
life

Article

Computing the Parameter Values for the Emergence of
Homochirality in Complex Networks

Andrés Montoya 1,† , Elkin Cruz 2,† and Jesús Ágreda 2,*,†

1 Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia;
jamontoyaa@unal.edu.co

2 Departamento de Química, Universidad Nacional de Colombia, Bogotá D. C. 111321, Colombia;
elacruzca@unal.edu.co

* Correspondence: jagreda@unal.edu.co; Tel.: +57-1-3165000 (ext. 14431)
† These authors contributed equally to this work.

Received: 23 August 2019; Accepted: 11 September 2019; Published: 15 September 2019
����������
�������

Abstract: The goal of our research is the development of algorithmic tools for the analysis of chemical
reaction networks proposed as models of biological homochirality. We focus on two algorithmic
problems: detecting whether or not a chemical mechanism admits mirror symmetry-breaking; and,
given one of those networks as input, sampling the set of racemic steady states that can produce mirror
symmetry-breaking. Algorithmic solutions to those two problems will allow us to compute the parameter
values for the emergence of homochirality. We found a mathematical criterion for the occurrence of
mirror symmetry-breaking. This criterion allows us to compute semialgebraic definitions of the sets
of racemic steady states that produce homochirality. Although those semialgebraic definitions can be
processed algorithmically, the algorithmic analysis of them becomes unfeasible in most cases, given the
nonlinear character of those definitions. We use Clarke’s system of convex coordinates to linearize, as
much as possible, those semialgebraic definitions. As a result of this work, we get an efficient algorithm
that solves both algorithmic problems for networks containing only one enantiomeric pair and a heuristic
algorithm that can be used in the general case, with two or more enantiomeric pairs.

Keywords: models of biological homochirality; mirror symmetry-breaking; algorithmic problems;
semialgebraic definitions; stoichiometric network analysis

1. Introduction

We study mathematical models of absolute asymmetric synthesis [1,2] that are used to explain the
emergence of biological homochirality, which is, according to Frank [3], a natural property of life. Frank
proposed, as early as 1953, a chemical mechanism to support his thesis. An important feature of this
minimal model is that homochirality is produced by dynamic instability [4]. After Frank many other more
sophisticated networks have been proposed (see for instance [5–7]), but all of them are based on the same
idea: homochirality is the product of chemical instabilities. It is important to remark that the mathematical
(stability) analysis [8] of those complex models is a hard piece of work. Fortunately, we found a particular
symmetry in the Jacobian matrices of those models [9] that yields semialgebraic definitions of the instability
regions where the symmetry-breaking can be observed. Most of those semialgebraic expressions are highly
nonlinear and hard to sample. We used Clarke’s Stoichiometric Network Analysis (SNA) [10] to reduce
the complexity of those expressions.
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All those ingredients were put together into an algorithmic tool, and software Listanalchem [11], that
can be used to test models proposed to explain the origin of homochirality, and which can also help us to
build new and better models. Further thermodynamics constraints must be taken into account, but that
point will not be discussed here.

We begin with a mathematical presentation of the method. After that, we use the developed algorithm
to analyze three representative models of biological homochirality taken from the available literature.

2. Network Models of Absolute Asymmetric Synthesis

We use the term absolute asymmetric synthesis to designate all the possible chemical mechanisms that,
operating in achiral environments, can transform a racemic mixture into an enantiopure one. We suppose
that all those chemical processes reduce to finite sets of chemical reactions acting on finite sets of chemical
species. Thus, we suppose that all those processes can be suitably described by chemical reaction networks.

Definition 1. A chemical reaction over the chemical species X1, ..., Xn is an expression like

c1X1 + · · ·+ cnXn → d1X1 + · · ·+ dnXn, (1)

where c1, ..., cn and d1, ..., dn are small integers (some of which could be equal to zero). The latter expression indicates
that the mixture of c1 units of X1, ..., and cn units of Xn gives place to d1 units of X1 , ..., and dn units of Xn.

A chemical reaction network over the species {X1, ..., Xn} is a set of chemical reactions, say the set {R1, ..., Rr} ,
over this set of species.

Notation 1. Given a chemical network Ω = {(X1, ..., Xn) , (R1, ..., Rr)}, we use the expression

c1iX1 + · · ·+ cniXn → d1iX1 + · · ·+ dniXn (2)

to denote the reaction Ri, and we use the symbol ki to denote its reaction rate constant. We use variables [X1] , ..., [Xn]

to denote the concentrations of the n chemical species.

Let us consider an example of a chemical reaction network. Frank network is the network
ΩF = {(L, D, A, P) ; (R1, R2, R3)}, where:

reaction R1: L + A
k1−−→ 2 L,

reaction R2: D + A k2−−→ 2 D, and

reaction R3: L + D
k3−−→ P.

Remark 1. It is important to remark that the network ΩF was the first, and it is the most elementary model of
absolute asymmetric synthesis proposed in the literature [3].

The dynamics of a network Ω reduces to the temporal evolution of the concentration variables
[X1] , ..., [Xn] . We suppose that those temporal evolutions are completely determined by the law of mass
action [12], that is: we suppose that the temporal evolution of the variables [X1] , ..., [Xn] is given by the
system of Ordinary Differential Equations (ODE)

d [Xi]

dt
=

r

∑
j=1

k j
(
dij − cij

) (
[X1]

c1j · · · · · [Xn]
cnj
)

, i = 1, ..., n, (3)

where given j 6 r the symbol k j denotes the reaction rate constant of Rj. We get consequently that all those
dynamics are deterministic: their evolution in time is entirely determined by their initial states.
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Remark 2. Let s be a (initial) state of network Ω, state s is a vector that encodes the values of all the parameters
that participate in the dynamics of Ω. Thus, we have that s can be fully described by a (n + r)-tuple

([X1] , ..., [Xn] , k1, ..., kr) , (4)

of nonnegative reals. We must notice that the entries k1, ..., kr could remain constant along the dynamics, but in
despite this, we choose to include the reaction rate constants in our notion of state.

Definition 2. A state ([X1] , ..., [Xn] , k1, ..., kr) is said to be a steady state, if and only if, it satisfies the following
system of polynomial equations:

0 =
d [X1]

dt
=

r

∑
i=1

(d1i − c1i) ki [X1]
c1i · · · [Xn]

cni , (5)

...

0 =
d [Xn]

dt
=

r

∑
i=1

(dni − cni) ki [X1]
c1i · · · [Xn]

cni . (6)

Notice that the steady states are the mathematical equilibria of the system. However, if one thinks in
chemical equilibrium, it could be possible to consider the states for which only the set of forward reaction
rates vanish. Also, it could be possible to consider the existence of complex networks containing loops,
where not all forward rates vanish identically at the steady state.

Let us consider the case of network ΩF when the reagent [A] is assumed constant, according to the
pool chemical approximation, see [13] chapters 2 and 3. The dynamics of this network is governed by the
ODE system

d [L]
dt

= k1 [L] [A]− k3 [L] [D] , (7)

d [D]

dt
= k2 [D] [A]− k3 [L] [D] . (8)

The states of ΩF are septuples ([L] , [D] , [A] , [P] , k1, k2, k3) of nonnegative reals, and we have that
such septuples encode racemic steady states, if and only if, the equality

0 = k1 [L] [A]− k3 [L] [D] = k2 [D] [A]− k3 [L] [D] (9)

hold. Observe that k1 must be equal to k2; otherwise, the network encodes a chiral environment. This
means [L] = [D] > 0. It is important to remark, at this point, that any physical realization of Frank’s model
implies a system open to matter flow to maintain [A] constant. Open systems used to have larger and
more complex sets of steady states.

Analyzing the dynamics of ΩF corresponds to analyzing the set SS (ΩF) constituted by all its steady
states, as well as the dynamics that can be triggered by arbitrary small perturbations of those states.
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The Goal

We want to contribute to the investigation on the emergence of biological homochirality by providing
the interested researchers with mathematical and algorithmic tools that can be used in the analysis of any
network model of absolute asymmetric synthesis.

Definition 3. We say that a chemical reaction network Ω exhibits chiral amplification, if and only if, it has the
ability of transforming negligible gaps between the concentrations of the chiral species into larger gaps.

We would like to characterize the set of chemical reaction networks that exhibit chiral amplification.
Let Ω = {(X1, ..., XN) ; (R1, ..., Rr)} be a chemical reaction network, and suppose that X1 is the L-form

of a chiral biomolecule, and that X2 is the D-form of the same molecule. Suppose that the system got stuck
at a steady state satisfying the equality [X1] = [X2]. There are physical mechanisms that may create small
enantiomeric gaps (that could perturb this racemic steady state). Those perturbations trigger dynamics, and
those latter dynamics could:

1. Evolve towards the original steady states, if, for instance, those states are stable.
2. Evolve towards different racemic states, if, for instance, those sets of racemic states are attractors of

the dynamics.
3. Evolve towards states with large enantiomeric gaps (also called scalemic states).

We are interested in the latter case, and we say that in that case, the system undergoes homochiral
dynamics. We want to characterize the steady states of Ω that can undergo homochiral dynamics. We
introduce, below, a precise formulation of the algorithmic problem that we study (and solve) in this paper.

3. Pseudochiral Networks

Let Ω = (X, R) be a chemical reaction network, and suppose that it is a network model of absolute
asymmetric synthesis. Then, the set X must be constituted by three disjoint sets of chemical species, the
sets {L1, ..., Lk};{D1, ..., Dk} and {X2k+1, ..., Xn}.

The set {L1, ..., Lk} constitutes the L-side of Ω, the set {D1, ..., Dk} constitutes the D-side and the set
{X2k+1, ..., Xn} is constituted by all the achiral species occurring in Ω. Moreover, given i ≤ k we have that
(Li, Di) is an enantiomeric pair, that is: Li is the L-form of a chiral molecule, while Di is the D-form of the
same molecule.

Definition 4. Let s be a state of Ω, and suppose that

s = ([L1] , ..., [Lk] , [D1] , ..., [Dk] , [X2k+1] , ..., [Xn] , k1, ..., kr) . (10)

The enantiomeric gap of s is equal to ∑
i≤k
|[Li]− [Di]| .

A state of Ω is said to be racemic, if and only if, its enantiomeric gap is equal to 0. Thus, the racemic
condition for Ω corresponds to the following set of polynomial equalities

[L1] = [D1] , [L2] = [D2] , ..., [Lk] = [Dk] . (11)

Recall that we are interested in the racemic states of Ω that can produce homochiral dynamics. It is
important to take into account the indiscernibility of enantiomeric pairs: it is known that the two species of an
enantiomeric pair react with the same achiral species at the same reaction rates. The indiscernibility of
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enantiomeric pairs implies that any feasible network model of absolute asymmetric synthesis must be a
pseudochiral network, as defined below.

Definition 5. Let Ω = (X, R) be a network model of absolute asymmetric synthesis, and suppose that

X = {L1, ..., Lk, D1, ..., Dk, X2k+1, ..., Xn} , (12)

where {L1, ..., Lk} is the L-side of Ω, and {D1, ..., Dk} is its D-side. We say that Ω is a pseudochiral network, if and
only if, it is indistinguishable from the network that is obtained when one switches the L-species and the D-species.

Consider the following example of a pseudochiral network. Melvin Calvin, whose work laid the
foundations of chemical evolution, proposed an abstract model of biological homochirality [14]. Calvin’s
mechanism can be suitably described by a chemical reaction network that we denote with the symbol ΩC,
and which is defined as follows:

The constituent species of ΩC are the species L1, L2, D1 and D2. The chemical reactions in ΩC are:

1. A pair of autocatalytic reactions

R0 : L1 + L2
k0−−→ 2 L2 and R1 : D1 + D2

k1−−→ 2 D2, (13)

as well as the reverse reactions

R2 : 2 L2
k2−−→ L1 + L2 and R3 : 2 D2

k3−−→ D1 + D2. (14)

2. The racemization reactions

R4 : L1
k4−−→ D1 and R5 : D1

k5−−→ L1. (15)

3. The enantiomeric conversion reactions

R6 : L1
k6−−→ L2 and R7 : D1

k7−−→ D2, (16)

as well as their reverse reactions

R8 : L2
k8−−→ L1 and R9 : D2

k9−−→ D1. (17)

Notice that the reactions in ΩC are organized in pairs: for each reaction involving the species of the
L-side there is a dual reaction involving the species of the D-side. We have, for instance, that if the reaction
L1 + L2 → 2L2 occurs, then the dual reaction D1 + D2 → 2D2 must also occur; otherwise, the network
would distinguish between the species of the L-side and the species of the D-side. The existence of dual
reactions is a consequence and is somewhat equivalent to the pseudochirality of network ΩC. Moreover,
given a reaction RL and its dual RD, the reaction rate constants of those two reactions are the same. In the
particular case of Calvin’s mechanism, we have k0 = k1, k2 = k3, k4 = k5, k6 = k7, and k8 = k9.

Notation 2. In the Calvin model, we use the symbol k0 to denote the reaction rate constant of the dual pair of
autocatalytic reactions, the symbol k2 to denote the reaction rate constant of their reverse reactions, the symbol k4 to
denote the reaction rate constant of the dual pair of racemization reactions, the symbols k6 to denote the reaction rate
constants of the enantiomeric conversions and k8 to denote the reaction rate constants of their reverse reactions.
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We have that ΩC is a pseudochiral network of order 2. Does network ΩC exhibit homochiral dynamics?
Calvin claimed that it is the case, but we think that the evidence provided by him is weak, and we would
like to consider this question more carefully.

Remark 3. Let Ω be a network, and suppose that Ω is not pseudochiral. Then, there is an asymmetry in Ω that
distinguishes the L-side and the D-side. Thus, if Ω is not pseudochiral, it models a chemical mechanism that works on
a chiral environment, and because of this it cannot be regarded as a network model of absolute asymmetric synthesis.
We claim that: feasible network models of absolute asymmetric synthesis are pseudochiral networks.

4. The Algorithmic Problem

Suppose that one wants to introduce a new network model of absolute asymmetric synthesis. One
must show that this new model exhibits homochiral dynamics, and one must also show that the model is
sound from a thermodynamical point of view. We focus on the first task, which is solved if one exhibits
racemic steady states which, after being perturbed, trigger homochiral dynamics. Therefore, we consider
the following algorithmic problem:

Problem 1. CPVEH: Computing the Parameter Values for the Emergence of Homochirality.

• Input: Ω, where Ω is a pseudochiral network.
• Problem: check if Ω has racemic steady states that give place to homochiral dynamics. In that case compute a

sample of those states.

It has been argued that the asymmetric synthesis of chiral biomolecules was a prerequisite for the
origin of life [3]. It is supposed that there are chemical processes, which took place in prebiotic earth, and
which transformed the initial racemic mixtures, present in prebiotic earth, into the homochiral mixtures
that preceded the origin of life. Frank introduced in his seminal work [3] an abstract chemical mechanism,
which contains an enantiomeric pair, and which evolves towards enantiopure states independently of
the initial state. The chemical mechanism introduced by Frank is well described by the chemical reaction
network ΩF. This network was the first network/mathematical model of absolute asymmetric synthesis
introduced in the literature. After that, many other network models have been proposed, and we know
that some of those proposed models are defective models that cannot support homochiral dynamics (we
prove that the Calvin model [14] does not exhibit homochiral dynamics, see below). Therefore, we ask:
can we recognize and discard all those defective models? To answer the question, we need an algorithm
able to:

1. Recognize the defective network models of absolute asymmetric synthesis that cannot exhibit
homochiral dynamics.

2. Recognize the network models that are mathematically sound, and compute samples of their sets of
racemic steady states that undergo homochiral dynamics.

Thus, we need an algorithm that solves problem CPVEH.

5. The MM-Condition

Let Ω be a pseudochiral network, and suppose that we want to show that Ω has racemic steady states
that produce homochiral dynamics. How can those states be found? Most authors cope with the latter
question using the tools of classical stability analysis: the states that produce homochiral dynamics are
unstable (see below).
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Remark 4. From now on we use the symbol Ω to denote a pseudochiral network of order k. Moreover, we suppose that

Ω = {(L1, ..., Lk, D1, ..., Dk, X2k+1, ..., Xn) ; (R1, ..., Rr)} , (18)

and we say that Ω is a network of size n.

Notation 3. We use the symbol JΩ to denote the Jacobian of Ω. The Jacobian JΩ is a symbolic matrix whose
entries are the partial derivatives [8] of the reaction rates [15]. The entries of JΩ are polynomials over the variables

[L1] , ..., [Lk] , [D1] , ..., [Dk] , [X2k+1] , ..., [Xn] , k1, ..., kr. (19)

Thus, given a state s, one can evaluate JΩ at s and obtain a numerical matrix JΩ (s). We say that JΩ (s) is
the Jacobian of Ω at (state) s.

Let us consider the pseudochiral network ΩC. The steady state equations for the L-species are equal to:

0 =
d [L1]

dt
= −k0 [L1] [L2] + k2 [L2]

2 − k4 ([L1]− [D1])− k6 [L1] + k8 [L2] , (20)

0 =
d [L2]

dt
= k0 [L1] [L2]− k2 [L2]

2 + k6 [L1]− k8 [L2] . (21)

In addition, if we assume the racemic condition, those equalities get equal to

0 = −d [L1]

dt
=

d [L2]

dt
= k0 [L1] [L2]− k2 [L2]

2 + k6 [L1]− k8 [L2] , (22)

while the Jacobian matrix gets equal to


−k0 [L2]−k4−k6 −k0 [L1] +2k2 [L2] +k8 k4 0

k0 [L2] +k6 k0 [L1]−2k2 [L2]−k8 0 0
k4 0 −k0 [L2]−k4−k6 −k0 [L1] +2k2 [L2] +k8

0 0 k0 [L2] +k6 k0 [L1]−2k2 [L2]−k8

 . (23)

Remark 5. The reader must observe the symmetrical structure of the above matrix, which we call the racemic
Jacobian of ΩC. It happens that the racemic Jacobian of any pseudochiral network Ω reveals the same type of
symmetries [9].

The Jacobian matrix JΩ encodes important information related to the dynamics of Ω:

Definition 6. We say that a steady state s is unstable, if and only if, the spectrum of JΩ (s) satisfies the following:

There exists λ that belongs to the spectrum of JΩ (s) and such that the inequality Re (λ) > 0 holds.

We say that a polynomial p (X) is unstable, if and only if, the roots of p (X) satisfy the same condition imposed on
the spectrum of the unstable states. Notice that s is unstable, if and only if, the characteristic polynomial of JΩ (s)
is unstable.

Recall that the spectrum of a square matrix is the set constituted by all its eigenvalues.

The unstable states are the states that can get dramatically transformed by the effect of negligible
perturbations. We use the term symmetry-breaking states to designate the racemic steady states that can
produce homochiral dynamics. Notice that those homochiral dynamics dramatically transform those
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racemic states. Thus, we get that any symmetry-breaking state is unstable. However, we must observe
that there exist unstable states that do not produce homochiral dynamics. We must ask: which are
the symmetry-breaking states of network Ω? Which is the mathematical condition that determines
the symmetry-breaking status? We observed before that the symmetry-breaking status depends on the
eigenvectors of JΩ (s) and not only on its eigenvalues, see [9,16,17].

Definition 7. We say that a steady state s is symmetry-breaking, if and only if, matrix JΩ (s) satisfies:

1. There exists λ that belongs to the spectrum of JΩ (s), and such that Re (λ) > 0.
2. There exists an eigenvector of λ, say v, and there exists i ≤ k such that v [i] 6= v [i + k].

We get that the symmetry-breaking states of Ω are the unstable states that satisfy a further constraint.
The additional constraint refers to the eigenvectors of JΩ (s). In principle, this additional constraint should
make harder the search of those states. However, and surprisingly, it is not the case: if one exploits the
symmetries of JΩ, the latter problem becomes easier than the former.

Notation 4. Let Ω be a pseudochiral network of order k (recall that the order k is equal to the number of enantiomeric
pairs, k = 2 for the Calvin model), we use the symbol AΩ to denote the submatrix of JΩ that is constituted by its
first k rows and its first k columns. We use the symbol BΩ to denote the submatrix that is constituted by the first k
rows of JΩ (s) and the columns k + 1, ..., 2k. For instance, if we consider Calvin network ΩC, we get that

AΩC =

[
−k0 [L2]− k4 − k6 −k0 [L1] + 2k2 [L2] + k8

k0 [L2] + k6 k0 [L1]− 2k2 [L2]− k8

]
and (24)

BΩC =

[
k4 0
0 0

]
. (25)

Theorem 1. (MM-condition) Let s be a racemic steady state of the pseudochiral network Ω, we have that s is
symmetry-breaking, if and only if, the characteristic polynomial of AΩ (s)− BΩ (s) is unstable [9].

The above theorem allows us to analyze any pseudochiral network. Let us illustrate the latter claim
with the analysis of the network ΩC.

The symmetry-breaking states of ΩC are the 9-tuples

([L1] , [L2] , [D1] , [D2] , k0, k2, k4, k6, k8) (26)

that satisfy the following constraints:

1. The racemic condition

[L1] = [D1] and [L2] = [D2] . (27)

2. The steady state condition

k0 [L1] [L2] + k6 [L1] = k2 [L2]
2 + k8 [L2] . (28)

3. The non-negativity condition

[L1] , [L2] , [D1] , [D2] ≥ 0. (29)
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4. The positivity condition

k0, k2, k4, k6, k8 > 0 (30)

5. The (symmetry-breaking) MM-condition asserting that the characteristic polynomial of matrix

AΩC − BΩC =

[
−k0 [L2]− 2k4 − k6 −k0 [L1] + 2k2 [L2] + k8

k0 [L2] + k6 k0 [L1]− 2k2 [L2]− k8

]
(31)

is unstable.

Notice that the first four constraints are polynomial inequalities (equalities) over the variables
[L1] , [L2] , [D1] , [D2] , k0, k2, k4, k6, and k8. The last constraint can also be expressed in terms of
polynomial inequalities. To this end one can use a suitable set of Hurwitz-Routh inequalities [18]. We have,
for instance, that the 2× 2 matrix AΩC − BΩC is unstable, if and only if, at least one of the following two
inequalities is satisfied:

• k0 [L2] + 2k4 + k6 − k0 [L1] + 2k2 [L2] + k8 < 0
• k8 − k0 [L1] + 2k2 [L2] < 0 .

It is easy to prove that there are no steady states satisfying at least one of the above inequalities.

Theorem 2. The Calvin model does not have symmetry-breaking states.

Proof of Theorem 19. First we consider the inequality

k8 − k0 [L1] + 2k2 [L2] < 0. (32)

Let us suppose that [L2] 6= 0. From the steady state condition, Equation (28), we get that

k0 [L1] = k8 + k2 [L2]− k6
[L1]

[L2]
< k8 + 2k2 [L2] , (33)

and hence the Inequality (32) cannot be satisfied.
On the other hand, if we suppose [L2] = 0, we get that the symmetry-breaking states of ΩC must be

solutions of the system

k6 [L1] = 0 and k0 [L1] > k8, (34)

which does not have solutions satisfying the constraints k0, k6, k8 > 0 and [L1] ≥ 0.
Now, we consider the inequality

k0 [L2] + 2k4 + k6 − k0 [L1] + 2k2 [L2] + k8 < 0. (35)

We get from the steady state condition (28) that

k0 [L1] ≤ k2 [L2] + k8, (36)

and we get consequently that

k0 [L1] < k2 [L2] + k8 + 2k4 + k6 + k0 [L2] . (37)

Then, the Inequality (32) cannot be satisfied, and the theorem is proved.
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The analysis of the Calvin network, as developed in the previous paragraphs, shows that it is possible
to use the MM-condition to analyze small networks thoroughly. What can be done with larger networks?
The MM-condition yields an algorithmic solution for the CPVEH problem. However, if the input network
Ω (mechanism) is too large, its analysis could be intractable. Consider the problem:

Problem 2. SA: Stability Analysis

• Input: M, where M is a symbolic matrix such that all its entries are polynomials.
• Problem: Determine whether the set of parameter values, which make the characteristic polynomial of M

unstable, is nonempty. If this is the case, sample this set.

The MM-condition allows us to reduce the problem CPVEH to this latter problem. However, this
reduction can be useless, given that problem SA is a hard, intractable problem. Thus, we must ask: can we
efficiently solve problem CPVEH?

We claimed before that computing the symmetry-breaking states of Ω can be easier than computing its
unstable states. The MM-condition strongly reduces the dimensionality of the problem. This mathematical
criterion tells us that we must analyze a k × k symbolic matrix instead of the n × n symbolic matrix
that we would have to analyze if we were to use classical stability analysis to compute, as in previous
approaches, the unstable states of Ω (notice that n ≥ 2k). It seems that it is not possible to further reduce
the dimensionality of the problem, and it forces us to consider other completely different reductions.
We must observe, at this point, that there are two main sources of complexity related to the instances of
problem SA: the dimension of the input matrices, and the degree of their polynomial entries. Thus, we
ask: can we also reduce the inherent nonlinearity of the instances of CPVEH? In the following section we
introduce some tools of Clarke’s Stoichiometric Network Analysis (SNA, see reference [10]), which allow us
to achieve the degree reduction we are looking for. We use SNA, and the degree reduction provided by it,
to develop an algorithm that can be used in the analysis of pseudochiral networks.

6. Degree Reduction Using Stoichiometric Network Analysis

Clarke’s SNA provides us with tools that can be used in the linear stability analysis of chiral
networks, see [19] and the references therein. Here, we use SNA to develop a heuristic algorithm for the
CPVEH problem.

A Crash Introduction to SNA

Let Θ be a chemical reaction network and let SS (Θ) be its set of steady states. SNA is based on a
change of variables that linearize the definition of SS (Θ): this change of variables maps the latter set onto
a polyhedral cone that we denote with the symbol CΘ.

Notation 5. Along this section we use the symbol Θ to denote a chemical reaction network. Moreover, we
suppose that

Θ = {(X1, ..., Xn) ; (R1, ..., Rr)} , (38)

and we suppose that Ri is equal to

c1iX1 + · · ·+ cniXn → d1iX1 + · · ·+ dniXn. (39)

Definition 8. The stoichiometric matrix of Θ that we denote with the symbol SΘ, is a n× r matrix
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SΘ =
[
νij
]

i≤n,j≤r , (40)

whose entries are called the stoichiometric coefficients of Θ. The stoichiometric coefficients of the network Θ are
defined by:

νij = dij − cij. (41)

A second matrix related to SΘ is the matrix of orders of reaction denoted with the symbol RΘ, and which is the
r× n matrix

RΘ =
[
cji
]

i≤n,j≤r . (42)

Definition 9. The velocity function of Θ is the function VΘ : Rn → Rs that is defined by

VΘ

([−→
X
])

=
(
k1 [X1]

c11 · · · [Xn]
cn1 , ..., kr [X1]

c1r · · · [Xn]
cnr
)

. (43)

Clarke observed that the dynamic equation of Θ can be written as

d
[−→

X
]

dt
= SΘ · VΘ

([−→
X
])

, (44)

and it implies that the function VΘ maps the set SS (Θ) onto the polyhedral cone CΘ that is defined by the
linear constraints

V1, ..., Vr ≥ 0, and (45)

SΘ ·
−→
V = 0. (46)

Thus, the function VΘ allows us to identify the steady states of Θ with the points of CΘ, and it happens
that the points of CΘ can be suitably described by the system of convex coordinates provided by its extreme
currents [10].

Remark 6. A set of extreme currents for CΘ is just a minimal set of extreme rays that spans the polyhedral cone CΘ,
see [20].

Notation 6. We use the symbol Rs
+ to denote the set of s-dimensional nonnegative vectors, which is the set

{v ∈ Rs : v [1] , ..., v [s] ≥ 0} . (47)

Definition 10. Let v1, ..., vs be a set of extreme currents for CΘ, and let s ∈ SS (Θ); the convex coordinates of s
are given by the unique tuple (j1, ..., js) ∈ Rs

+ that satisfies the equality

VΘ (s) = j1v1 + · · ·+ jsvs. (48)

From now on, we use the symbols j1, ..., js to denote the convex coordinates of the cone CΘ that are determined by
v1, ..., vs.
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We have:

1. Given s ∈ SS (Θ) , one can effectively compute the convex coordinates of s.
2. Given (j1, ..., js) ∈ Rs

+, one can effectively sample the set V−1
Θ (j1v1 + · · ·+ jsvs), which is a nonempty

subset of SS (Θ).

If one switches to the system of convex coordinates, then the Jacobian JΘ can be factorized as

JΘ = SΘ · EΘ · RΘ · ∆, (49)

where ∆ is a n× n scaling matrix, and EΘ is the r× r diagonal matrix defined by

EΘ [i, i] = ∑
l≤s

vl [i] · jl . (50)

Remark 7. The term EΘ [i, i] is a linear polynomial over the (convex) variables j1, ..., js.

Clarke noticed that the scaling matrix ∆ has little influence on the stability properties of JΘ, and that
one can focus the analysis on the matrix SΘ · EΘ · RΘ. Thus, according to Clarke’s theory, the stability
analysis of Θ reduces to the stability analysis of the latter matrix. We must ask: what do we gain with this
reduction? The entries of SΘ · EΘ · RΘ are linear polynomials over the variables j1, ..., js, and it means that
we get an important degree reduction.

We use the symbol VΘ to denote the matrix SΘ · EΘ · RΘ. The SNA-based algorithmic analysis of
chemical networks reduces to:

1. Compute a set of extreme currents for CΘ.
2. Compute the symbolic matrix VΘ.
3. Sample the set of parameter values that make the characteristic polynomial of matrix VΘ

become unstable.
4. Given α, a s-dimensional vector that belongs to the sample computed in step 3, compute a sample

of the set V−1
Θ (α1v1 + · · ·+ αsvs) . Here, we use the symbols v1, ..., vs to denote the set of extreme

currents for CΘ as computed in step 1.

Remark 8. The latter algorithmic routine can be effectively implemented, see [11].

An Illustrative and Trivial Example

Let Θ0 be the network {(I, A) , (R1, R2, R3)}, where:

reaction R1: 3 I
k1−−→ 3 A

reaction R2: 2 I + A k2−−→ 3 I, and

reaction R3: I + A
k3−−→ 2 A.

Clarke’s velocity function denoted by VΘ0 is equal to the vector field
(

k1 [I]
3 , k2 [I]

2 [A] , k3 [I] [A]
)

.

The set SS (Θ0) is the subset of R2
+ ×R3

+ that is defined by the equation

− 3k1 [I]
3 + k2 [I]

2 [A]− k3 [I] [A] = 0. (51)

Remark 9. Notice that SS (Θ0) is a 5-dimensional set with a quite complex structure.
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The stoichiometric matrix of Θ0 is the matrix

SΘ0 =

[ R1 R2 R3

[I] −3 1 −1
[A] 3 −1 1

]
(52)

and a set of extreme currents for CΘ0 is given by {(1, 3, 0) , (0, 1, 1)} . This means that the 5-dimensional set
SS (Θ0) is mapped by RΘ0 onto the infinite triangle spanned by the vectors (1, 3, 0) and (0, 1, 1) . Thus,
we get that VΘ0 (SS (Θ0)) has a pleasant conic structure. We can use the extreme currents of CΘ0 (which
are integer vectors located on the borders of CΘ0 , for instance the vectors (1, 3, 0) and (0, 1, 1)) to define a
system of convex coordinates for CΘ0 . Notice that the points of this triangle are in bijective correspondence
with the nonnegative linear combinations of the extreme currents (1, 3, 0) and (0, 1, 1). Thus, if we choose
nonnegative values for j1, j2, we can be sure that

j1 · (1, 3, 0) + j2 · (0, 1, 1) (53)

is an element of CΘ0 that represents a nonempty set of steady states. We can use this fact to sample the set
SS (Θ0). We proceed in the following way:

1. Pick a tuple of positive convex coordinates; for instance, j1 = 1 and j2 = 2.
2. Compute the corresponding convex combination of extreme rays; in our case, we compute 1 · (1, 3, 0)+ 2 (0, 1, 1)

equal to (1, 5, 2).
3. Compute the solution set of the nonlinear system

1 = k1 [I]
3 (54)

5 = k2 [I]
2 [A] (55)

2 = k3 [I] [A] . (56)

4. Pick an element, say (1, 1, 1, 5, 2), of the set computed in the previous step.

This means that given a chemical network Θ, we can use Clarke’s velocity function to define a system
of convex coordinates for the set SS (Θ). Moreover, we can use this system of coordinates to sample the
set SS (Θ). We can also use the factorization of JΘ to analyze the stability of network Θ.

Additionally, it is important to illustrate how this procedure reduces the degree of the polynomials
entries of the symbolic Jacobian JΘ0 . In our illustrative and trivial example, the symbolic Jacobian is
equal to

JΘ0 =

[
−9k1 [I]

2 + 2k2 [I] [A]− k3 [A] k2 [I]
2 − k3 [I]

9k1 [I]
2 − 2k2 [I] [A] + k3 [A] −k2 [I]

2 + k3 [I]

]
. (57)

We have that RΘ0 is equal to

RΘ0 =


[I] [A]

R1 3 0
R2 2 1
R3 1 1

, (58)

and we have that EΘ0 is equal to
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EΘ0 =

 j1 0 0
0 3j1 + j2 0
0 0 j2

 . (59)

According to Clarke’s factorization the matrix JΘ0 is equal to

JΘ0 =

[
−3 1 −1
3 −1 1

]
·

 j1 0 0
0 3j1 + j2 0
0 0 j2

 ·
 3 0

2 1
1 1

 · [ 1
i 0
0 1

a

]
, (60)

and this factorization allows us to focus the stability analysis on the matrix

VΘ0 =

[
−3 1 −1
3 −1 1

]
·

 j1 0 0
0 3j1 + j2 0
0 0 j2

 ·
 3 0

2 1
1 1

 , (61)

which is equal to

VΘ0 =

[
−3j1 + j2 3j1
3j1 − j2 −3j1

]
(62)

Notice that the entries of the matrix VΘ0 are linear polynomials over the variables j1, j2, while the
entries of JΘ0 are 3-degree polynomials over the parameters [I] , [A] , k1, k2 and k3. Thus, it is true that we
gain an important degree reduction if we switch to the system of convex coordinates.

7. Using SNA in the Analysis of Pseudochiral Networks

We use the tools introduced in the previous paragraphs to develop an algorithm for the stability
(symmetry-breaking) analysis of pseudochiral networks.

Let us consider the case of pseudochiral networks of order 1, which we call chiral networks. Thus, let
Φ be a chiral network of order 1, and suppose that

Φ = {(L1, D1, X3, ..., Xn) ; (R1, ..., Rr)} . (63)

The MM-condition reduces to the inequality

JΦ [1, 1]−JΦ [1, 2] > 0 , (64)

which is a linear inequality over the entries of JΦ. However, the linearity of this algebraic condition
is just apparent, given that the terms JΦ [1, 1] and JΦ [1, 2] are nonlinear polynomials over the
concentration variables

[L1] , [D1] , [X3] , ..., [Xn−1] and [Xn] . (65)

Notation 7. We use the symbol SB (Φ) to denote the set of symmetry-breaking states of Φ.

We have that the set SB (Φ) is a highly nonlinear set defined by the conditions:

1. The nonlinear steady state equations.
2. The nonlinear inequality
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JΦ [1, 1]−JΦ [1, 2] > 0 . (66)

3. The non-negativity conditions

[L1] , [D1] , [X3] , ..., [Xn] ≥ 0 . (67)

4. The positivity conditions

k1, ..., kr > 0 . (68)

5. The racemic condition stating that the rate constants of the reactions that belong to the same dual pair
are equal, and that the initial concentrations of the two enantiomeric species are also equal.

However, if we switch to Clarke’s system of convex coordinates, we get that this set is defined by the
linear conditions:

• j1, ..., js ≥ 0, where j1, ..., js constitute the system of convex coordinates of network Φ.
• VΦ [1, 1]−VΦ [1, 2] > 0.

Remark 10. In the implementation of the algorithm, we forced condition five (the racemic condition) into the
computation of the extreme currents, which are computed from the stoichiometric matrix; for this, we extended the
stoichiometric matrix with rows that encode the equalities of the rate constants of the dual pairs; for example, given
the stoichiometric matrix of the Calvin model

SΩC =


R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

L1 −1 0 1 0 −1 1 −1 0 1 0
D1 0 −1 0 1 1 −1 0 −1 0 1
L2 1 0 −1 0 0 0 1 0 −1 0
D2 0 1 0 −1 0 0 0 1 0 −1

 , (69)

the extended matrix, considering its dual pairs (Reactions (13), (14), (16), (17)), is equal to

SΩC =



R0 R1 R2 R3 R4 R5 R6 R7 R8 R9

L1 −1 0 1 0 −1 1 −1 0 1 0
D1 0 −1 0 1 1 −1 0 −1 0 1
L2 1 0 −1 0 0 0 1 0 −1 0
D2 0 1 0 −1 0 0 0 1 0 −1

R0 and R1 1 −1 0 0 0 0 0 0 0 0
R2 and R3 0 0 1 −1 0 0 0 0 0 0
R6 and R7 0 0 0 0 0 0 1 −1 0 0
R8 and R9 0 0 0 0 0 0 0 0 1 −1


. (70)

Forcing this condition into the computations of the extreme currents proved to reduce the number of extreme
currents significantly.

The stoichiometric and extended stoichiometric matrices of the models analyzed with Listanalchem can be seen
in the output of the computer program. The Supplementary Materials presents those matrices for the models studied
in this work.

Sets defined by linear inequalities are easy to sample, see [21]. Then, if we switch to the system of
convex coordinates, we will be able to efficiently sample the set of symmetry-breaking states of Φ. Thus,
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we can use the MM-condition and SNA to efficiently solve the CPVEH problem when it is restricted to
pseudochiral networks of order 1.

What about higher orders? Suppose that Ω is a pseudochiral network of order k, suppose that the
variables j1, ..., js constitute a system of convex coordinates for CΩ and let

AVΩ = [VΩ [i, j]]i,j≤k , and BVΩ = [VΩ [i, j]]i≤k;k+1≤j≤2k (71)

be the appropriate submatrices of VΩ. The set SB (Ω) is defined by the algebraic conditions:

1. j1, ..., js ≥ 0.
2. The characteristic polynomial of the k× k matrix AVΩ − BVΩ is unstable.

Notice that we get a strong reduction on the degree of the polynomial expressions defining the set of
symmetry-breaking states. The latter is the case given that:

• We eliminated all the nonlinearity that was implicit in the definition of the set of steady states.
• We reduced the degree of the instability condition. The instability condition is given by the

Hurwitz-Routh inequalities [18], and those inequalities involve the determinant of the matrix to be
analyzed. The entries of JΩ are nonlinear polynomials, and the determinant of this symbolic
matrix is a polynomial whose degree can be larger than 2k. On the other hand, we have that the
entries of AVΩ − BVΩ are linear polynomials, and we have that the degree of det (AVΩ − BVΩ) is
upperbounded by k.

However, if k is large, and despite all the reductions achieved so far, the stability analysis of matrix
AVΩ − BVΩ can be unfeasible. A full stability analysis of matrix AVΩ − BVΩ presupposes the computation
of its determinant, as well as the computation of other large subdeterminants. Take into account that
computing symbolic determinants requires exponential time. If we want to avoid the computation of those
large (symbolic) determinants, we will have to conform ourselves with a heuristic algorithm.

A Heuristic Algorithm for CPVEH Based on SNA and the MM-Condition

Let Ω be a pseudochiral network of order k, let AVΩ − BVΩ be the symbolic matrix that we want to
analyze and let

pΩ (λ) = λk −Ω1λk−1 + Ω2λk−2 + · · ·+ (−1)k Ωkλk−k (72)

be the characteristic polynomial of this matrix.
The coefficient Ωi is equal to the sum of all the diagonal subdeterminants of AVΩ − BVΩ of order i,

see [22]. Notice that all those coefficients are polynomials over the set of parameters that we are analyzing,
and notice that we are interested in determining the values of those parameters that make the latter
(parameterized) polynomial become unstable. We must take into account the following fact: the roots of a
polynomial are determined by its coefficients. Let us consider two instances of the latter phenomenon:

1. If the inequality (−1)k Ωk < 0 holds, the polynomial pΩ (λ) has a positive real root.
2. pΩ (λ) can have positive real roots only if it has negative coefficients.

We could focus on the first item and conform ourselves with a sufficient condition for instability, or
we could focus on the second item and conform ourselves with a necessary condition for the existence
of positive real roots. Notice that Ωk is equal to det (AVΩ − BVΩ) and recall that we wanted to avoid the
computation of large subdeterminants of the matrix AVΩ − BVΩ. This latter observation leads us to focus
on the second item and consider the set SB∗ (Ω), which is the subset of SB (Ω) constituted by the steady
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states that satisfy the condition: there exists i ≤ k such that (−1)i Ωi < 0. We must ask: what do we gain if
we focus on the second criterion? It was observed that in most cases, the chemical instabilities of Ω are
determined by small subnetworks, see [23]. Moreover, given i ≤ k, the influence of all the subnetworks of
size i is encoded in the coefficient Ωi. We can conclude that in most cases, the chemical instabilities of Ω
are encoded in the first coefficients of pΩ (λ). We can use the latter as a further heuristic principle which
tells us that: for most pseudochiral networks exhibiting homochiral dynamics, there exist small values of i
such that the inequality (−1)i Ωi < 0 gets satisfied for nonnegative values of the parameters. Therefore,
we focus on the problem:

Problem 3. approx-CPVEH

• Input: Ω, where Ω is a pseudochiral network.
• Problem: compute the minimum i for which the inequality (−1)i Ωi < 0 gets satisfied for nonnegative values

of the parameters, and sample this set of nonnegative solutions.

Our heuristic approach for solving CPVEH consists of solving the problem approx-CPVEH. Consider
the following algorithm that we denote with the symbol SNA-sampling.

Algorithm SNA-sampling works, on input Ω, as follows:

1. Compute the matrices AVΩ and BVΩ.
2. Given i ≤ 5 determine the set of nonnegative solutions of the inequality (−1)i Ωi < 0. If all those sets are

empty reject Ω; otherwise, sample the union of those five sets.
3. Given j = (j1, ..., js) an element of the computed sample, compute a racemic steady state of Ω, say sj, such

that j is the tuple of convex coordinates of sj. Do the same with all the members of the computed sample.

We notice that:

• If Ω is a pseudochiral network of order 1, the algorithm correctly and efficiently samples the set
SB (Ω).

• If Ω is a pseudochiral network of order k ≤ 5, then the algorithm samples the set SB∗ (Ω) .
• If Ω is a pseudochiral network of order k > 5, then the algorithm approximates the set SB∗ (Ω) by a

semialgebraic set that is defined by polynomial expressions whose degree is upperbounded by 5.

SNA-sampling is a heuristic algorithm that is as efficient as possible, solves the problem CPVEH for
pseudochiral networks of small order, and allows us to compute important information in the case of higher
orders. We exemplify, in the next section, the power of this tool with the analysis of three pseudochiral
networks that were taken from the literature dedicated to the study of biological homochirality.

8. Computer Experiments

The algorithm SNA-sampling, as described above, was implemented as a computer program called
Listanalchem [11], option six. The algorithm determines if a chemical network Ω, given as input, can
produce spontaneous mirror-symmetric breaking (SMSB), and if so, samples the set of parameter values
that can produce those dynamics. The computed samples are used to make numerical simulations of the
dynamics. For this task, we use Chemkinlator [24], a software tool that can also build bifurcation diagrams.
Actually, we used bifurcation diagrams to find the SMSB region for a model which presented problems
for the heuristic used in sampling. The construction of the bifurcation diagrams could be a necessary
additional step, given that, depending on the model, the instability region can be so small that numerical
error could place us out of, but close, to this region. Also, the heuristic used in the algorithm can cause the
results to be out of the instability region. In those cases, a fast exploration around the computed values,
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using bifurcation diagrams, could be enough to find SMSB. Additionally, this procedure can be used to
build phase diagrams such as the ones shown in references [25,26].

It is worth remembering that as mentioned in Remark 10, the implementation of the algorithm uses
the extended stoichiometric matrix with rows that encode the duality of the pairs of reactions that involve
enantiomers. We observed that after adding those constraints the number of extreme currents got reduced.
The details of this process, including the extended stoichiometric matrix, and its manipulation, can be seen
in the output of Listanalchem option six. These outputs are available in the supplementary material.

Finally, we would like to remark that the units used for simulations are arbitrary. We do not set units
to avoid huge or tiny numbers. Instead of that, we use numbers in the interval [0, 2]. This particular way to
perform the analysis, for each model, does not change the qualitative behavior of the models, and it helps to
show clearer images of the relevant facts. Particular units can be obtained using the corresponding factors
in concentrations and rate constants, but that fact will be not explored here because we are interested, first
of all, in the stability of the models that generate SMSB.

8.1. The Replicator Model of Hochberg and Ribo

Hochberg and Ribo [27] have investigated the network described below.

A + 1RD + 2RD
k0−−⇀↽−−
k1

21RD + 2RD A + 1RL + 2RL
k2−−⇀↽−−
k3

21RL + 2RL

A + 2RD + 1RD
k4−−⇀↽−−
k5

22RD + 1RD A + 2RL + 1RL
k6−−⇀↽−−
k7

22RL + 1RL

1RD
k8−−→ ∅ 1RL

k10−−→ ∅
2RD

k9−−→ ∅ 2RL
k11−−→ ∅

∅ k12−−→ A

A
k13−−→ ∅.

This model has two enantiomeric pairs, (1RD, 1RL) and (2RD, 2RL). This means, according to the
previous definitions, that it is a pseudochiral network of order 2. The analysis of the model, using the
developed algorithm, confirms its ability to generate SMSB. However, it is important to remark that the
outputs obtained with Listanalchem did not always produce SMSB immediately. In those cases, bifurcation
diagrams, around the computed values, allowed us to compute the range of values that produce the
symmetric breaking. Those bifurcation diagrams were done using Chemkinlator [24]. Figure 1 presents a
typical example of the described situation, including three bifurcation diagrams. The right values are easy
to find from the values given by the algorithm; for example, a fast way to find SMSB is by exploring the

velocity of the entrance of A (∅ k12−−→ A), see Figure 1B. In this way, it is easy to tune the region of SMSB.

8.2. The APED Model

Plasson et al. [25] have proposed the noncatalytic model presented below.

L a−−→ L* LL h−−→ L + L

D a−−→ D* DL
βh−−→ L + D

L* b−−→ L LD
βh−−→ L + D

D* b−−→ D DD h−−→ D + D

L* + L
p−−→ LL LD e−−→ DD

D* + L
αp−−→ DL DD

γe−−→ LD

L* + D
αp−−→ LD LL

γe−−→ DL

D* + D
p−−→ DD DL e−−→ LL
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Our algorithm and software can find values of the rate constants for which the APED model exhibits
the breaking of mirror symmetry. We could compute those values without the need for any additional
work, as was necessary with the previous model.
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Figure 1. The replicator model of Hochberg and Ribo [27]. A typical simulation result with the kinetic rate
constants (and flows) sampled by the algorithm developed in this work. (A) Time series; and bifurcation

diagrams for (B) the input flow rate of A: ∅ k12−−→ A, (C) the output flow rates: 1RD
k8−−→ ∅, 2RD

k9−−→ ∅,
1RL

k10−−→ ∅, 2RL
k11−−→ ∅, and A

k13−−→ ∅, and (D) the autocatalytic rate constants: A + 1RD + 2RD
k0−−→

21RD + 2RD, A + 1RL + 2RL
k2−−→ 21RL + 2RL, A + 2RD + 1RD

k4−−→ 22RD + 1RD, and A + 2RL + 1RL
k6−−→

22RL + 1RL. The full set of rate constant, for this particular simulation, can be seen in the output of
Listanalchem presented in the supplementary material. However, it is important to emphasize that
k0 = k2 = k4 = k6, k1 = k3 = k5 = k7, and k8 = k9 = k10 = k11 = k13. Also, an initial enantiomeric excess,

ee =
[1RL]− [1RD]

[1RL] + [1RD]
= 4.207852× 10−16 was used.

Additionally, we would like to remark that the approach developed here to obtain the instability
regions has a solid mathematical background which makes it more efficient and general than the brute-force
approach used in the original paper of Plasson et al. [25]: a systematic scan of the rate constants. Figure 2
shows an example of the results given by the algorithm.
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Figure 2. The APED model of Plasson et al. [25]. (A) Time series; and bifurcation diagrams for (B) the
activation rate constants of reactions L a−−→ L* and D a−−→ D*, (C) the dimerization rate constants of
reactions L* + L

p−−→ LL and D* + D
p−−→ DD, and (D) the epimerization rate constants of reactions

LD e−−→ DD and DL e−−→ LL. In this case, the initial concentrations of the enantiomers were taken equal,
the numerical error of the computer calculations was enough to break the initial racemic mixture.

It is interesting to remark that Plasson et al. [25] claimed that each one of the three sets of reactions:

1. Polymerization: L* + L
p−−→ LL, D* + L

αp−−→ DL, L* + D
αp−−→ LD, and D* + D

p−−→ DD,

2. Depolymerization: LL h−−→ L + L, DL
βh−−→ L + D, LD

βh−−→ L + D,and DD h−−→ D + D, and
3. Epimerization: LD e−−→ DD, DD

γe−−→ LD, LL
γe−−→ DL, and DL e−−→ LL,

must have different rate constants, and because of this, they introduce the parameters α, β and γ, which
are bigger than zero and different from 1. We found that those constraints are necessary because given
α = β = γ = 1, the algorithm finds that the SMSB is not possible. Observe that under the equivalent
condition, see the legend of Figure 1, the previous model (Replicator Hochberg-Ribo) exhibited SMSB.

8.3. The Iwamoto Model

Iwamoto proposed a reaction model including Michaelis-Menten type catalytic reactions [26].
The Iwamoto model is presented below, with perfect and imperfect conditions that depend on the
stereoselectivity (R1, R1a, R2, and R2a), and stereospecificity (R3, R3a, R4, and R4a).



Life 2019, 9, 74 21 of 24

Perfect Imperfect R

P
k0−−⇀↽−−
k1

A P
k0−−⇀↽−−
k1

A R0

A + L
k2−−⇀↽−−
k3

2 L A + L
k2−−⇀↽−−
k3

2 L R1

A + L
k2a−−⇀↽−−
k3a

L + D R1a

A + D
k4−−⇀↽−−
k5

2 D A + D
k4−−⇀↽−−
k5

2 D R2

A + D
k4a−−⇀↽−−
k5a

D + L R2a

L + EL
k6−−⇀↽−−
k7

ZL L + EL
k6−−⇀↽−−
k7

ZL R3

L + ED
k6a−−⇀↽−−
k7a

YD R3a

D + ED
k8−−⇀↽−−
k9

ZD D + ED
k8−−⇀↽−−
k9

ZD R4

D + EL
k8a−−⇀↽−−
k9a

YL R4a

ZL
k10−−⇀↽−−
k11

EL + Q ZL
k10−−⇀↽−−
k11

EL + Q R5

YL
k10a−−⇀↽−−
k11a

EL + Q R5a

ZD
k12−−⇀↽−−
k13

ED + Q ZD
k12−−⇀↽−−
k13

ED + Q R6

YD
k12a−−⇀↽−−
k13a

ED + Q R6a

Iwamoto considered to be variables only the species A, L, D, EL and ED. The Iwamoto model under
perfect conditions shows SMSB. The instability region is a tiny one as shown by Figure 3. However, the
algorithm could sample this region without problem.

On the other hand, the Iwamoto model under imperfect conditions is stable if the stereoselective
(R1, R1a, R2, and R2a) rate constants satisfy the equalities k2 = k2a = k4 = k4a and k3 = k3a = k5 = k5a,
and at the same time the stereospecific (R3, R3a, R4, and R4a) rate constants satisfy k6 = k6a = k8 = k8a
and k7 = k7a = k9 = k9a. However, if those rate constants are different, as the author assumes, the model
presents SMSB, which means: k2 = k4 6= k2a = k4a, k3 = k5 6= k3a = k5a, k6 = k8 6= k6a = k8a and
k7 = k9 6= k7a = k9a. This latter condition (different rate constants for particular sets of reactions), seems to
be necessary to obtain the desired results in those particular models, but it is not clear that it is a condition
that can be presupposed of the prebiotic environment. The results for the Iwamoto model under imperfect
conditions can be seen in the supplementary material and in the output of Listanalchem.
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Figure 3. The Iwamoto model under perfect conditions [26]. (A) Time series; and bifurcation diagrams

for (B) input flow reaction P
k0−−→ A, (C) autocatalytic reactions A + L k2−−→ 2 L and A + D k2−−→ 2 D,

and (D) stereospecific reactions L + EL
k6−−→ ZL and D + ED

k8−−→ ZD. The initial concentrations of the
enantiomers L and D were equal until the 11th decimal position, equivalent to an enantiomeric excess of,

ee =
[L]− [D]

[L] + [D]
, 2.217111× 10−12.

9. Discussion

The developed algorithm and the implemented software are powerful tools, capable of predicting
the stability (instability) of models proposed to explain the emergence of homochirality in biological
systems. The solid mathematics, behind the algorithm, makes it a robust tool to find the instability regions
of chemical reaction mechanisms (networks models) of biological homochirality. This tool can be used
to establish the particular rate constant values (intervals), for which a model breaks the initial racemic
mixtures. The algorithm and the software can be used to generate phase diagrams of the models proposed
to explain the origin of homochirality. Using the previous information, one could study the structure of
those models proposed to explain the origin of homochirality in prebiotic earth.

It is important to remark, at this point, that we have focused on the homochiral dynamics that can be
triggered by tiny perturbations of the racemic states. Enantiopure states can also be reached by alternate
routes, like, for instance, the dynamics that are triggered by large perturbations of those states. We did not
study the effect of large perturbations, given that we do not count with the required mathematical tools.
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