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Abstract: Breast density estimation with visual evaluation is still challenging due to low contrast
and significant fluctuations in the mammograms’ fatty tissue background. The primary key to
breast density classification is to detect the dense tissues in the mammographic images correctly.
Many methods have been proposed for breast density estimation; nevertheless, most of them
are not fully automated. Besides, they have been badly affected by low signal-to-noise ratio and
variability of density in appearance and texture. This study intends to develop a fully automated and
digitalized breast tissue segmentation and classification using advanced deep learning techniques.
The conditional Generative Adversarial Networks (cGAN) network is applied to segment the dense
tissues in mammograms. To have a complete system for breast density classification, we propose
a Convolutional Neural Network (CNN) to classify mammograms based on the standardization
of Breast Imaging-Reporting and Data System (BI-RADS). The classification network is fed by the
segmented masks of dense tissues generated by the cGAN network. For screening mammography,
410 images of 115 patients from the INbreast dataset were used. The proposed framework can segment
the dense regions with an accuracy, Dice coefficient, Jaccard index of 98%, 88%, and 78%, respectively.
Furthermore, we obtained precision, sensitivity, and specificity of 97.85%, 97.85%, and 99.28%,
respectively, for breast density classification. This study’s findings are promising and show that the
proposed deep learning-based techniques can produce a clinically useful computer-aided tool for
breast density analysis by digital mammography.

Keywords: breast cancer; breast density; deep learning; mammograms; generative adversarial
networks; convolutional neural network

1. Introduction

Breast cancer is one of the most common causes of cancer mortality in women across the world,
caused by abnormal cells that have grown uncontrollably. Those cells may also grow in some places
in the human body where they are generally not found. When that happens, the cancer is termed
metastaticc. Mammography is a standard and most famous radiology tool to detect breast cancer
early, possibly before it has outspread. However, investigating these mammographic images is not
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feasible for every case and highly relies on the radiologist’s experience, leading to many false positives.
Craniocaudal (CC) and Mediolateral Oblique (MLO) are the most frequent screening mammographic
views that provide the best view of the breasts’ sidelong, which statistically is the most commonplace
for pathological changes. The MLO view is one of the standard views captured from the side of a
diagonally compressed breast. In turn, the CC mammographic view is obtained from the superior
perspective of a horizontally compressed breast. Various risk factors are associated with breast cancer,
of which high breast density is a strong and independent risk factor that can cause developing breast
cancer in fibroglandular tissues [1,2].

The study of Astley et al. [3] shows that the subjective assessment of breast density is a more
reliable predictor of breast cancer than other automated and semi-automated methods. Besides, it is
debated whether mammographic density gives rise to more aggressive cancers. Thus, the influence of
mammographic density on prognosis should be studied. Mammographic breast density reflects the
amount of fibroglandular breast tissue area that appears bright on mammograms, commonly referred
to as breast percent density (PD%) [4]. In other words, PD% refers to the amount of white or bright
area, as seen on a mammogram.

Dense breast tissue is common, non-fatty tissue and is not abnormal, but dense breast tissue can
make it harder to identify breast cancer and be associated with an increased risk of breast cancer.

It has been reported that women with a high breast density compared to women with a low breast
density have a fourfold increased risk of developing the disease [5]. Figure 1 provides relative risks for
developing breast cancer by density category [5].

=
7
= N
g e
35, .
-
BI_ RADSI BI RADSII BI_RADS III BI_ RADS IV
(o]
=
UE Fatty breast Average density Heterogeneously dense Extremely dense
S
5
? 0-25% 26-50% 51-75% 75-100%
L
<] g 0.3 1 1.5-1.6 1.8-2.0
EE
L]
o)
3
s 10% 42% 40% 7%
E
2

Figure 1. Prevalence, relative risks of developing breast cancer based on Four classes of Breast Imaging
and Reporting Data ystem (BI-RADS) density standard (i.e., fatty, scattered fibroglandular density,
heterogeneously dense, and extremely dense).

Diverse computational methods have been proposed in the literature for breast density estimation
and classification [6—11]. To estimate breast density, researchers have proposed methods to segment
the dense region of breasts and divide it by the total area of the breast after excluding the pectoral
muscle from the MLO mammograms [12,13].

Numerous image segmentation methods have been used for breast density estimation and
classification based on handcrafted feature extraction, such as thresholding [14,15], region growing [16,17],
clustering [4], and texture statistical variation [18,19]. However, breast density segmentation and
classification are still challenging due to low signal-to-noise ratio and variability of density in appearance
and texture [20,21].
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Deep Learning (DL), such as Convolutional Neural Networks (CNN), has made several
breakthroughs over the past decade, especially in identifying patterns and classifying images. Besides,
DL provides several features that other categories of machine learning algorithms do not. Examples of
these methods utilized for breast density estimation can be found in the literature [22,23].

The main contributions of this paper are as follows.

o Developing an effective conditional Generative Adversarial Network for segmenting the regions
of dense tissues in a mammogram.

o  Utilizing the ratio of the dense segmented regions (i.e., resulting in from the cGAN network)
to the breasts total area. The computed percentage is used for classifying the mammogram
into four different classes of the BI-RADS standard (i.e., fatty, scattered fibroglandular density,
heterogeneously dense, and extremely dense).

o  Developing a multi-class CNN architecture for breast density classification using the binary masks
obtained from the cGAN.

The rest of this paper is organized as follows. Section 2 discusses the related work. Section 3
describes the methodology, and Section 4 presents the results. Last, Section 5 concludes the paper and
provides some lines of future work.

2. Background Study

In the literature, various breast density segmentation and classification methods have been
proposed. The techniques that have been employed to perform these approaches include traditional
computer vision techniques and deep learning, which will be reviewed in the following sections.

2.1. Traditional Computer Vision Methods

7

Traditional CAD systems use hand-crafted features based on previous experience and radiologists
guidance. Handcrafted feature extraction and breast density classification were initially proposed
by Wolfe [6]. Wolfe [6] originally described “parenchymal patterns” using verbal descriptions
and subjective measures of textural features, and classifies breast density into N1—normal fatty
breast; P1 and P2—prominent ducts occupying <25% and 25-75% of the breast, respectively;
and Dy—dysplastic breast with sheets of dense parenchyma.

In particular, Cumulus software [24] kept growing the ideas of Wolfe [6] by extending the
technology and resources to pursue this line of research. Additionally, Cumulus software [24] is
an intelligent tool for understanding breast cancer risk, which is a set threshold for segmenting
dense tissue, where regions of breast area are classified into six-category percentages: 0, <10%,
10-25%, 26-50%, 51-75%, and >75%. However, reliance on thresholding might be less accurate,
and the significant drawback of threshold-based approaches is that they often lack the sensitivity and
specificity needed for accurate segmentation.

In this context, five-grade Tébar classification is proposed by Gram et al. [7], which classifies
breast density into five different categories: I—scalloped contours and Cooper’s ligaments, Il—evenly
scattered terminal ductal lobular units, I[Il—oval-shaped lucent areas, [IV—extensive nodular and linear
densities, and V—homogeneous structureless fibrosis with convex contours.

Concerning breast density classification methods, well-known breast imaging and reporting data
system (BI-RADS) standards have been used [8,25] to reduce complexity in breast imaging evaluation
and to aid outcome monitoring.

BI-RADS classification categorizes the breast density into four classes: fatty, scattered fibroglandular,
heterogeneously dense, and extremely dense. As shown in Figure 1, they could be ranged from almost
entirely fatty tissue to extremely dense tissue with very little fat.

Automated techniques include the LIBRA (Laboratory for Individualized Breast Radiodensity
Assessment) software [4] based on multi-cluster fuzzy c-means segmentation produced at the
University of Pennsylvania, which is publicly accessible. In LIBRA, a total of 86 features are considered,
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such as global features like Patient’s age, breast’s thickness X-ray, cluster-merging features like Z-score
means, number of unconnected areas, and inter-cluster difference features like compactness and
equivalent circular diameter. LIBRA software [4] also produces area-based analyses of the breast area,
dense tissue area, and percentage density from full-field digital mammography (FFDM) images. Itis a
traditional “handcrafted” method for breast density estimation, which determined a 0.81 accuracy,
but it has many time-consuming and complicated features.

However, the PD% estimated by the algorithm developed in this study correlates well with
BI-RADS density ratings by radiologists and outperforms LIBRA's algorithm’s accuracy. The accuracy
achieved by the algorithm developed in this study is 0.98 for CC-MLO-averaged, significantly higher
than LIBRA’s accuracy. The volume-based techniques such as Quantra [26] and Volpara [10] are fully
automated software systems to estimate volumetric breast density. Quantra evaluates the thickness of
the fibroglandular breast tissue and X-ray attenuation above each pixel in the mammogram images to
sum these pixel-wise computations to evaluate the total volume of fibroglandular tissue in the breast.
It also evaluates the amount of dense and non-dense tissues at each pixel.

Fully automated methods are currently being developed for obtaining a more objective and
quantitative evaluation of breast density. For instance, the Volpara software [27,28] returns the
percentage of dense tissue through a volumetric estimation of the breast.

Function only on the raw (“FOR PROCESSING”) digital mammogram images, which are not
routinely stored in most medical centers. On the other hand, the semi-automated Cumulus software
can display an interactive intensity threshold [24,29], and is rated one of the best methods for achieving
a quantitative segmentation [30]. The Quantra method had a slightly higher, but significantly different,
correlation coefficient than the Cumulus method for the volumetric breast density correlation between
the right and left breasts (r = 0.95, p < 0.001).

2.2. Deep Learning-Based Methods

Recent approaches in machine learning have opened up an opportunity to tackle breast density
investigating using deep learning methods. Nowadays, deep learning techniques have been used in
many studies to automatically extract features from mammograms at multiple levels of abstraction
and evidence superior performance. Deep learning networks, such as CNN, can automatically learn
features from raw images directly, and they can accurately represent objects at different scales and
orientations. The CNN is one of the most popular class of deep neural networks.

For example, Kallenberg et al. [31] investigated an unsupervised deep learning method based
on CNN with four convolutional layers with a max-pooling to learn the characteristics of dense and
fatty tissues. Unlabeled imaging data were used to carry out unsupervised feature learning based on
CNN to segment the mammogram’s breast density regions. In their approach, the input mammogram
is divided into sub-images classified into dense or fatty regions. The convolutional layers in the
unsupervised parts are trained as auto-encoders, and in the supervised part, the (pretrained) weights
and bias terms are fine-tuned using Soft-Max regression 5-fold cross-validation (CV). The accuracy
of mammographic texture by sparse convolutional autoencoder (MT-CSAE) and the accuracy of
mammographic texture density (MT-density) were 0.57 and 0.59, respectively.

In another study, Dalmus et al. [32] applied a deep learning-based U-net method for segmenting
the breast tissue and achieved the average DSC value of 0.897%. Additionally, the study of
Lee and Nishikawa [11] proposed a fully convolutional neural network (FCNN) to segment the
dense fibroglandular areas on mammographic images automatically. For the evaluation of their
method, 455 full-field digital screening mammograms of 58 cases were used. They fine-tuned
the ImageNet-pretrained VGG16 [33] for breast density segmentation and estimation. The Percent
Density (PD) estimation by their approach showed similarities with BI-RADS density assessment by
radiologists with 0.81% for CC view, 0.79% for MLO view, and 0.85% accuracy on average. Automated
mammographic breast density estimation using a fully convolutional network [11] that applied FCN
techniques carried seven convolution layers compared with our methods is more complicated.
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Aly A. Mohamed. [34] presented a modified AlexNets for classifying the BI-IRADSII, and BI-RADS
III with accuracy (MLO and CC) = 0.92 and classification the (dense) BI-RADS I and BI-RADS 11,
(non-dense) (BI-RADS III and BI-RADS IV) with AUC (CC and MLO) = 0.95.

In another study, Aly A. Mohamed. [35], a deep learning model using a CNN structure for breast
density classification based on the standard categorization of BI-RADS. In addition, two classifiers
based a CNN structure and an improved AlexNet model were proposed in [34] to discriminate
the breast density categories. Between categories, BI-RADS II and BI-RADS III, by 6-fold CV and
925 images each, with an accuracy of 94% compared to the local institution’s radiological reports.
Classification accuracy was reported to increase up to 98% when excluding image data of more inferior
quality. Furthermore, the study of Li et al. [36] presented a technique to separate the breast region into
two parts, the “dense region” and the “fatty region”. They used deep CNN with three convolution
layers, which contained six stages. The first three stages were used as a feature generator, and the
second three stages were used as probability predictor. Their dice similarity coefficient is 0.76%, with a
0.94% correlation coefficient. In the study of Li et al. [36], the density is classified into only two classes,
whereas in the present study, a classifier divided into four classes is proposed.

In another study, Lehman et al. [22] have demonstrated deep convolutional neural network
(DCNN) methods based on ImageNet-pretrained ResNetl8 for breast density classification.
They applied 41,479 images to classify them into two dense and non-dense classes and achieved
0.87% accuracy.

Dubrovina et al. [37] presented a tissue classification method by supervised CNN framework
using a patch-wise approach for CNN training in mammography images. Raw DNN output was
recorded as 0.80, and postprocessed DNN output was achieved as 0.81.

Ciritsis et al. [38] applied a DCNN model for breast density classification with 13 convolutional
layers, four dense layers in four density classes with two different sets. The first set included 850 MLO,
882 CC, and BI-RADS accuracy was between 71% and 71.7%, dense-vs.-nondense: 88.6-89.9%.
The second set included 100 MLO and 100 CC; the accuracy of BIRADS was between 87.4% and
92.2%, dense-vs.-nondense: 96-99%.

Gandombkar et al. [21] investigated Inception-V3 network architecture to process the mammograms
and pretrained the system based on ImageNet. Their network achieved an accuracy of 92.0% in high
against low-risk classification.

Many breast density classification methods in mammograms have been presented in the literature,
but only a small number of studies have achieved accuracy above 90%, which is more complicated
than the method presented in this study. In this study, a novel method of representing breast tissue is
presented. We are modeling dense tissue distribution to fatty tissue and how this can be utilized to
provide the density segmentation classification based on BI-RADS and density percentage. It should
be noted that all mammograms were classified according to the BI-RADS density classification system
by expert breast radiologists.

The novel and advantageous features of the method proposed in this study are as follows.

o  The first adaptation of cGAN in the area of fully automated breast density segmentation in
mammograms is developed,

e the breast density percentage classification by the developed multi-class CNN architecture
correlated well with BI-RADS density ratings (BI-RADS I, BI-RADS II, BI-RADS I1I, and BI-RADS
IV) using the binary mask segmented in the previous stage (cCGAN output) by radiologists,

e a strong correspondence between the output of our automated algorithm and radiologist’s
presented breast density measures can be obtained, and

e  the proposed approach results in remarkably faster calculation while improving the classification
efficiency compare to other methods in the literature



Diagnostics 2020, 10, 988 6 of 20

3. Methodology

This section gives detailed information about the methodology used in this study. The full
research methodology is shown in Figure 2, and it is divided into two stages: stage one includes breast
mammogram segmentation into background, pectoral muscle, and breast tissue region. The second
stage is corresponding to breast density classification based on BI-RADS.

In the first stage, mammograms are prepossessed for removing pectoral muscles. Later, the cGAN
input is rescaled by resizing the mammograms to 512 x 512 pixels, including different breast densities.
The processed mammograms are then fed to the proposed cGAN to get a binary mask containing the
dense tissue.

In the second step, two methods are used: (1) computing the percentage of breast density
by dividing the area’s dense tissues into the breast’s total area, and (2) the output binary mask is
down-sampled into 128 x 128 pixels, which is used to classify breast density in 2 different ways; first,
the output of the binary mask is fed to a multi-class CNN to classify the breast density into four
classes based on BI-RADS, and second the breast density percentage by traditional method based on
thresholding rules is estimated.

Breast density estimation

Preprocessing Breast density segmentation

1. 0%<breast density<25 %

i 2. 26% <breast density <50 %

i S 3. 51%<breast density<75 %

2: Removing pectoral muscle g LeE 4. 76%<breast density<100%

1: Re-sizing
‘ Input |
(332;;;&084) e » Encoder o B

to a resolution of
(512 x 512) pixels

Breast density classification

1. BI-RADS I
N 2 BI-RADS II

3. BI-RADS Il

4. BI-RADS IV

Figure 2. An overview of proposed framework.

Several techniques are applied in this study to prepare the dataset before feeding the
mammograms into the proposed model; the stepwise details are explained in the following subsection.

3.1. Preprocessing

Some preprocessing operations in the first step are used, such as removing the pectoral muscles
and resizing the mammographic images. The high similarity in intensity and the overlap between
the pectoral muscle and the glandular tissue can cause false-positive detection of dense tissue area
in mammographic images. Therefore, extraction of the pectoral muscle area is applied, which can
reduce the false positives [28], as the identification and removal of pectoral muscles play an essential
preprocessing step in CAD system [31].

To remove the pectoral muscles, an automatic method described in our preliminary work [39] has
been utilized. This method involves three main steps. First, the breast region and the pectoral muscle
are segmented from the background, and then secondly, the mammogram orientation is determined.
Finally, a region growing segmentation is used for removing the pectoral muscle from the image.

The example of removing the pectoral muscles is shown in Figure 3. In addition to reduce the
computation time, all mammograms were re-sized from (2560 x 3328) or (3328 x 4084) pixels to a
resolution of (512 x 512) pixels (i.e., the resolution yields the best accuracy for the segmentation stage).
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(b)

Figure 3. (a) Original images. (b) After removing pectoral muscle.
3.2. Breast Density Segmentation

The proposed framework of breast density segmentation is presented in Figure 4, followed by
a summary of each step in the process. For dense tissue segmentation, the conditional cGAN is
used, which is proposed by [40]. cGAN is a conditional variation of the GAN, where the generator
is instructed to generate a real sample having specific characteristics rather than a generic sample
from full distribution [24]. It has been assumed that the cGAN structure is well suited to accurately
outline the breast density area, especially when the training data is limited, and our experimental
results support our hypothesis. As demonstrated in Figure 4, the cGAN network comprises two main
networks: generator and discriminator.

The Generator network G comprises two parts: encoder and decoder layers. The encoder layers
help extract the features (e.g., texture, edge, shape, and intensity) from the input images. On the other
hand, decoder layers generate a binary mask according to these extracted features.

Training

|

Input Prediction

X

input

Testiing

| “
input G(X) output

Figure 4. cGAN framework for segmentation.

The Discriminator network D works as a classifier to discern between the generated binary mask
and its corresponding ground truth. This adversarial network always tries to enforce the generator
network by its working methodology during the training process.
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In the model presented in this study, the G network takes a mammographic image and tries to
generate a mask image of the areas related to dense tissues (i.e., 0 for non-dense pixels including the
background pixels, and 1 for dense tissues pixels). The generator network then generates data latterly
fed into a discriminator network. The discriminator D learns a loss function to train this mapping
by comparing the ground-truth and the predicted output, but with observing the input image as a
condition to improve the network optimization as proposed in [40].

The G network follows an encoder—decoder architecture of U-net with skip connection [41].
The encoder includes downsampling eight convolutional layers. The first layer uses 7 x 7 convolution
to generate 64 feature maps, and the final layer generates 512 feature maps with a 1 x 1 size. At the
same time, the six middle layers are from the pretrained ResNet-101 [41]. In turn, the decoder includes
upsampling eight convolutional layers with reverse ordering layers that are similarly structured
to the encoder network. A U-net architecture based on skip connections in which each decoder’s
input is concatenated to its corresponding convolutional output of the encoder is also used in this
study to improve the segmentation performance. On the other hand, the discriminator network
consists of 5 convolutional layers. The first layer of the discriminator used 64 filters of 3 x 3 and a
stride of 2 x 2. The final layer of the discriminator produces 512 feature maps with a size of 62 x 62,
followed by Sigmoid as an activation function. The proposed cGAN model has been trained over a
loss function resulting from combining content and adversarial losses. The content loss L. follows a
classical approach in which the predicted dense mask is pixel-wise compared to the corresponding
one from ground-truth. For this loss, three loss functions are tested: Mean Square Error (MSE), Dice,
and structural similarity index (SSIM). The adversarial loss depends on the real/fake prediction
of the discriminator over the ground-truth and the predicted foreground mask with observing the
input image. Assume the input mammography image is x, y the ground truth mask, z a random
variable, A an empirical weighting factor, G(x, z) and D(x, G(x, z)) the outputs of G and D, respectively.
Thus, the training process of this cGAN can be expressed as an optimization of the following objective
function presented in Equation (1), which mathematically describes the training of cGAN.

G* = argmGinme Legan(D,G) + AL:(G) (1)

where A =10, and L.gan(D,G), the binary cross entropy (BCE) of the adversarial, can be computed
as shown in Equation (2):

Lgan(D,G) = Ex,y(log(D(x,y)) + Exz(log(1 - D(x,z)) )

In Equation (2), the first term is the entropy of the discriminator D with real data (i.e., the input
image is x, and the ground-truth is y, both images are concatenated). The second term is entropy with
a fake input data (i.e., the input image is x and the generated image is z, both images are concatenated)
passes through the generator, which is then passed through the discriminator to identify the fakeness
(i.e., the log probability that the data from generated is fake if it equals to 0), and the content loss
function computed between z and its corresponding ground-truth y, can be defined using Equation (3):

Le(G) = f(y, G(x,2)), ®)

where f is MSE, Dice, or SSIM loss functions. The MSE loss function can be computed using
Equation (4):

N
Luse(y, G ZHV G(x,2) |2 4)

Z \
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where N is the number of the pixels per input image and Lp;c.(y, G(x,z)) is the dice loss of the
predicted mask concerning ground truth, which is defined using Equation (5):

2|y x G(x,z)|

T G 2)] ©

LDice(yr Z) =1

The SSIM [42] considers contrast, luminance, and structure to determine the similarity between
two images. SSIM can be calculated using Equations (6) and (7).

(2uypz) 4 1) (20 +c2)

SSIM(y,z) =1 — 6
ba =l T e+ 2+ o ©

1 T
9y =7_7 Z(yi — py)(zi — pz) @)

=0

where y and z are the ground-truth and generated images, respectively; iy is the average of y; and
Uz is the average of z (are local measures of the mean of the ground-truth and generated images).
0y is the standard deviation of y, ¢ is the standard deviation of z. 0y, is the local measures of the
correlation between two images, 0'5 and o? are the local measures of the variance of the two images;
and C; = (k;L)?, Cy = (koL)? are some predefined constants that are two variables to stabilise the
division with small denominators, L is the dynamic range of the pixel values (typically this is 255),
k1 =0.01 and ky = 0.03 by default. T is the total number of pixels in each image. The optimization
process of G tries to minimize both expected values, i.e., the D values should approach 1.0 (correct
tumor segmentation), and the content loss L. should approach 0.0 (generated masks equal to ground
truth). Both terms of generator loss enforce the proper optimization of G: the dice loss term fosters a
rough prediction of the mask shape (central tumor area), while the adversarial term fosters an accurate
prediction of the mask outline (tumor borders). Neglecting either of the two terms may lead to very
poor segmentation results or slow learning speed.

During the training process, the discriminator tries to maximize the function presented in
Equation (1), while the task of the generator is precisely the opposite that tries to minimize the
function presented in Equation (1).

For our experiments, an Adam optimizer [29] with a learning rate of 0.0002 and batch size equal
to 4, in addition to an optimal number of epochs equals 200, has been used.

Two main training and testing procedures can be distinguished. During training in a supervised
mode, the classifier learns to distinguish between fatty and dense pixels from manually annotated
images, whereas in testing, the classifier assigns a fatty or dense tissue label to each pixel of the input
image [6].

Figure 4 shows the framework of the proposed method for breast density segmentation. Moreover,
a pretrained ResNet-101 was used as a base feature extractor, which is illustrated in Figure 5.

3.3. Breast Density Classification

For breast density classification, two techniques, including a traditional method and a CNN-based
method, have been used; each method has four output classes described in the following sections.
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Figure 5. cGAN framework for breast density segmentation.

3.3.1. Breast Density Percentage Estimation Based on Traditional Method

Percent density obtained from mammographic images refers to the ratio of the area of dense
tissue present in a mammogram to the total area of the breast. For the traditional method, we perform
five stages:

o  First, we resize the generated mask images to the same resolution of the input mammography.

e  We express the breast region area by the number of non-zero pixels in the mammogram images.

e  We then count the non-zero pixels in the generated mask for expressing about the area
dense tissues.

o  Computing the ratio between the area of dense tissues and the area of the breast region to estimate
the breast density in the input image.

e Finally by the thresholding rules defined in the BI-RADS density standard, we classify the
breast density to 4 categories: (0% < BDE < 25%), (26% < BDE < 50%), (51% < BDE < 75%),
(76% < BDE < 100%).

3.3.2. Breast Density Classification Based on a CNN

Figure 5 shows the CNN architecture for breast density classification (four classes correspond to
the BI-RADS categories: fatty, scattered fibroglandular density, heterogeneously dense, and extremely
dense) using the binary masks obtained from the cGAN.

Most methods which are attempted to categorize the breast density have computational complexity.

As shown in Figure 6, the proposed CNN technique consists of three convolutions layers with
kernel sizes 9 x 9,5 x 5, and 4 X 4, respectively, and two fully connected (FC) layers. The first two
convolutions layers are followed by 4 x 4 max-pooling with stride 4 x 4. The last convolution layer’s
output is flattened and then fed into the first FC layer with 128 neurons. These four layers use ReLU
as an activation function. A dropout of 0.5 is used to reduce overfitting in the first FC layer. Finally,
the last FC layer with four neurons applies the soft-max function to generate the input binary mask’s
final membership degree to each class. A weighted categorical cross-entropy loss is used to avoid the
problem of an unbalanced dataset. The class weight is one minus the ratio of samples per class to the
total number of samples.
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The RMSProp is applied for optimizing the model with a learning rate of 0.001, a momentum
of 0.9, and a batch size of 16. The network is trained from scratch, and the weights of 5 layers are
randomly initialized. The best architecture, number of layers, filters per layer, and neurons in FC layers
during training were found experimentally.

128x128x64
Generated 5x5 Filter

binary mask convelutions
Sxaxllﬂ 1x1x256
I I -I

Input 15t layer 2nd |ayer 3™ Jayer ath layer 5t Jayer

4x4 Filter
32x32x128 32)(32,(123 l:nnvolutlnns

Class labels

g 1. BI-RADS T
2 BI-RADS IT
3. BLRADS M
4 BI-RADS IV

Figure 6. Proposed CNN architecture used for breast density classification (second technique).
4. Experimental Results
4.1. Dataset

INDbreast dataset (http://medicalresearch.inescporto.pt/breastcancer/index.php/Get_INbreast_
Database/):

The initial results presented in this section are based on the INbreast dataset [43]. It is a publicly
available database that is 2-dimensional (2D) and includes MLO and CC mammographic images
of 115 patients (410 mammograms). Every patient has 4 mammographic images, which consists of
MLO-right, MLO-left, CC-right, and CC-left.

It has a ground truth for mass location, mass type, and breast density classification label.
Breast density classification in INbreast was prepared based on breast imaging reporting and data
method (BI-RADS) standard (BI-RADS I, BI-RADS II, BI-RADS 111, and BI-RADS IV). The image size of
mammogram is 3328 x 4084 or 2560 x 3328 pixels. Note that the INbreast dataset does not have the
ground truth binary masks for the breast density segmentation. Thus, we have annotated the images
with the cooperation of radiologists experts in breast cancer. The INbreast dataset has 115 patients
divided into 82 patients (80% of the total images) as a training set and 33 patients (20% of the total
images) as a test set. To train the proposed CNN network, we applied the “Holdout cross-validation
method” on the images of the 82 patients to divide it into 80% for training and the rest for validation.
The “Holdout cross-validation method” ensures that the images are randomly divided into training
and validation sets without any intersection between them to guarantee a fair evaluation.

In the holdout cross-validation, (33%) of data belong to BI-RADS I with 108 images of 27 patients,
(35%) of data belong to BI-RADS V with 116 images of 29 patients, (25%) of data belong to BI-RADS III
with 80 images of 20 patients, and only (7%) of data belong to BI-RADS IV with 22 images of 6 patients.
Table 1 shows the INbreast dataset distribution for training and test sets.

One of this study’s principal goals is to create a robust model that generalizes well to new data
and uses images of patients not initially included in the training stage. For testing, 33 patients have
been used as a control/test set for evaluating the performance of the trained deep models for dense
tissue segmentation and breast density classification. Thus, our control/test set can serve as a proxy
for new data.

Table 1 breaks down breast density variety from the INbreast dataset. The distribution of breast
densities variety across the four classes is shown in Table 1. As shown, it can be seen that the dataset
is highly imbalanced with the lowest percentage (7%) of data belong to BI-RADS IV, and the highest
percentage of data (35%) belong to BI-RADS II.


http://medicalresearch.inescporto.pt/breastcancer/index.php/Get_INbreast_Database/
http://medicalresearch.inescporto.pt/breastcancer/index.php/Get_INbreast_Database/
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Table 1. Distribution of densities across imbalanced INbreast dataset (before augmentation).

I

II

III

v

Total dataset
(410 images)

33%, 136 images

from 38 patients

35%, 146 images

from 41 patients

25%, 100 images

from 25 patients

7%, 28 images

from 8 patients

Training and validation subset
(328 images)

33%, 108 images

from 27 patients

35%, 116 images

from 29 patients

25%, 80 images

from 20 patients

7%, 22 images

from 6 patients

Test subset
(82 images)

33%, 27 images
from 11 patients

35%, 29 images
from 12 patients

25%, 20 images
from 5 patients

7%, 6 images
from 2 patients

Indeed, the INbreast dataset used for training the segmentation model does not have the ground
truth (i.e., binary masks) for the dense tissue segmentation. However, it has an annotation for
the images with the corresponding class of BI-RADS. The lack of ground truth for breast density
assessment is a limitation. Therefore, the dense regions in the INbreast dataset images are segmented
by two radiologists from Hospital Sant-Joan de Reus (Reus Sant-Joan Hospital located in Tarragona
province, Spain). Pixel-wise logical-AND was applied on the binary masks generated by the two
radiologists to generate the ground truth, meaning the two radiologists have to agree about the dense
tissues in the same mammogram. Assume we have a binary mask for each mammogram generated
by each radiologist. If the same pixel has a value 1 in both binary masks, it will be 1 in the final
ground-truth image.

4.2. Implementation Details

The proposed method was applied using Python v.3.5 with PyTorch library (https:/ /pytorch.org),
running on a 64-bit Ubuntu operating system, a 3.4 GHz Intel Core-i7 CPU with 16 GB of RAM,
and NIVIDA GTX 1070 GPU with 8 GB of video RAM.

Evaluation Metrics of Breast Density

The terms and formulas involved in evaluating the results of breast density classification are
described in (8) to (11):

Accuracy — Correctpredictions (TP+TN) ®)
Y= “Totalpredictions ~ (TP + TN + FP + FN)
. . Truepositive TP
P = =
recision Predictedpositive ~ (TP + FP) ©)
iy Truepositive TP
itivity = True — PositiveRate = Recall = = 1
Sensitivity rue ositiveRate eca Actualpositive ~ TP+ EN (10)
i . TN
Specificity = True — NegativeRate = (11)

TN+ FP

In this work, we need to compute TP, TN, FP, and TN for a multi-class problem that has one score
for each class and counts any other class as a negative. For example, in our case, we have four classes
(1,2, 3,4); thus, TP, FN, FP, and TN for C1 can be calculated as

e  True positive (TP) instances are gold standard class 1 predicted as class 1

e False-negative (FN) instances are gold standard class 1 predicted as class 2, 3, or 4

e  False-positive (FP) instances are gold standard class 2, 3, or 4 predicted as class 1

o  Truenegative (TN) instances are gold standard class 2,3 or 4 predicted as class 2, 3, or 4 (here errors
do not matter as long as class 1 is not involved)

Similarly, for the three other classes C2, C3, and C4, we can compute TP, FN, FP, and TN.


https://pytorch.org
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4.3. Breast Density Segmentation

It is of high importance to accurately estimate the breast density for achieving proper dense tissue
segmentation. In the first experiment, three variations of the cGAN-UNet network with the different
content loss function L, are evaluated: MSE, Dice, and SSIM.

For the quantitative analysis, the quality of the dense region’s segmentation is measured using
three evaluation metrics: accuracy, Dice coefficient or F1 score (DSC), and Jaccard index (JI).
Quantitative results are shown in Table 2. Note that we separately computed the metric value of the
images of class 1 (C1), class 2 (C2), class 3 (C3), and class 4 (C4), while “all” refers to the metric value
of all images of the testing set. Table 2 contains the summary of all the methods tested over the three
evaluation metrics; Accuracy, Jaccard index, and Dice over the segmented images.

Table 2. Accuracy, DSC, and ] I with the cGAN-UNet, cGAN-UNet-SSIM-loss, and cGAN-UNet-dice-loss
evaluated on the testing set of the INBreast dataset for breast density segmentation (C1 = Classl,
C2 =Class2, C3 = Class3, C4 = Class4).

Model Accuracy DSC JI

C1 Cc2 c3 C4 All C1 c2 C3 C4 All C1 C2 C3 C4 All
c¢GAN-Unet with Dice-loss 098 099 099 099 098 066 090 095 095 088 050 082 091 091 0.78
cGAN-Unet with SSIM-loss 094 098 098 096 096 054 08 091 085 079 037 075 083 074 0.65
cGAN-Unet with MSE-loss 068 084 093 09 080 053 08 094 097 081 036 074 09 094 0.67

As shown in Table 2, the cGAN-UNet with Dice provides the best accurate dense regions
segmentation, among the other proposed models with an accuracy of 98%. cGAN-UNet with Dice
yields a significant improvement of 7% and 11% with DSC and ]I, respectively, compared to the
cGAN-UNet with MSE, which reflects the highest similarity between the ground truth and the
predicted segmentation. The segmentation performance of cGAN networks for each class of the
INbreast dataset, using Dice, gives the best results for the four classes in accuracy. In turn, cGAN-UNet
with an SSIM loss is the second-best model yielding an accuracy of 96%, DSC of 79%, and JI of 65%).
The lowest overall dense tissue segmentation performance with an accuracy of 80% has been obtained
by cGAN-UNet using the MSE content loss function, in which the values of DSC and Jaccard scores
achieved are 80% and 67%, respectively. The results with the three variations indicate that DSC and
SSIM as loss functions help the adversarial network in training the generative network better than
MSE. The poor performance of the MSE loss function is because it is prone to outliers. After all, it uses
the Mean in computing each error value. In turn, the DSC and SSIM loss increases the similarity
between the dense segmented regions and the ground truth.

Figure 7 supports the quantitative results of Table 2, as the segmented images resulted in the
cGAN-UNet with an Dice loss accurately segmented the dense regions, including the small regions
and preserving the small details and boundaries of the dense tissues. To assess the proposed model
(i.e., cGAN-UNet with a Dice loss providing the best results in Table 2) and to show its effectiveness,
it was compared against state-of-the-art segmentation models that are commonly used for semantic
segmentation based on deep learning models such as FCN8 [44], FCN32 [44], and Vgg-Segnet [45].

The results of this assessment are shown in Table 3. All models are trained and tested on the
INDbreast dataset. It is noteworthy that these results show that the proposed model developed in
this study outperformed the other models in terms of Sensitivity, Specificity, Precision, and DSC
score. The FCN-32 achieved the worst results among the evaluated methods with a DSC score of 58%.
This network consists of 32 convolutional layers that need many images to be appropriately trained;
however, most medical datasets lack enough images as the main difficulty. Therefore, the FCN-8 model
with eight layers achieved an improvement of 14% in the DSC score compared to FCN-32. Besides,
the Vgg-Segnet network provided acceptable results with a DSC of 73%. In turn, cGAN-UNet with the
Dice loss yields an improvement of 15% in the DSC score compared to the Vgg-Segnet. Furthermore,
it yields an improvement of 12% of Precision better than the best second method, FCN-8. Regarding
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Sensitivity, cGAN-UNet achieved the best result among the four deep models with an improvement of
12% compared to Vgg-Segnet, the second-best model. For Specificity, the four methods provide very
high Specificity; however, our model based on cGAN yields the lowest Specificity of 98.5% among
them only 1.2% lower than FCN-8 and FCN-32 models.

Table 3. Summary of Sensitivity, Specificity, FPR, FNR, Precision, and DSC with the
¢GAN-UNet-MSE-loss, FCN8, FCN32, and VGG-SegNet methods evaluated on the testing set of
the INBreast dataset for breast density segmentation.

Methods Sensitivity ~ Specificity Precision DSC
cGAN-UNet with Dice-loss 0.957 0.985 0.81 0.88
FCN-8 [44] 0.748 0.997 0.69 0.72

FCN-32 [44] 0.5724 0.997 0.59 0.58
Vgg-Segnet [45] 0.832 0.996 0.66 0.73

BI-RADS Il BI-RADS Ill BI-RADS IV

MLO cc

Input

cGAN-UNet
MSE-loss

cGAN-UNet

Dice-loss

A £, e

Figure 7. Breast density segmentation result of three models with the INbreast dataset. (Row 1) original
images. (Row 2) Ground truth. (Row 3) Result of cGAN-UNet with dice-loss. (Row 4) Result of
c¢GAN-UNet with myssim loss. (Row 5) Result of cGAN-UNet. (Col 1) BI-RADS I from two different
views (CC and MLO). (Col 2) BI-RADS II. (Col 3) BI-RADS III. (Col 4) BI-RADS IV.

In conclusion, cGAN-UNet, with its variations proposed in this study, can learn the statistical
invariant features (texture, color, etc.) of an input image and then generate nearly segmented images,
which look like the ground-truth image. However, this study’s segmentation model contains about
13,607,043 parameters for tuning the generator part in the cGAN network. The method developed
in this study is fast in both training, i.e., around 30 s per epoch (326 images) and predicting, around



Diagnostics 2020, 10, 988 15 of 20

seven images per second. That is surprisingly 10-15 times faster than the FCN-32 mode and 7-8 times
faster than the FCN-8 model.

4.4. Breast Density Classification

This paper proposed two different classification techniques with four output classes. In the first
technique, breast density is classified into four categories by traditional method and breast density
percentage estimated by thresholding rules. Whereas in the second method, a CNN model is applied
on the generated binary masks.

A confusion matrix of the traditional method is provided in Table 4. For the traditional method,
the overall accuracy of breast density percentage classification based on thresholding rules is 80%.
For class-1 (BI-RADS I), the traditional method properly classified 77% of the images. The traditional
method of breast density gives the lowest accuracy with class-2. This happens as there is a high
correlation between class-1 and class-2. For class-3 (BI-RADS III) and class-4 (BI-RADS IV), we achieved
classification rates of 90% and 84%, respectively.

Table 4. Confusion matrix of breast density estimated based on thresholding rules.

Class Predicted Label

Ground truth I II 111 v
I 077 020 003 0
I 0 076 024 0
1T 0 0 090 0.10
v 0 0 0.16 0.84

For the proposed breast density classification based on a trained CNN network, two experiments
have been applied: one for the classification of the imbalance dataset (The training data without
augmentation), and the other one for a balanced dataset (the training data after augmentation).
The network have been tested with two different image sizes, 64 x 64 and 128 x 128. Note that
the input to the CNN-based method is the binary image generated by the segmentation model.
As explained in the above subsection of evaluating breast density segmentation, the cGAN-UNet with
a dice loss yields the best segmentation results. The results of this network were used to classify the
breast density in mammography.

Due to the imbalanced data set, deep learning classification performance may decrease.
Thus, to overcome the imbalanced number of training images, we have done data augmentation
by applying “Illumination change”, “scaling”, and “flipping”, which yields 798 images for each class,
is shown in Table 5. We applied the augmentation techniques on the training set only with 326 images
of 82 patients. In turn, the same test set of 84 images of 33 patients is used for evaluating the two
trained CNN networks.

Table 5. Distribution of densities across balanced INbreast dataset (after augmentation).

I II III Iv

Total dataset

(3192 images) 25% (798 images)  25% (798 images)  25% (798 images)  25% (798 images)

Training subset
(2552 images)

Validation subset (640 images) 25% (160 images)  25% (160 images)  25% (160 images) 25% (160 images)

25% (638 images)  25% (638 images )  25% (638 images)  25% (638 images)

Test subset 27 images 29 images 20 images 6 images
(82 images) of 11 patients of 12 patients of 5 patients of 2 patients
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The evaluation of CNN-classification in terms of accuracy, precision, sensitivity, and specificity
have been applied on imbalanced and balanced datasets with two different sizes of input images
(64 x 64 and 128 x 128) are detailed in Table 6.

As shown in Table 6, the CNN-based classification method’s performance is higher when using a
balanced dataset than the imbalanced data set in terms of the four evaluation measures. The lowest
overall accuracy of CNN classifiers for an imbalanced dataset with an input image size of 128 is
90.29%. In turn, the classification rate after applying augmentation to different sizes of input images of
(128 x 128 and 64 x 64) are 98.75% and 98.62%, respectively. However, the CNN-based classification
method’s overall accuracy is with a balanced dataset and a 128 x 128 image size is 98.75%, with an
improvement of 0.13% higher than the classification result with a 64 x 64 image size.

Table 6. Accuracy, Precision, Sensitivity and Specificity of CNN-based classification method on
imbalanced and balance dataset with two different sizes of input images: 64 x 64 and 128 x 128.

Size of Input Images Accuracy Precision Sensitivity Specificity

Imbalanced dataset (410 images) 128 x 128 90.29 90.29 90.29 96.76
64 x 64 94.95 94.17 94.17 98.05
Balanced dataset (3192 images) 128 x 128 98.75 97.5 97.5 99.16
64 x 64 98.62 97.85 97.85 99.28

The confusion matrix of the CNN-based classification method with different input images is
shown in Table 7. As shown, by using the balanced dataset (3192 images) with an image size of
128 x 128, the CNN classifier can correctly predict the class IV with 100% accuracy as class-4 contains
the high dense masks. In contrast, when the image size is changed to 64 x 64, the CNN classifier can
adequately predict class I and class IV with an accuracy of 100% and class III with an accuracy of 98%.
The CNN-based classification method results show how data augmentation and constructing balanced
datasets can improve the overall classification accuracy. Besides, some important objectives, such as
minimizing the complexity (for example, in the LIBRA handcrafted method, they combined 86 features;
in turn, in the FCN technique [11], seven convolution layers were used, which is more complicated
than our network structure with only four layers), maximizing classification accuracy, maximizing
true-positive rate, and minimizing false-positive rates are achieved in these classification approaches.

Table 7. Confusion matrix of breast density by CNN-based classification method.

Size of Input Images Class Predicted Label by CNN
I II III v

I 1.0 0.0 0.0 0.0
II 0.03 093 0.03 00
128 x 128 III 0.0 012 0.77 0.12
Imbalanced dataset (410 images) v 00 00 033 067
I 098 0.0 0.0 0.0
II 0.0 096 0.04 0.0
64 > 64 I 00 00 10 00
Ground truth v 0.0 0.0 0.57 043
I 1.0 0.0 0.0 0.0
II 0.0 097 0.03 0.0
128 %128 III 0.05 0.0 095 0.0
Balanced dataset (3192 images) v 00 00 00 10
I 1.0 0.0 0.0 0.0
64 % 64 II 0.07 093 0.0 0.0

I 0.0 00 097 0.03
v 0.0 00 00 1.0
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For a quantitative correlation, in terms of accuracy, the performance of our proposed algorithm
was compared against state-of-the-art breast density classification. A summary of representative
studies can be found in Table 8. The accuracy, classification method, number of datasets, and number
of density categories are represented in Table 8. As shown, the performance of the proposed technique
outperformed the state of arts with an overall accuracy of 98.75%.

Table 8. Accuracy of different breast density classification in terms of their best results.

Study Year Method No. of Images No. of Density Category Accuracy (%)
Volpara software [27] 2010  Hand-crafted 2217 Dense and Fatty 94.0
LIBRA software [4] 2012  Hand-crafted 324 4 Classes 81.0
Lehman et al. [22] 2018  Deep Learning 41479 Dense and Non-dense 87.0
Lee and Nishikawa [11] 2018 Deep Learning 455 4 Classes 85.0
Mohamed et al. [35] 2018  Deep Learning 925 BI-RADS II and BI-RADS III 94.0
Dubrovina et al. [37] 2018  Deep Learning 40 4 Classes 80.0
Gandomkar etal. [21] 2019 Deep Learning 3813 Dense and Fatty 92.0
Our proposed CNN 2020 Deep Learning 410 4 Classes 98.75

5. Conclusions

Breast density can undoubtedly affect the accuracy of routine breast cancer detection methods,
such as screening mammography. Therefore, it would be a breast cancer diagnostic dilemma for women
with dense breast tissue (approximately 50 percent of women) [46]. This study aims to develop an
innovative and accurate method to segment and classify the breast density based on Bl-rads standard.
Traditional breast density segmentation and classification methods are cumbersome tasks and have
a high possibility of false positives. The efficacy of a fully automated algorithm for breast density
segmentation and classification in digital mammography is proposed and substantiated by presenting
three versions of cGAN networks for segmentation and two different classification methods. In our
experiments, mammograms of 115 patients (410 images) from the INbreast dataset were used. With the
breast density segmentation task, our method achieved an accuracy, Dice coefficient, Jaccard index of
98%, 88%, and 78%, respectively. With the density classification task, our method obtained precision,
sensitivity, and specificity of 97.85%, 97.85%, and 99.28%, respectively. A strong correlation can be
obtained between the computerized algorithm’s output and the radiologist’s estimated breast density.
This observation justifies that the proposed methods in this study have a strong positive relationship
with the radiologist manual classification and is competitive with reported correlation coefficients
from the literature, e.g., 0.63 [31], 0.70 [35], 0.85 [36], and 0.85 [11]. The most notable limitation of this
study is that only one dataset is used. For future developments, more datasets need to be utilized;
however, this dataset’s ground-truth is prepared by doctors, experts, and radiologists of the Hospital
Universitari Sant-Joan de Reus, Spain, via developing our GUI in MATLAB to help the radiologists to
annotate the images. It is believed that artificial intelligence is capable of surpassing human experts in
breast density prediction. The future work of this research is to transpose our fully automated PD%
estimation techniques into the robust computer-aided breast density analyzer appraisal tool for use in
clinical practice.
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