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Abstract: In recent years, endovascular treatment of aortic aneurysms has attracted considerable
attention as a promising alternative to traditional surgery. Hybrid operating room systems (HORSs)
are increasingly being used to perform endovascular procedures. The clinical benefits of endovascular
treatments using HORSs are very clear, and these procedures are increasing in number. In procedures
such as thoracic endovascular aortic repair (TEVAR) and endovascular aortic repair (EVAR), wires and
catheters are used to deliver and deploy the stent graft in the thoracic/abdominal aorta under
fluoroscopic control, including DSA. Thus, the radiation dose to the patient is an important issue.
We determined radiation dose indicators (the dose–area product (DAP) and air karma (AK) parameters)
associated with endovascular treatments (EVAR and TEVAR) using a HORS. As a result, the mean ±
standard deviation (SD) DAPs of TEVAR and EVAR were 323.7 ± 161.0 and 371.3 ± 186.0 Gy × cm2,
respectively. The mean± SD AKs of TEVAR and EVAR were 0.92± 0.44 and 1.11± 0.54 Gy, respectively.
The mean± SD fluoroscopy times of TEVAR and EVAR were 13.4± 7.1 and 23.2± 11.7 min, respectively.
Patient radiation dose results in this study of endovascular treatments using HORSs showed no
deterministic radiation effects, such as skin injuries. However, radiation exposure during TEVAR and
EVAR cannot be ignored. The radiation dose should be evaluated in HORSs during endovascular
treatments. Reducing/optimizing the radiation dose to the patient in HORSs is important.

Keywords: fluoroscopy; interventional radiology (IVR); stent graft; aneurysm; endovascular treatment;
X-ray examination; radiation safety; radiation dose; disaster medicine

1. Introduction

In recent years, endovascular treatment of aortic aneurysms has attracted considerable attention as a
promising alternative to traditional surgery [1]. Endovascular treatment reduces the risk of complications
and shortens hospital stays [2]. In thoracic endovascular aortic repair (TEVAR) and endovascular
aortic repair (EVAR), wires and catheters are used to deliver stent grafts to and deploy the grafts in the
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thoracic/abdominal aorta under fluoroscopic control (including digital subtraction angiography (DSA)).
The procedures are often complex, associated with a long fluoroscopy time (FT) and many cine
acquisitions, thus delivering high radiation doses to both the interventional radiology (IVR) staff [3–5]
and patient [6]. The quality control of fluoroscopic X-ray devices [7,8] and management of exposure doses
are important issues. Appropriate stent graft placement requires very precise manipulation. Mobile
C-arms can often overheat, and exhibit image degradation [9]. Thus, the X-ray fluoroscopic device
must feature both a large capacity and high X-ray output. Hybrid operating room systems (HORSs) are
increasingly being used to perform endovascular procedures. A HORS combines state-of-the-art imaging
with the use of a high-capacity angiographic system, affording optimal patient care. The fact that the
operating room is sterile enables vascular surgeons to combine complex endovascular procedures with
open surgery [10]. Major clinical benefits are already apparent, and HORSs are increasing in popularity.

The radiation doses delivered to small groups of patients undergoing endovascular treatment
of thoracic and abdominal aortic aneurysms were quantified previously. We here attempted to
optimize the radiation doses delivered during HORS-mediated treatment of patients with thoracic and
abdominal aortic aneurysms. Direct methods of assessing radiation exposure [11–14] are cumbersome;
thus, we used indirect methods (the dose–area product (DAP) and air karma (AK) parameters) to assess
skin radiation doses [15–28]. We determined the DAP and AK radiation dose indicators associated
with EVAR and TEVAR delivered via a HORS.

2. Materials and Methods

The present study was conducted in a HORS at Sendai Kousei Hospital (Japan). We evaluated
the radiation dose indicators (DAP and AK) and related factors (i.e., FT) in 256 consecutive patients
undergoing endovascular treatment from 2010 to 2012. The study was approved by the ethics
committee of Sendai Kousei Hospital (Permission code: 30-19; 28 May 2018). All procedures were
performed using a digital X-ray system (INFX-8000H, Toshiba, Otawara, Japan; Figure 1). We evaluated
single-plane images obtained using a large field-of-view (12 × 16 in). Digital cine images were
acquired at 10 frames/s during all procedures. Pulsed fluoroscopy (7.5 pulses/s) featuring flat panel
detection (FPD) using an anti-scatter grid were also performed. During the X-ray procedures, including
DSA, digital angiography (DA), and fluoroscopy, TEVAR was performed using a 40–50◦ left anterior
oblique view, whereas EVAR was performed using various viewing angles. The X-ray source was
placed approximately 100 cm from the FPD. The X-ray details and contrast conditions used during
TEVAR and EVAR are shown in Table 1.

Diagnostics 2020, 10, 846 2 of 11 

 

complications and shortens hospital stays [2]. In thoracic endovascular aortic repair (TEVAR) and 
endovascular aortic repair (EVAR), wires and catheters are used to deliver stent grafts to and deploy 
the grafts in the thoracic/abdominal aorta under fluoroscopic control (including digital subtraction 
angiography (DSA)). The procedures are often complex, associated with a long fluoroscopy time (FT) 
and many cine acquisitions, thus delivering high radiation doses to both the interventional radiology 
(IVR) staff [3–5] and patient [6]. The quality control of fluoroscopic X-ray devices [7,8] and 
management of exposure doses are important issues. Appropriate stent graft placement requires very 
precise manipulation. Mobile C-arms can often overheat, and exhibit image degradation [9]. Thus, 
the X-ray fluoroscopic device must feature both a large capacity and high X-ray output. Hybrid 
operating room systems (HORSs) are increasingly being used to perform endovascular procedures. 
A HORS combines state-of-the-art imaging with the use of a high-capacity angiographic system, 
affording optimal patient care. The fact that the operating room is sterile enables vascular surgeons 
to combine complex endovascular procedures with open surgery [10]. Major clinical benefits are 
already apparent, and HORSs are increasing in popularity. 

The radiation doses delivered to small groups of patients undergoing endovascular treatment 
of thoracic and abdominal aortic aneurysms were quantified previously. We here attempted to 
optimize the radiation doses delivered during HORS-mediated treatment of patients with thoracic 
and abdominal aortic aneurysms. Direct methods of assessing radiation exposure [11–14] are 
cumbersome; thus, we used indirect methods (the dose–area product (DAP) and air karma (AK) 
parameters) to assess skin radiation doses [15–28]. We determined the DAP and AK radiation dose 
indicators associated with EVAR and TEVAR delivered via a HORS. 

2. Materials and Methods 

The present study was conducted in a HORS at Sendai Kousei Hospital (Japan). We evaluated 
the radiation dose indicators (DAP and AK) and related factors (i.e., FT) in 256 consecutive patients 
undergoing endovascular treatment from 2010 to 2012. The study was approved by the ethics 
committee of Sendai Kousei Hospital (Permission code: 30-19; 28 May 2018). All procedures were 
performed using a digital X-ray system (INFX-8000H, Toshiba, Otawara, Japan; Figure 1). We 
evaluated single-plane images obtained using a large field-of-view (12 × 16 in). Digital cine images 
were acquired at 10 frames/s during all procedures. Pulsed fluoroscopy (7.5 pulses/s) featuring flat 
panel detection (FPD) using an anti-scatter grid were also performed. During the X-ray procedures, 
including DSA, digital angiography (DA), and fluoroscopy, TEVAR was performed using a 40–50° 
left anterior oblique view, whereas EVAR was performed using various viewing angles. The X-ray 
source was placed approximately 100 cm from the FPD. The X-ray details and contrast conditions 
used during TEVAR and EVAR are shown in Table 1. 

 
Figure 1. Photograph of the hybrid operating room system (HORS). 

The DAP, AK, FT, and number of DA or DSA procedures performed were recorded for all 
patients. AK was measured at a point 15 cm toward the focal spot commencing at the isocenter of the 

Figure 1. Photograph of the hybrid operating room system (HORS).



Diagnostics 2020, 10, 846 3 of 11

Table 1. The standard X-ray and contrast conditions used during endovascular treatment of aortic
aneurysms in our hospital.

X-ray Conditions Fluoroscopy D A D S A

Typical tube voltage (kV) 80 80 80
Typical tube current

(mA) 50 400 125

Typical pulse widths
(ms) 6 8 45

Pulse rate (p/s) 7.5 10 10
Additional filter 0.2 mm Cu 0.3 mm Cu 1.5 mm Al

Contrast Conditions
Injection method — Manual injection Automatic injection

Flow rate (mL/sec) — ≈0.2 10
Injection volume (mL) — ≈5 20

Contrast agent — Iopamidol Iopamidol
Iodine content (mg/mL) — 370 370

Cu: Copper, Al: Aluminum

The DAP, AK, FT, and number of DA or DSA procedures performed were recorded for all patients.
AK was measured at a point 15 cm toward the focal spot commencing at the isocenter of the C-arm
type fluoroscope (the interventional reference point) in line with the standards of the International
Electrotechnical Commission (IEC). The radiation dose indicators (DAP and AK) were calibrated by
the manufacturer.

The data of the patients treated via TEVAR and EVAR are summarized in Table 2. The choice of
a TEVAR stent graft (a total of 84 cases) was determined by reference to individual anatomies and
included Zenith TX2 (34 cases; Cook, Japan), Tag (44 cases; Gore, Japan), and Valiant (6 cases;
Medtronic, Japan) stents. The choice of an EVAR stent graft (in a total of 172 cases) was also
determined by reference to individual anatomies and included Zenith (29 cases; Cook), Excluder
(58 cases; Gore), Talent (7 cases; Medtronic), Endurant (53 cases; Medtronic), and Powerlink (25 cases;
Cosmotec, Japan) stents.

Table 2. Summary of data from the TEVAR and EVAR patients. The aneurysms were located in all four
zones (thus zones 1–4) in TEVAR patients, but only one type of infrarenal abdominal aortic aneurysm
was treated via EVAR.

Aneurysm Types of TEVAR No. of Cases
n = 84 Ratio (%)

Zone 0 27 32%
Zone 1 11 13%
Zone 2 15 18%

Zones 3–4 31 37%
Aneurysm types of EVAR n = 172

infrarenal AAA 172 100%

2.1. Features of the HORS

The HORS is a hybrid device consisting of an angiographic X-ray device and an operating room
(Figure 1). The HORS affords more advantages than do mobile C-arm systems. For example, the X-ray
tube has a large capacity, the X-ray generator has a high output, and the FPD is large (12× 16 in). Remote
operation (control) of the X-ray equipment is possible. Such remote operation (control) reduces the
exposure of radiology staff (such as radiographers) to radiation. Additionally, the operating table tilts.
Surgery involving the brachiocephalic, common carotid, and subclavian arteries, which originate from
the aortic arch, requires a head-down position to prevent a cerebral arterial air embolism. The HORS
can easily be converted to an emergency surgery setting if complications develop during a procedure.
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2.2. Statistics

Scatter plots were created and Pearson correlation coefficients between continuous variables were
calculated. The Student’s t-test was used to compare data between the TEVAR and EVAR groups.
Fisher’s exact test was employed to compare the male-to-female ratios. Statistical significance was
defined as p < 0.05.

3. Results

3.1. Radiation Doses Associated with TEVAR and EVAR

The data are summarized in Table 3. The two groups did not differ significantly except in terms of age.

Table 3. A summary of our results: patient data and radiation doses.

TEVAR EVAR p-Value
(TEVAR vs. EVAR)

No. of Cases 84 172
Age (years) 69.8 ± 10.8 73.8 ± 9.4 p < 0.01

Male-to-female ratio 72:12 147:25 n. s.
Height (cm) 163.2 ± 8.8 162.3 ± 7.9 n. s.
Weight (kg) 64.4 ± 10.5 62.1 ± 10.2 n. s.

FT (min.) 13.4 ± 7.1 23.2 ± 11.7 p < 0.01
AK (Gy) 0.92 ± 0.44 1.11 ± 0.54 p < 0.01

DAP (Gy·cm2) 323.7 ± 161.0 371.3 ± 186.0 p < 0.05
No. of acquisitions 18.7 ± 9.8 29.8 ± 11.0 p < 0.01

No. of stents 1.81 ± 0.65 2.49 ± 0.81 p < 0.01

The mean ± standard deviation (SD) DAPs of TEVAR and EVAR were 323.7 ± 161.0 and
371.3 ± 186.0 Gy × cm2, respectively. The mean ± SD AKs of TEVAR and EVAR were 0.92 ± 0.44 and
1.11 ± 0.54 Gy, respectively. The DAP and AK of EVAR were approximately 1.2-fold higher than those
of TEVAR. The mean ± SD FTs of TEVAR and EVAR were 13.4 ± 7.1 and 23.2 ± 11.7 min; the FT of
TEVAR was typically somewhat shorter. The mean ± SD number of acquisitions (DAs and DSAs)
for TEVAR and EVAR were 18.7 ± 9.8 and 29.8 ± 11.0 respectively. Figures 2 and 3 show the correlations
between the radiation dose and related factors in TEVAR or EVAR, respectively. Significant correlations
were apparent between the AKs and FTs (TEVAR: r = 0.678, p < 0.001; EVAR: r = 0.616, p < 0.001).
The correlation for TEVAR was superior to that for EVAR. More than 2 Gy was involved in 15 (6%)
patients (2 TEVAR and 13 EVAR). Nevertheless, no radiation skin injury was observed in this study.

3.2. TEVAR and EVAR (Literature Review) [1,2,9,10,15–19,22,26–28]

Only limited data are available on the radiation doses associated with TEVAR and EVAR in the
context of HORSs. To measure exposure during stent grafting, we considered DAP, AK, and FT. Table 4
shows the median (mean ± SD) DAP, AK, and FT for TEVAR (eight studies) delivered using a HORS.
The FT ranged from 11.8 to 82.7 min (mean: 9.7–111.3 min). The FTs of two reports (Panuccio [15]
and Mohapatra [17]) were longer, possibly because the cited authors treated many difficult cases and
performed elaborate procedures (e.g., implantation of fenestrated stent grafts). The AKs for TEVAR
ranged from 0.8 to 6.3 mGy, with 0.8 mGy (our study) being the lowest ever reported.
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Figure 2. Relationships between the radiation doses during TEVAR and other factors. (a) The relationship
between air karma (AK) and fluoroscopy time (FT). (b) The relationship between AK and the number of
acquisitions (DA and DSA). (c) The relationship between DAP and FT. (d) The relationship between
DAP and the number of acquisition (DA and DSA).
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of acquisitions (DA and DSA). (c) The relationship between DAP and FT. (d) The relationship between
DAP and the number of acquisition (DA and DSA).
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Table 4. Overview of reports describing the endovascular treatment of thoracic aortic aneurysms
(TEVAR) in HORSs.

Study of TEVAR No. of
Cases Median FT (min.) Median AK (Gy) Median DAP (Gy·cm2)

Blaszak M A. [1], 2009 39 11.8 (13.4 ± 8.3) 0.87 (0.94 ± 0.56) 385.9 (452.3 ± 275.4)

Hertault A. [9], 2014 14 0.9 (—) — 26.0 (—)

Panuccio G. [15], 2011 46 82.7 (111.3 ± 55.1) 6.30 (12.7 ± 4.4) 696.6 (1327.0 ± 469.9)

Zoli S. [16], 2012 48 12.3 (15.7 ± 11.4) — 41.3 (56.7 ± 45.2)

Mohapatra A. [17], 2013 39 — (71.1) — (7.0) — (540.9)

Kirkwood M.L. [18], 2013 25 — 0.9 (—) —

Sailer A.M. [28], 2015 11 — (9.7 ± 7.3) — — (62.0 ± 46.0)

Our study 84 12.1 (13.4 ± 7.1) 0.80 (0.92 ± 0.44) 299.7 (323.7 ± 161.0)

(Mean ± SD).

Table 5 shows the median (mean ± SD) DAP, AK, and FT for EVAR (16 studies) delivered using
a HORS. The FT ranged from 13.1 to 89.0 min. The AK ranged from 0.56 to 1.26 Gy. Our FT and AK
values were within these ranges.

Table 5. Overview of reports describing the endovascular treatment of abdominal aortic aneurysms
(EVAR) in HORSs.

Study of EVAR No. of
Cases Median FT (min.) Median AK (Gy) Median DAP (Gy·cm2)

Blaszak M.A. [1], 2009 39 19.6 (22.8 ± 14.2) 1.11 (1.12 ± 0.70) 354.9 (380.9 ± 285.3)

Hertault A. [9], 2014 44 10.6 (—) — 12.2 (—)

Van den Haak R.F. [10],
2015 18 — (13.6 ± 8.6) 1.26 (—) 224.4 (—)

19 — (13.1 ± 6.1) 0.56 (—) 95.8 (—)

McNally M.M. [2], 2015 41 — (84.0 ± 36.0) — (5.00 ± 0.28) —

31 — (55.0 ± 21.0) — (2.30 ± 1.30) —

Kirkwood M.L. [18], 2013 22 — 1.00 (—) —

Majewska N. [19], 2011 92 13 (16.3) 0.63 (0.80) 456 (626)

Varu VN. [22], 2013 51 — (24.9 ± 12.4) — —

Tacher V. [26], 2013 9 — (82.0 ± 46.0) — — (1188.0 ± 1067.0)

14 — (42.0 ± 22.0) — — (984.0 ± 581.0)

14 — (80.0 ± 36.0) — — (656.0 ± 457.0)

Panuccio G. [27], 2015 150 — (89.0 ± 33.0) — — (60.7 ± 84.9)

Sailer A.M. [28], 2015 22 — (19.8 ± 8.4) — — (116.0 ± 122.0)

11 — (49.1± 21.8) — — (217.0 ± 159.0)

Our study 172 20.5 (23.2 ± 11.7) 1.02 (1.11 ± 0.54) 345.3 (371.3 ± 186.0)

(Mean ± SD).

Figure 4 shows the correlations between the radiation dose (AK and DAP) and FT during the
endovascular treatment of aortic aneurysms in all reports that employed HORSs to this end. The scatter
plots were constructed using mean values when possible and medians otherwise. With the exception
of the EVAR for DAP and FT, correlations were evident between the radiation dose (DAP and AK)
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and FT. It is difficult to compare DAPs across reports, as the DAP differs according to the hospital
and X-ray equipment employed. In particular, the DAPs of EVAR are influenced by changes in the
field-of-view depending on the treatment applied.
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4. Discussion

Radiation protection of patients and physicians in X-ray examination is important [29–41].
Radiation exposure in HORSs is of considerable interest. In the present study, we used clinical
radiation-related data (DAP, AK, and FT) to define the exposure trends during stent grafting in HORSs.
A total of 15 (6%) patients (2 TEVAR and 13 EVAR patients) were exposed to >2 Gy. However,
no radiation skin injury was observed. Abdominal aortic operations were associated with higher
radiation doses and FTs than thoracic aortic operations. The numbers of exposures, and their durations,
were directly related to the radiation dose. Prolongation of fluoroscopy by 10 min in TEVAR or EVAR
increased the AKs by approximately 0.78 or 0.72 Gy, respectively. Therefore, it is important to monitor
the FT during both TEVAR and EVAR.

The dose levels in our study are shown in Tables 4 and 5. Moreover, the FTs associated with
AKs >2 Gy were approximately 20 min for TEVAR and 35 min for EVAR (Figure 4). These were
significantly shorter than those associated with various IVRs. If these values are significantly exceeded,
surgery may need to be re-planned. To allow DNA recovery following radiation injury, surgery can be
performed in two or three stages. TEVAR was associated with lower FTs but higher radiation doses
compared with EVAR. The oblique C-arm angulation is rather extreme when aortic neck vessels are
viewed perpendicularly. In such circumstances, the radiation dose is increased, because the X-rays need
to travel for longer distances through tissue (in other words, the kV/mA is increased to compensate for
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the lack of penetration in the tissue). Furthermore, difficult procedures, such as fenestrated stent graft
implantation, tended to be associated with higher FTs and radiation doses.

The more DAs and DSAs that are employed, the higher the radiation doses. Thus, using fluoroscopy
instead of DA and/or DSA can reduce the doses associated with TEVAR and EVAR.

Virtual 3D-CT pre-operative planning was very helpful when choosing an interventional strategy.
The combination of 3D-CT and fluoroscopy, as is possible in a HORS, greatly facilitates surgery.

Endovascular treatment of aortic aneurysms performed in a HORS is thus safe and effective. Varu [22]
found that EVAR in a HORS reduced the total operative time by >30 min, thus reducing/optimizing the
radiation dose using HORS.

In our study, we provide suggested diagnostic reference levels (DRLs; ICRP—recommended; i.e.,
radiation doses) for TEVAR and EVAR performed in a HORS.

Generally, correlations between the number of acquisitions and radiation dose indicators were low
(Figures 2 and 3). Therefore, the number of acquisitions is not a useful parameter for radiation dose.

Other important considerations must be addressed in terms of reducing radiation exposure. One is
image quality, deterioration of which may increase the risk of a high radiation dose. Image quality
assessment is possible using phantoms. We always adjust image quality and exposure dose using
a quality-control phantom. Furthermore, all IVR staff require periodic training in radiation safety,
reducing doses to both patients and physicians.

Physician behavior can also reduce the radiation dose, such as the use of the shortest fluoroscopy
time possible [42]. The ICRP [43] also recommends that physicians, “Keep beam-on time to an absolute
minimum—the golden rule for control of dose to patient.”

In summary, the clinical benefits of endovascular treatments using HORSs are very clear, and these
procedures are increasing in number. In procedures such as EVAR and TEVAR, wires and catheters are
used to deliver and deploy the stent graft in the thoracic/abdominal aorta under fluoroscopic control,
including DSA. Thus, the radiation dose to the patient is an important issue. Thus, we determined
radiation doses associated with endovascular treatments (EVAR and TEVAR) using HORS. Patient
radiation dose results in this study of endovascular treatments using HORS showed no deterministic
radiation effects, such as skin injuries. The radiation dose should be evaluated in HORS during
endovascular treatments. Reducing/optimizing the radiation dose to the physician and patient in
HORSs is important. Generally, the methods for reducing/optimizing the radiation dose in HORSs will
be the same as those typical for interventional radiology X-ray systems.

5. Conclusions

We explored the radiation dose indicators (i.e., AK and DAP) delivered during TEVAR and EVAR
performed in a HORS. We aimed to maximize patient safety. Radiation exposure during TEVAR and
EVAR cannot be ignored. The FT, DAP, and AK during endovascular treatment of aortic aneurysm all
increase with procedural complexity. In our study, some patients were exposed to >2 Gy (AK dose).
An AK≤2 Gy does not trigger a skin disorder, so the AK should optimally not exceed 2 Gy. All surgeons,
radiologists, cardiologists, nurses, and radiographers must make efforts to minimize radiation exposure
during TEVAR and EVAR. We show that the use of HORS during endovascular treatment of aortic
aneurysms usefully reduces radiation exposure.
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