 and E497) were detected using the CDD tool. These findings were in agreement with 3D
structure prediction analyses generated by the Phyre2 server, which suggested a folding pattern
consistent with that of various alpha-glucosidases (100% of residues modeled at >90% confidence) in
which most of the hydrophobic residues were oriented towards the core of the predicted structure
(Figure 3A). Likewise, the 3D model produced by the (PS)2-V2 server revealed strong structural
similarities (E-value 4.2 x 10728) with respect to a homo-multimeric Yicl alpha-xylosidase from E. coli
(PDB: 1WES5 and 2F2H; Figure 3B-D). Furthermore, the (PS)2-V2 server aligned 98% of the amino acid
sequence of MalH with the PDB 2F2H-derived template at a 25.89% of amino acid identity. An identity
value similar to that obtained from structurally constrained alignments (26%) using the COBALT tool.

-
i

a ~"~!_ ‘= L)
NIk

Figure 3. Tridimensional structural predictions for Hqr. walsbyi MalH generated with the Phyre2 (A)
and (PS)2-V2 (B) modellingmodeling tools; (C) tridimensional structure of the monomer corresponding
to the chain A of the homohexadimer complex of the E. coli Yicl-like alpha-xylosidase (PDB 2F2H).
Red highlights depict the first five positions of the N-terminal and the last five residues of the
C-terminal (left and right, respectively) as well as that of putative homotrimer and hexadimer interfaces
(bottom and center, respectively). Hydrophobic and hydrophilic residues are highlighted in green and
gray, respectively (A-C); (D) Homohexadimer structure of the Yicl thiosugar Michaelis complex
(PDB 2F2H). The monomer corresponding to the chain A of the complex is shown in gray and
outlined in red (top right). Secondary structure domains within each monomer are highlighted
in different shades.
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Phylogenetic tree reconstructions showed that the Hgr. walsbyi MalH is <50% identical to other
alpha-glucosidases within the Archaea (Table 1, Figures 4 and 5, Figure S1) although similarities
with other glycosyl hydrolases, such as alpha-xylosidases, were observed through multiple sequence
alignments. However, the recombinant protein from this study was unable to hydrolize a-PNPX
(data not shown). It is suggested that genes encoding xylosidases and glucosidases are homologs,
but evolutionary changes could have separated them and, therefore, both types of enzymes show
degrees of similarity when compared in phylogenetic trees [7,43].

In silico analysis showed two putative transmembrane helices and four putative transmembrane
segments. Putative transmembrane helices are also found in eukaryotic alpha-glucosidases. However,
since enzymes from eukaryotes do not span the cytoplasmic membrane, the predicted transmembrane
segments of the malH product could be involved in enzyme folding rather than membrane
attachment [43].
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100

100

47!

—
Figure 4. Neighborjoining dendrogram showing the evolutionary relationship of archaeal
alpha-glucosidases [44]. The Thermotoga maritima alpha-glucosidase was used as an outgroup.
The sequence of Hgr. walsbyi MalH is labeled with a black square. Bootstrap values (2000 replicates)
are shown at the nodes [27]. The phylogenetic tree is drawn to scale, using the same units for branch
lengths as those of the evolutionary distances. The evolutionary distances were estimated using the
p-distance model and are in the units of the number of amino acid differences per site [25]. The analysis
involved 26 protein sequences. A total of 998 positions were used in the dataset.
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Figure 5. Inferred evolutionary relationships of a-glucosidases and alpha-xylosidases described among
representatives from the Archaea, Bacteria, and Eukarya. The position of MalH is indicated by the black
square, while that of putative alpha-xylosidases is indicated with white squares. Alpha-glucosidases
are unmarked. The evolutionary history was predicted using the neighbor-joining method [28].
The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test
(2000 replicates) are shown at the nodes [27]. The phylogenetic tree is drawn to scale, using the same
units for branch lengths as those of the evolutionary distances. Evolutionary distances were calculated
using the p-distance method and are in the units of the number of amino acid differences per site.
The analysis included 32 amino acid sequences. All ambiguous positions were removed for each
sequence pair. The final dataset consisted of a total of 2541 positions. Evolutionary analyses were
conducted in MEGA 6 [29].

Functional predictions based on analyses performed with the NCBI's Conserved Domain Database
(CDD) and the Subfamily Protein Architecture Labeling Engine (SPARCLE) revealed a domain
configuration reminiscent of an alpha-xylosidase (Arch. ID 1020107). This consisted of a conserved
N-terminal domain of the glycoside hydrolase family 31 (GH31_N) (E-value 5.80 x 1073!) located
upstream with respect to a YicI-like domain of GH31 xylosidases (E-value 3.27 x 10~1%%). These were
identified at intervals 154-262 and 262-570, respectively (Figure 6; MalH numbering system).
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Figure 6. Partial depiction of a full-length multiple sequence alignment

showing the functional

features detected in MalH, with respect to those described in previously purified and characterized

alpha-glucosidases. The green bar indicates the potential location for an N-terminal domain of GH31

enzymes, whereas the violet bar shows thatfor a Yicl-like GH31 xylosidase domain. Black-shaded

columns illustrate positions >75% identical. Yellow and red columns indicate the location of active

sites detected at regions corresponding to the putative N-terminal and Yicl-like domains, respectively.

Light blue and light green shades show positions corresponding to active sites and conserved regions

reported in glycosidases from S. solfataricus and S. tokodaii, respectively. The location of putative

catalytic “D” residues associated with Yicl-like domains are indicated with “#” characters at the top of

the column. That of predicted homotrimer and homohexamer binding sites are highlighted in blue

and gray, respectively. Distinctive residues detected in the predicted gene product of Hgrw_2071 are

highlighted in pink. PDB or GenBank accession numbers follow the designation of sequences. * =

partial sequence.
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A conserved glutamine residue (Q187; Figure 7) previously described as part of an active site in
the tridimensional structures of the N-terminal domain of GH31 alpha-glucosidases (cd14752) from the
bacterium Ruminococcus obeurm PDB: 3PHA [45] and common beet, Beta vulgaris PDB: 3W37 [46] was
detected. However, Q187 emerged as all the other functionally confirmed alpha-glucosidases compared
in this alignment had aspartic acid (D213) at this position (Figure 6). These included enzymes for
bacteria and thermophilic archaea including in the conceptual translation of an alpha-xylosidase from
the reference genome of Streptomyces coelicolor (GenBank accession No. NP_733521) and in that of
a Yicl-like alpha-xylosidase from E. coli (PDB: 2F2H_A) [42]. Moreover, the Q187 substitution was
an exclusive trait of MalH as well as of sequences provisionally identified as alpha-glucosidases in
Halorubrum litoreum and Halorubrum kocurii [33,41], suggesting a signature feature of the N-terminal
domain of alpha glucosidases from halophilic archaea (Figure 7A). All residues (D307, W445, K417,
D419, F420, R467, W480, Y516 and H552; Figure 6, MalH numbering system; red-colored positions)
comprising the active site and the two catalytic residues (D419 and D483) responsible for the hydrolysis
reaction in the Yicl-like alpha-xylosidase from E. coli (PDB: 2F2H_A) [42] were also identified in MalH
(Figure 6). Further analyses using the Pfam database [25] showed the presence of domains with
functions and coordinates consistent with those detected using the CDD tool. These consisted of a
galactose mutarotase-like domain at the N-terminal ([43]; E-value 4.9 x 10~12) followed by a GH31
domain (E-value 1.4 x 1071%%), which were situated at intervals 162-222 and 244-670, respectively.
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Figure 7. Partial multiple sequence alignments (A-E) illustrating distinctive positions (pink) shared
by glucosidases from halophilic archaea with respect to conserved sites in their bacterial (S. coelicolor)
and thermophilic archaeal counterparts (yellow). Gray-shaded rows indicate the predicted span the
N-terminal domain of GH31 glycosyl hydrolases (A) located upstream with respect to a Yicl-like
xylosidase domain (B-E). Black-shaded columns illustrate the position amino acids as 100% identical,
whereas light gray columns indicate the location of residues >84% identical. GenBank accession
numbers precede the designation of reference sequences.
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Four of the 11 active sites described in the tridimensional structure of the Sulfolobus solfataricus
alpha-glucosidase MalA (PDB: 2G3N) were identified in MalH (Figure 6, light blue highlights).
Moreover, MalH and S. solfataricus MalA also shared the two catalytic D residues characteristic
of GH31 affiliates, which were also present in a thermostable alpha-glucosidase from Sulfolobus tokodaii
(Figure 6, Green highlights) [37]. Nevertheless, MalH displayed a variety of unique substitutions
at functional or conserved sites (Figures 6 and 7, pink highlight) that appeared as distinguishing
features from enzymes originating from bacterial and thermophilic archaea. Furthermore, in some
instances, the same substitutions were shared among putative glycosidases from halophilic hosts,
further strengthening the presence of signature traits for this group of proteins (Figure 7, pink residues).

In general, the domain-constrained comparative alignment revealed distinctive substitutions that
could account for the inability of the MalH to produce xylose from «PNPX and its high activity on
aPNPG. The functionality of representative from the GH31 family is known to be diverse, as this
group is comprised of enzymes having functions that include alpha-galactosidase, alpha-glucosidase,
alpha-xylosidase, glucoamilase, sucrase-isomaltase, and x-glucan lyase activities [47,48]. Moreover,
several GH31 are known to exhibit both glycosidadse and xylosidase activities with different levels of
affinity between these substrates [7,49,50].

The importance of halophilic enzymes has been reviewed elsewhere, and is not limited only to
food processing, bioremediation, and biosynthesis [8,43,47,48,50-52]. Specifically, glucosidases are
studied for their potential in multiple industry processes due to their thermostability [48]—for example,
they can be used for the production of biofuels and pharmaceutical products, for enhancing the wine
aroma, and for reducing the toxic compounds present in animal feed [48]. The stability of glucosidases
under high salt conditions remains poorly understood, and this study provides an example of a novel
alpha-glucosidase (MalH) with unique characteristics from the halophilic archaea that could be used
to address this gap. MalH might provide insights about glucosidase activity under high salinity
conditions. To our knowledge, this is the first report of the cloning and molecular characterization of a
novel alpha glucosidase with high salinity requirements, which can help study carbon utilization of
Haloquadratum in hypersaline environments.

Supplementary Materials: The following are available online at www.mdpi.com/2075-1729/7/4/46/s1,
Figure S1: Evolutionary relationship of alpha-glucosidases within Archaea by Maximum Likelihood method.
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