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Abstract: Malaria is a life-threatening disease that is spread by the Plasmodium parasites. It is
detected by trained microscopists who analyze microscopic blood smear images. Modern deep
learning techniques may be used to do this analysis automatically. The need for the trained personnel
can be greatly reduced with the development of an automatic accurate and efficient model. In this
article, we propose an entirely automated Convolutional Neural Network (CNN) based model
for the diagnosis of malaria from the microscopic blood smear images. A variety of techniques
including knowledge distillation, data augmentation, Autoencoder, feature extraction by a CNN
model and classified by Support Vector Machine (SVM) or K-Nearest Neighbors (KNN) are performed
under three training procedures named general training, distillation training and autoencoder training
to optimize and improve the model accuracy and inference performance. Our deep learning-based
model can detect malarial parasites from microscopic images with an accuracy of 99.23% while
requiring just over 4600 floating point operations. For practical validation of model efficiency, we have
deployed the miniaturized model in different mobile phones and a server-backed web application.
Data gathered from these environments show that the model can be used to perform inference under
1 s per sample in both offline (mobile only) and online (web application) mode, thus engendering
confidence that such models may be deployed for efficient practical inferential systems.

Keywords: Plasmodium parasites; microscopic; blood smear; data augmentation; CNN; knowledge
distillation; Autoencoder; inference performance; floating point operations; deep learning

1. Introduction

Malaria, a life life-threatening disease caused by Plasmodium parasites, is still a severe health
concern in large parts of the world especially the third world countries. Almost 219 million cases
of malaria, across 87 countries worldwide, were reported by World Health Organization (WHO)
in the year of 2017 [1]. WHO designated South-East Asia, Eastern Mediterranean, Western Pacific,
and the Americas as high risk zone. Malaria is curable and can be prevented if proper initiatives and
approaches are taken effectively, which majorly relies on early diagnosis of malarial parasites [2].

Many techniques have been reported, in the literature, which detects malarial parasites in a patient
such as clinical diagnosis [3,4], microscopic diagnosis [5–10], rapid diagnostic test (RDT) [11–13] and
polymerase chain reaction (PCR) [14–16]. Conventional diagnostic methods like clinical diagnosis and
PCR are performed in laboratory settings, and their efficiency and accuracy largely depend on the
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level of available human expertise [17]. Such expertise is inadequately present in unreached remote
areas where malaria can be predominant.

RDT and microscopic diagnosis are two of the most impactful malaria diagnosis methods which
make a very large contribution to malaria control today [13]. RDT is effective diagnosis tool as it does
not require any trained professional or microscope and can provide diagnosis within 15 min [18].
However, according to WHO [19] and others [20,21] RDT has few shortcomings that includes lack
of sensitivity, inability to quantify parasite density and differentiate among P. vivax, P. ovale and
P. malariae, higher cost compared to light microscope, and susceptibility to damage by heat and
humidity. Microscopic systems do not suffer from these shortcomings and is considered to be effective
for malaria parasite detection [13,22], however this technique requires the presence of a trained
microscopists [23]. Automatic microscopic malaria parasite detection, which involves the acquisition
of the microscopic blood smear image (for example by smartphone as demonstrated in [24,25]),
segmentation of the cells and classification of the infected cells, can be an effective diagnostic tool [26].
It is to be noted that successful segmentation of blood cells and identification of malaria parasites can
be used in conjunction to perform counting. Cell segmentation is a well researched area and good
performance has already been reported in multiple studies [27–30]. Previous works that concentrated
on the classification of infected cells involve tools and techniques from image processing [31–33],
computer vision [34–36] and machine learning [37–39]. However, solutions for classification of infected
cells, which are both accurate and computationally efficient, have not been studied to the best of our
knowledge. As an example, [40] reports an accuracy of 99.52% but the proposed model uses over
19.6 billion floating point operations (flops). This precludes the model from being useful in power
constrained device.

In this study we trained multiple accurate and computationally efficient models for malaria
parasite detection in single cells using a publicly available malaria dataset [24]. Our contributions
reported in this article are mainly three-folds:

• While doing experiments on the malaria dataset, we found that certain samples were mislabeled.
These mislabeled samples were corrected and the corrections can be found in [41] for future research.

• Unlike previous works carried out for malaria parasite detection, our trained models are not
only highly accurate (99.23%) but also the order of magnitude is more computationally efficient
(4600 flops only) compared to previously published work [40].

• For better understand the performance of the model in low resources settings, it was deployed for
inference in multiple mobile devices as well as a web application. We find that in such situation
the model can be used to find accurate per cell classification prediction within 1 s.

It is conceivable that these contributions can play a significant role towards building a fully
automated system for malaria parasite detection in the future.

2. Relevant Work

Malaria being a life threatening disease has caused deep research interests among the scientists
all over the world. Earlier, malaria was mostly diagnosed in the laboratory setting requiring a great
deal of human expertise. Automatic systems such as those relying on machine learning techniques
were initially studied to overcome this problem. Techniques reported in this domain of study mostly
considered the hand-crafted features in decision making. For example, [42,43] relied on morphological
factors for feature extraction and applied SVM and Principal Component Analysis (PCA) [44] for the
classification purpose. However, the accuracy achieved through these kinds of model is low compared
to the more recently studied deep learning based techniques.

For automatic detection of malaria pathogens from the microscopic images, Convolutional
Neural Network (CNN) [45] received much attention from the researchers in recent times. Dong et al.
for example evaluated the performances of three popular Convolutional Neural Network [46],
namely LeNet-5 [47], AlexNet [48] and GoogLeNet [49]. In addition, they trained an SVM classifier for
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comparison purposes and concluded that CNN is advantageous over SVM in terms of the capacity
of learning image features automatically. To find the optimal layer of a pre-trained model to extract
features from underlying malaria parasite data, Rajaraman et al. evaluated the performances of
AlexNet, VGG-16 [50], ResNet-50 [51], Xception [52], DenseNet-121 [53] along with their custom-built
model [24]. Liang et al. reported 97.37% accuracy in detection with the help of their 16-layered CNN
model and claimed that their model is superior to transfer learning models [54]. Hung et al. pre-trained
a model on Imagenet [55] but fine-tuned it on own data for detecting malaria parasite [35].

Most of the reported studies in general focused on improving the accuracy using traditional
machine learning or deep learning based techniques. A few notable exceptions are the works of
Quinn et al. [25] and Rosado et al. [56] who also tackled the problem of computational efficiency
of their models. However, both studies reported a notable drop in model accuracy in pursuit of
computation efficiency. Rosado et al. also explored the use of smartphones to detect malaria parasites
and white blood cells. They reported sensitivity and specificity of 80.5% and 93.8% for trophozoite
detection and 98.2% and 72.1% respectively for white blood cells using Support Vector Machine
(SVM) [57]. Using the same classifier, they achieved a sensitivity and specificity of 98.2% and 72.1%
respectively for white blood cells. The use of deep learning technique, particularly those that leverage
transfer learning [31,40,58] yield superior results when considering classification metrics. Unfortunately,
the models proposed in those studies are also quite expensive in terms of the required computational
resources. Also notable is the fact that while Rosado et al. showed that their model can be deployed on
mobile phones, their demonstration did not include low cost mobile phones commonly used in the
poorer regions of the world.

In contrast, in this work, we propose several deep learning models which achieve classification
performance comparable to the previously reported highly accurate deep learning based solutions.
In addition, our models are efficient in terms of required computational resources and have been
demonstrated to work efficiently on smart mobile devices, including that are available at very low cost.

3. Methodology

In order to conduct a series of experiments, publicly available malaria dataset was used.
Data collection and data preprocessing techniques are discussed in the following subsequent subsections.
Out of the series of experiments, we choose our best model in terms of both performances and
effectiveness thereby, which is discussed in proposed model architecture subsections. Experimental
details and experimental settings are discussed in training details subsections. Training of the models
is discussed under three training procedure which are general training procedure, distillation training
procedure and autoencoder training procedure, details are provided in the designated subsections.

3.1. Data-Set

Malaria dataset contains 27,558 cell images classified into two groups called parasitized and
uninfected cells, where each cell contains an equal number of instances. Data was taken from
150 P. falciparum and 50 healthy patients and it was photographed at Chittagong Medical College
Hospital, Bangladesh using a smartphone by placing it on the conventional light microscope [26].
Manual annotation was performed later by an expert slide reader at the Mahidol-Oxford Tropical
Medicine Research Unit. In this data, parasitized samples mean that there is the presence of Plasmodium,
whereas the uninfected samples refer to the absence of Plasmodium but there may be presence of other
objects like staining artefacts/impurities.

While studying the dataset, some of the labelled data raised suspicion of whether they were
correctly labelled. Some of the data seems like uninfected but labelled as parasitized, where some
parasitized images are labelled as uninfected. To confirm this rising issue we consulted with an expert.
The expert confirmed that some of the data are genuinely mislabeled which was later manually
annotated as per the presence and absence of malarial parasites. While annotating, suspicious,
and falsely labelled data was put aside, which resulted in the reduction of data from 27,558 to
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26,161. After removing 647 falsely labeled and suspicious parasitized data, the amount of current
parasitized data stands 13,132. In this article, correct parasitized data is considered as true parasitized,
and suspicious data is considered as false parasitized. For uninfected malaria data, 750 suspicious
images was found, which was named as false uninfected. After keeping away those data, total true
uninfected data stands 13,029. Some data from the dataset are depicted in Figure 1.

Figure 1. (a) Correctly labelled uninfected images (b) Correctly labelled parasitized images (c) Falsely
labelled uninfected images and (d) Falsely labelled parasitized images.

3.2. Data Preprocessing

In supervised learning, the behaviour and performances of the model entirely depends on the
data that is fed. Therefore, data preprocessing plays a vital role towards conducting experiments.
Considering that, in this work manually corrected images were resized as per the model input,
and image patches were rescaled to map the features within 0 to 1 range which led to getting
faster convergence. Data augmentation as per Table 1 was also applied to training data preserving
the semantic meaning, which helps to improve the model performances. Figure 2 depicts resizing
augmented images.

Table 1. Augmentation table.

Augmentation Type Parameters

Random Rotation 20 Degree
Random Zoom 0.05

Width Shift (0.05, −0.05)
Height Shift (0.05, −0.05)

Shear Intensity 0.05
Horizontal Flip True
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Figure 2. Image before resizing and performing augmentation is depicted in (a) and image after resizing
and applying augmentation is depicted in (b).

3.3. Proposed Model Architecture

To serve the purpose of detecting malaria parasite from blood smear (exactly the similar kind of
blood smear collected by [24]), in this article, an autoencoder-based architecture is proposed, which is
shown in Figure 3. Autoencoder [59] is a specific type of artificial neural network which compresses
input data into lower-dimensional latent space representation and finally reconstruct output from this
representation shown in Equations (1) and (2).

Xi = Decoder(Encoder(Xi)) (1)

Lθ = Cθ
(
Xi, Xi

)
(2)

Here, Mean Square Error (MSE) loss function C calculates the loss between i number of the original
and reconstructed image.

The primary purpose of an Autoencoder is dimensional reduction [60]. However, in this task,
it is used as a classifier, inspired by [61,62]. Autoencoder is composed of two main components:
Encoder and Decoder. For the classification task, the decoder is replaced by the fully connected layer
which allowed Autoencoder to classify the expected classes. The complete process will be discussed in
the subsequent section.

Encoder: Encoder compresses the input to latent space representation with the least possible
distortion. For Xn = x1, x2, x3, . . . , xn set of input images belongs to training set, encoder compress it to
Kn = k1, k2, k3, . . . , kn where Kn is the set of latent representation of Xn.

k1, k2, k3 . . . . . . kn = Encoder(x1, x2, x3 . . . . . . xn) (3)

Kn = Encoder (Xn) (4)

The proposed encoder is composed of three Convolutional layers where a Max-pooling layer
follows each layer. For performing the convolutional operation in each layer, the kernel size is defined
as (3 × 3) with the same padding and 1-pixel stride. The kernel number for the first convolutional layer
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was set 16 where second and third layers were respectively 8 and 4. ReLU activation function, shown in
Equation (5), was applied in encoder’s hidden units to introduce non-linearity to the neuron’s output.

S = max(0, M) (5)

Here, S is the output after applying non linearity on matrix M.
To sample down the features map, max-pooling layer shown in Equation-6 is applied with window

size 2 × 2 and strides 1.
Z = maxh,w

i, j=1

(
Mi, j

)
(6)

Z is the output matrix containing maximum value of each patch from input matrix M.
Decoder: Decoder reconstructs the image Rn = r1, r2, r3, . . . , rn from the latent representation Kn

= k1, k2, k3, . . . , kn is shown in Equations (7) and (8).

r1 , r2 , r3 . . . . . . rn = Decoder (k1 , k2 , k3 . . . . . . kn) (7)

Rn = Decoder (Kn) (8)

The decoder consists of 4 Deconvolutional layers and three Up-sampling layers. The kernel
size for all the Deconvolutional layers is 3 × 3 with strides size 1 having the same padding and
number of kernels were defined as 4, 8, 16 and 3 respectively. Deconvolutional layer is the opposite of
convolutional layer and unlike Convolutional layer, instead of mapping 3 × 3 features into 1 pixel,
Deconvolutional layers map 1 pixel to 3 × 3 features vector. ReLU activation function was applied to
the hidden units to introduce non-linearity. Up-sampling with window size 2 × 2 was applied to get
closer input image to reconstruct it from the latent representation.

While testing, decoder is replaced by a flatten and two fully connected layers to serve our purpose
of detecting malaria parasite from a blood smear. Hence, the final model is composed of 9 layers among
which three are Convolutional layers, three are Max-pooling layer, one Flatten layer and two fully
connected layers. Finally, fully connected layer is followed by a softmax layer to distribute predicted
probabilities over two classes according to the objective of this task. The outline of our proposed model
architecture is given in Figure 3.

Figure 3. The outline of autoencoder model.

3.4. Training Details

To find the optimum and efficient model, different approaches was investigated. Among the series
of experiments, feature extractions and classification using Support Vector Machine and K-Nearest
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Neighbors (KNN) along with augmentation and without augmentation is discussed under General
training procedure. In Distillation training procedure, model pruning and knowledge transformation
from teacher to student model is discussed. The third procedure is the Autoencoder training procedure
where training and testing procedure of an Autoencoder based model is discussed. For general
training and knowledge distillation training, a custom 8-layered Convolutional Neural Network model,
shown in Figure 4, was used as a feature extractor. In all the training procedure, total data was divided
into training, testing and validation group as per the ration 80:10:10. All experiments was performed
on machine Ubuntu 16.04, system with Intel@ Core i5-6500 CPU @ 3.20 GHz processor, 8 GB RAM,
1 TB HDD, Python @3.6.7, Keras @2.2.4 having TensorFlow @1.13.0 backend.

Figure 4. Custom 8 layers model architectures which is taken as a feature extractor for the general
training procedure and knowledge distillation training procedure.

3.4.1. General Training

In order to optimize and to obtain better performances, data augmentation, without augmentation,
classification using SVM and KNN was performed. For the augmentation experiment, augmentation as
per the Table 1 was applied first. While performing 64 × 64 augmentation experiment, original image
was resized to (64, 64) before applying augmentation where augmentation was performed after resizing
original image into (32, 32) for the experiment of 32 × 32 augmentation. In both experiments, data was
fed into the model according to batch size 32. For the without augmentation training, plain data was fed
into the model according to batch size 64 after resizing the original image to (64, 64) or (32, 32) as per the
experiment requirement. Weights and biases of all trainable parameters were randomly initialized at
the beginning of training. To optimize the weights and biases, Stochastic Gradient Descent (SGD) [63]
optimizer was used while performing the forward propagation. The learning rate was set to 0.001 with
a momentum of 0.9. While performing back-propagation to calculate the error and update the weights
and biases, cross entropy, shown in Equation (9), was used as a loss function. Predicted result and
combined validation loss and accuracy of augmentation and without augmentation experiment for
both image sizes are depicted in Figure 5; Figure 6, respectively.

Loss = −(y log(p) + (1− y) log(1− p)) (9)

In the experiment of CNN-SVM and CNN-KNN, a CNN model was used to extract the features.
Later these features were classified through SVM or KNN as per the objective of our experiment.
The outline of this architecture is depicted in Figure 7.
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Figure 5. Combine validation accuracy and validation loss: (a) depicts combine validation accuracy
and (b) depicts combine validation loss.

Figure 6. Predicted results where X-axis represents ground-truth value and Y-axis represents predictions
of the model: (a) depicts predicted result of image 64 × 64 with Augmentation (b) depicts predicted
result of image 64 × 64 without Augmentation (c) depicts predicted result of image 32 × 32 with
Augmentation and (d) depicts predicted result of image 32 × 32 without Augmentation.

Figure 7. Modified CNN-KNN or CNN-SVM architecture.
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Support vector machine (SVM) and K-Nearest Neighbor (KNN) are the core machine learning
algorithms that were used as a classifier by implicitly mapping their inputs into high-dimensional
feature spaces [57,64]. Earlier work [65–67] reported the effectiveness of SVM or KNN classifier on the
Convolutional neural network’s extracted features instead of using the softmax layer. Being motivated
with this work, we trained SVM and KNN models after extracting features from a CNN model
(depicted in Figure 4) as shown in Equations (10) and (11).

Labelpred
∝ = S

(
Cl−1(X∝)

)
(10)

Labelpred
∝ = K

(
Cl−1(X∝)

)
(11)

Here, X is the images of training set, C is the feature extractor model, l is the number of layer and
S, K is respectively SVM and KNN classifier.

While training CNN-SVM or CNN-KNN model, to get better performance, hyperparameters
were fine-tuned. In CNN-SVM model 98.93% accuracy was achieved by using ‘RBF’ kernel and
setting gamma and regularization parameter value to 0.001 and 10 respectively. The best accuracy of
CNN-KNN model was 99.12% when 3 was defined as neighbor’s number. Model performances under
general training procedure are shown in Table 2.

Table 2. Model performances after general training.

Image Size Augmentation Epochs Validation Accuracy Validation Loss

(32,32) No 300 0.9982 0.06
(64,64) No 300 0.9748 0.16
(32,32) Yes 300 0.9920 0.02
(64,64) Yes 300 0.9813 0.08

3.4.2. Distillation Training

As a part of the experiment, model pruning method like knowledge distillation was also explored.
Knowledge distillation is a model compression method shown in Equation (12) where knowledge is
transferred from a larger model (teacher model) to a smaller model (student model). In this method,
a smaller model is trained to learn the exact behavior of a complex and bigger model. This method is
proposed by Bucila [68] and generalized by Hinton [69].

Zi =
exp

( ki
T

)
∑

j exp
( ki

T

) (12)

In our experiment, a pretrained 146 layers custom ResNet model [70] was taken as a teacher
model, whereas a custom 8 layers CNN model (showed in Figure 4) acted as a student model. In order
to mimic the teacher model, initially using the pretrained teacher model, the softmax value of training
images was recorded and also the training label was predicted. Later, the softmax value of training
images was swapped if the teacher model mis-predicts the training label. This corrected softmax value
was used as a training label while training student model, shown in Equations (13) and (14).

γτi = Tm(Xi) (13)

γStrain
i =

 γτi , i f argmax
(
γτi

)
== argmax

(
γ
ρ
i

)
γ
ρ
i , Otherwise

(14)

Here, γStrain
i is training label of student model

γτi is the softmax prediction of teacher model
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γ
ρ
i is the actual label

Tm is the Teacher model
Stochastic Gradient Descent (SGD) was used as an optimizer with initial learning rate of 0.01 and

momentum of 0.5 while training the student model. To update the weight, a decay of 1e-6 was applied
using Keras learning rate decay function. To calculate the loss and update the weights and biases of
all trainable parameters Cross Entropy Loss function shown in Equation (9) was applied. Combine
validation accuracy and loss is shown in Figure 8, and the predicted result of this model are shown in
(Figure S1).

Figure 8. Combine validation accuracy and validation loss of knowledge distillation training: (a) depicts
combine validation accuracy and (b) depicts combine validation loss.

After training model performance are depicted in Table 3.

Table 3. Model performances after performing Knowledge Distillation.

Image Size Augmentation Epochs Validation Accuracy Validation Loss

(32,32) Yes 500 0.9897 0.04
(64,64) Yes 500 0.9859 0.05

3.4.3. Autoencoder Training

Finally, autoencoder based architecture was explored to increase the model’s performance. It is
found that the autoencoder based experiments outperforms other experiments. Autoencoder is
composed of two main components which are Encoder and Decoder discussed in the proposed model
subsection. The main aim of an Autoencoder is dimensionality reduction, but to detect malaria parasite,
it is used as a classifier. This classifier can classify infected and parasitized images from a microscopic
blood smear. To train the classifier, at first, full Autoencoder network was trained with the augmented
training images where augmentation was performed as per Table 1. Mean Square Error (MSE) loss
function shown in Equation (15) was used while training to calculate the losses. To minimize the loss
and update the weights RMSprop [71] optimizer was used with 0.001 learning rate. Figure 9 depicts
the few reconstructed images after training Autoencoder 500 epochs.

LossMSE =
1
k

k∑
j=1

(Xi −Xi)
2

(15)

After training Autoencoder network, Decoder was replaced by a fully connected layer where
a softmax layer follows the fully connected layer in order to distribute predicted probabilities
into uninfected and parasitized class. This modified network was trained for 300 epochs after
freezing encoder layers which helps fully connected layers to learn the image features without
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changing encoder’s weights and biases. Cross Entropy loss functions was used to calculate the losses.
SGD optimizer with learning rate 0.001 and momentum 0.9 was used to optimize and update the
weights and biases. Figure 10 depicts the training behavior of this modified model.

Figure 9. Some reconstructed images after training Autoencoder. Top images are the original image
and bottom images are reconstructed images.

Figure 10. Training behavior of Autoencoder after freezing encoder layer: (a) depicts the validation
accuracy for image (32, 32) and (28, 28) and (b) depicts validation loss for image (32, 32) and (28, 28)
while training Autoencoder 300 epochs.

Further, Autoencoder model was trained after unfreezing the encoder layer, which led to
achieving better performance by the model. While training, the hyper-parameter was set as like before.
The experiment was done for both 32 × 32 and 28 × 28 images. The final behavior of the model in both
experiments is depicted in Figure 11 and Table 4.

Figure 11. Final behavior of Autoencoder: (a) depicts the combine validation accuracy and (b) depicts
combine validation loss while training Autoencoder 500 epochs.
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Table 4. Model performances after training Autoencoder 500 epoch.

Image Size Training Accuracy Training Loss Validation Accuracy Validation Loss

(28,28) 0.9943 0.018 0.9924 0.025
(32,32) 0.9941 0.019 0.9900 0.032

4. Result Analysis

To develop an efficient and highly accurate model for the detection of the malaria parasite from
segmented cell images, a series of experiments involving both machine learning and deep learning
techniques were performed. The models were evaluated using different performance metrics such as
Test Accuracy (Test Acc), F1 Score, Precision (Precs.), Sensitivity (Sens.) and Specificity (Spec.). It is
important to note that the size of the model was also considered as an important factor along with
performance to ensure the viability of the models in lower-cost smartphones. The performance of our
models explained by the above-mentioned evaluation metrics can be found in Table 5.

Table 5. Model performances on different experiment.

Image Size Aug Method Test
Acc

Test
Loss

F1
Score Precs. Sens. Spec. Size

(KB)

(32,32) Yes - 0.9915 0.03 0.9914 0.9861 0.9960 0.9865 233.60
(32,32) No - 0.9877 0.05 0.9876 0.9892 0.9861 0.9893 233.60
(64,64) Yes - 0.9843 0.07 0.9839 0.9836 0.9840 0.9842 954.50
(64,64) No - 0.9755 0.15 0.9751 0.9851 0.9650 0.9855 954.60
(32,32) Yes Distillation 0.9900 0.04 0.9900 0.9877 0.9920 0.9878 233.60
(64,64) Yes Distillation 0.9885 0.04 0.9882 0.9929 0.9836 0.9932 954.60
(28,28) Yes Autoencoder 0.9950 0.01 0.9951 0.9929 0.9880 0.9917 73.70
(32,3) Yes Autoencoder 0.9923 0.02 0.9922 0.9892 0.9952 0.9917 73.70

(32,32) Yes CNN-SVM 0.9893 - 0.9918 0.9921 0.9916 - -
(32,32) Yes CNN-KNN 0.9912 - 0.9928 0.9911 0.9923 - -

Table 5 depicts the performance of the models on the test data as obtained from the experiments.
In terms of size and model performance, models trained using distillation, and autoencoder is
compatible to serve the purpose of being computationally efficient while retaining high classification
accuracy. As the autoencoder trained model is smaller in size (only 73.70 KB) and outperforms
models obtained from distillation and other techniques, these models may be considered for practical
validation on smartphones. The two autoencoder based models differ in their input image resolution.
One uses 28 × 28 images and the other accepts 32 × 32 images. Figure 12 and (Figure S2) shows the
prediction of autoencoder model experimented on 32 × 32 images and the image resolution of the two
respective autoencoder based models. Although the model that accepts 28 × 28 images has slightly
higher accuracy, we preferred to use the model which uses the slightly higher resolution image for
deployment in mobile phones and the web-application.

Autoencoder model experimented on 32 × 32 falsely predicts 23 images while testing on 3000 test
images. The confusion matrix is placed in Figure 13 to show the model performances on test data.

According to Figure 13, it is clear that among the 23 falsely classified images, 16 are false positive,
and 7 are false negative. Some of the misclassified images are shown in (Figure S3). Studying upon
all those images, we found that, some of the images are hard to classify even for the human eyes. So,
with the special consideration of this issue, we can say that autoencoder based model performs well on
malaria data.

In addition, the generalizability of the model was established by evaluating its performance on
images from a separate publicly available dataset [72]. The comparable performance achieved with
this dataset further confirm that the proposed model is not localized or biased to the dataset on which
it was trained. Experimental details and results on this new dataset can be found in the Appendix A.
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Figure 12. Some predicted result of Autoencoder based model. Here X-axis represents Ground Truth
value and Y-axis represents model prediction.

Figure 13. Confusion Matrix of Autoencoder based model based on test data.

5. Model Deployment

To demonstrate the robustness and compatibility of the developed model, both web-based and
mobile-based applications were developed. This development clearly shows that this model can be
beneficial for the automatic diagnosis of Malaria in a restricted resource environment.

5.1. Mobile Based Application

Mobile phone has become ubiquitous these days and is an essential part of our day to day life
activities. It is not only used for communication but also uses in many other purposes. Mass people
use this powerful device even in a developing country due to being available at a reasonable cost.
Keeping those in mind, the developed model was integrated with a smartphone application to
demonstrate that Smartphone’s based automatic detection of the malaria parasite is quite possible.
The model can work independently in the mobile app without needing internet connection and can
help an individual without any technical expertise to detect malaria parasite from the blood smear.
Figure 14 depicts the pictorial diagram of a mobile-based solution.

To deploy a model into the smartphone, the model needs to be converted into TensorFlow
Lite model as it is the best solution to execute the trained model accurately in limited memory and
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computational power. Along with this, TensorFlow Lite converter provides options that allow to reduce
file size and increase the speed of execution, with some trade-offs. Considering all those, for making
mobile-based application at first, trained model was converted into TensorFlow Lite. After that,
an interpreter was initialized for loading the model. An interpreter is a program that converts programs
written in a high-level language into machine code understood by the computer. The model was then
initialized after it was appropriately loaded. To process image, the mobile application provides the
option for capturing image from the storage. After selecting the image from the gallery or taking a
picture from the camera resizing of the image into 32 × 32 is performed as per model input. Later, it is
passed to the CNN model as an input for invoking the interpreter to get the result. Then the model
can run and analyze the image. After the analysis, the result would be given by the model in binary,
which would represent whether the result is parasitized or uninfected.

Figure 14. Outline of mobile based service.

The validity of this developed model was tested on different Smartphone. Table 6 shows the
detailed information of testing result on the different operating system and its resources specification.

Table 6. Compatibility of developed model in different devices.

Version Codename API Distribution Device Model Ram Comments

2.3.3–2.3.7 Gingerbread 10 0.30% - - - Almost obsolete OS

4.0.3–4.0.4 Ice Cream
Sandwich 15 0.30% - - - Almost obsolete OS

4.1.X Jelly Bean 16 1.20% - - - Almost obsolete OS
4.4 Kitkat 19 6.90% Samsung GT-190601 2 GB Work Perfectly

5 Lollipop 21 3.00% Google Nexus 4
(Emulator) 2 GB Work Perfectly

6 Marshmallow 23 16.90% Google Nexus 5
(Emulator) 1 GB Work Perfectly

7 Nougat 24 11.40% Xiaomi Readmi Note 4 3 GB Work Perfectly
8 Oreo 26 12.90% Samsung S8 (Emulator) 2 GB Work Perfectly

8.1 - 27 15.40% LG LM-X415L 2 GB Work Perfectly but latency is
higher compared to other devices.

9 Pie 28 10.40% Xiaomi A2 Lite 4 GB Work Perfectly

The graphical interface of developed mobile based application is shown is Figure 15.
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Figure 15. Model behavior on smartphone-based service.

5.2. Web Based Application

A web-based application was developed to demonstrate the model compatibility on server.
This application was developed using Flask. As it is a part of research work, service was kept in
local machine apart from deploying in online. Figure 16 depicts the behavior of this model in the
web-based application.

Figure 16. Model behavior on web based service.

6. Discussion

In this article, an efficient and highly accurate model is developed that detects malarial parasites
from microscopic blood smear. In order to assess the suitability of deploying the model in power
constrained devices, we conducted a series of experiments. Out of these experiments, we found
that autoencoder outperforms other approaches. The reported accuracy of the autoencoder model
is 0.9923 whereas, to the best of our knowledge, the best model performance, in terms of accuracy,
was reported to be 0.9952 (Shown in Table 7). Rajaraman et al. used an ensemble of VGG-19 and
SqueezeNet model to achieve this performance. However, their model lacks severely in terms of
efficiency which makes them unsuitable to be deployed in power constrained devices. VGG-19 alone
requires 19.6 billion flops whereas our model required a total of nearly 4600 flops. It clearly shows that
our model is thousands times more efficient compared to the best reported performances.
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Table 7. Performance comparison.

Method Accuracy Sensitivity Specificity F1 Score Precision

Ross et al., (2006) [73] 0.730 0.850 - - -
Das et al., (2013) [74] 0.840 0.981 0.689 - -

SS. Devi et al., (2016) [75] 0.9632 0.9287 0.9679 0.8531 -
Zhaohuiet al., (2016) [54] 0.9737 0.9699 0.9775 0.9736 0.9736

Bibin et al., (2017) [31] 0.963 0.976 0.959 - -
Gopakumar et al., (2018) [58] 0.977 0.971 0.985 - -
S. Rajaraman et al., (2019) [40] 0.995 0.971 0.985 - -

Proposed Model 0.9923 0.9952 0.9917 0.9922 0.9892

The model developed can not only diagnose malarial parasites efficiently but also maintains high
accuracy. Experimented model with image 28 × 28 achieves an accuracy of 0.9951 (Showed in Table 5)
which is almost equal to the reported best performance. Considering the image quality, we proposed
the model experimented on image 32 × 32 but this did not compromise too much accuracy (only 0.0029).
From Table 5; Table 7, it is clearly evident that our model performs significantly well in terms of
Sensitivity, Specificity and Precision compared with the current state of the art performances.

To show the efficiency and compatibility of our model, we deployed our model in both web-based
and smartphone-based platforms. We also tested on different resource constrained smartphone-based
systems as shown in Table 6. From the table it is evident that our model has compatibility to perform
inference on any smartphone that is available in the market. To perform inference, it typically takes
less than a second. In existing reported works, some of the model cannot even be deployed in any
portable devices whereas our model can perform inference offline in nearly all market available power
constrained devices. It clearly indicates the possibility of developing portable power constrained
malaria parasite diagnostic systems for undeveloped, resources restricted, unprivileged communities.

7. Conclusions and Future Work

This paper presents multiple classification models for malaria parasite detection which take into
consideration not only classification accuracy but also aim to be computationally efficient. In the process,
we conducted a series of experiments including that of general training, distillation training and
autoencoder training resulting in a comparison of 10 different models. From these the best performing
model achieved an accuracy of 99.5% when trained using an Autoencoder based training method
on 28 × 28 images, which is comparable to the performance reported by Rajaraman et al. We find a
comparable accuracy of 99.23% when we trained on 32× 32 images. We chose to do practical evaluations
using this latter model due to the slightly higher image resolution with negligible difference accuracy.
It is worth mentioning that this model requires only about 4600 flops compared to over 19.6 billion flops
required for the model found in previously published work. Practical validation of model efficiency
was performed by deploying the model in 10 different mobile phones of varying computational
capacity and a server-backed web application. Data gathered from these environments show that the
model can be used to perform inference under 1 s per sample in both offline (mobile only) and online
(web application) mode. These inference speeds coupled with the high classification accuracy lead
us to believe that this work can play a part towards building a fully automated system for malaria
parasite detection which may be useful in resource-constrained areas in the foreseeable future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4418/10/5/329/s1;
Figure S1: Predictions results where X-axis represents ground truth value and Y-axis represents predictions
of the model: (a) depicts predicted result of 64 Augmentation and Distillation (b) depicts predicted result of
32 Distillation and Augmentation results, Figure S2: Effects of resizing images: (a) Depicts the quality of (32, 32)
images (b) Depicts the quality of (28, 28) images, Figure S3: Some instances of falsely predicted data. X-axis is the
original labeled data and Y-axis is model prediction.

http://www.mdpi.com/2075-4418/10/5/329/s1
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Appendix A. (Additional Result)

We have performed cross dataset validation as a method of evaluating the generalization of the
trained model. For this purpose, we processed the images of another publicly available dataset [72]
to obtain images of single blood cells from blood smear images. The method of data preprocessing,
experimental details and result analysis have been explained in the following sections.

Appendix A.1. Dataset

In this dataset there are 655 Giemsa-Stained microscopic images of thin blood smear. The images
were captured using a conventional light microscope. The stained objects are classified in two classes.
One of the two classes of images have a presence of malarial parasites like P. vivax, P. ovale, P. falciparum,
P. malariae. Of the 655 images, 109 were confirmed to contain some blood cells with malaria parasites.
For our cross-dataset validation, we worked on these 109 images. Figure A1 depicts one of the images
of 109 image.

Figure A1. Microscopic Blood smear images of the dataset: Red color marked cells are the parasitized
cells; Green color marked cells are some instances of uninfected cell.

Appendix A.2. Experimental Details

As the model is trained to make predictions on images of single cells, the blood smear images
needed to be segmented. Segmentation was done manually as well as by using the Watershed [76]
algorithm. For both cases, a selection of resulting segmented cell images was manually annotated to
indicate presence/absence of malaria parasite.

In the case of manual segmentation to match the environment of the trained model, we changed
the background of each image to black. As all the cells of a blood smear image does not contain malarial
parasites, we manually selected the cells that contain malarial parasites and to achieve balance in the
evaluation set we selected randomly an equal number of uninfected cells from the same blood smear.
Using this process, we curated an evaluation set of 392 images with an equal distribution of infected
and non-infected blood cells (can be found in [77]).
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For automatic segmentation, we used the Watershed algorithm to perform segmentation.
The Watershed algorithm is typically used to segment images when two regions of interest are
close to each other [78]. The RGB images were transformed to gray scale and binarized using the OTSU
method [79]. Later we performed morphological transformation (opening) [80] to reduce noise on the
image and calculated the local peaks. Finally, we performed connected component analysis [81] on
these local peaks and applied the Watershed algorithm. This process resulted in getting, on average,
96 segmented images per blood smear image. Due to the shortcomings of the segmentation process,
some cells were segmented in multiple parts. When annotating the segmented images, we found
291 segmented images with a presence of a malaria parasite. Please note, some of these are not
complete cells, due to the errors of the segmentation process. As before, to balance the data we selected
291 segmented images which do not contain malaria parasites (can be found in [82]).

Table A1. Segmentation Table.

Process Manual Automatic

Number of Blood smears 109 109
Background change Black -

Average segmentation on per cell 3 96
Finally Annotate cells 392 582

Number of Parasitized cells 196 291
Number of Uninfected cells 196 291

Appendix A.3. Result Analysis

Table A2 summarizes the performance of the model on the two sets of segmented images.
The corresponding confusion matrices are shown in Figure A2. On both sets of segmented images,
the performance is comparable (98.79% for automatic and 99.74% for manual), and in cases better than
the performance obtained (99.23%) on the test partition of the dataset it was trained on. While the
metrics are slightly lower for the automatically segmented evaluation set, as mentioned earlier this can
mainly be attributed to the deficiencies of the very simple segmentation approach used. However,
as cell segmentation is not in scope of this work, the performance on the manually segmented set
is indicative of the model capacity when used with a mature segmentation process. These results,
particularly the results obtained from the manually segmented evaluation set strongly argue for the
generalizability of the trained model as it was not trained on this new collection, but still is able to
perform at a similar level of accuracy and effectiveness.
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Table A2. Result on Cross-Validation data.

Method Test Accuracy Test Loss F1 Score Precision Sensitivity Specificity

Manual 0.9974 0.0087 0.9974 1.00 0.9948 1.00
Automatic 0.9879 0.1183 0.9980 0.9797 0.9965 0.9793
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