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Abstract: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a
pandemic resulting in over 2.7 million infected individuals and over 190,000 deaths and growing.
Assertions in the literature suggest that respiratory disorders due to COVID-19 commonly present
with pneumonia-like symptoms which are radiologically confirmed as opacities. Radiology serves
as an adjunct to the reverse transcription-polymerase chain reaction test for confirmation and
evaluating disease progression. While computed tomography (CT) imaging is more specific than
chest X-rays (CXR), its use is limited due to cross-contamination concerns. CXR imaging is commonly
used in high-demand situations, placing a significant burden on radiology services. The use of artificial
intelligence (AI) has been suggested to alleviate this burden. However, there is a dearth of sufficient
training data for developing image-based AI tools. We propose increasing training data for recognizing
COVID-19 pneumonia opacities using weakly labeled data augmentation. This follows from a
hypothesis that the COVID-19 manifestation would be similar to that caused by other viral pathogens
affecting the lungs. We expand the training data distribution for supervised learning through the use
of weakly labeled CXR images, automatically pooled from publicly available pneumonia datasets,
to classify them into those with bacterial or viral pneumonia opacities. Next, we use these selected
images in a stage-wise, strategic approach to train convolutional neural network-based algorithms
and compare against those trained with non-augmented data. Weakly labeled data augmentation
expands the learned feature space in an attempt to encompass variability in unseen test distributions,
enhance inter-class discrimination, and reduce the generalization error. Empirical evaluations
demonstrate that simple weakly labeled data augmentation (Acc: 0.5555 and Acc: 0.6536) is better
than baseline non-augmented training (Acc: 0.2885 and Acc: 0.5028) in identifying COVID-19
manifestations as viral pneumonia. Interestingly, adding COVID-19 CXRs to simple weakly labeled
augmented training data significantly improves the performance (Acc: 0.7095 and Acc: 0.8889),
suggesting that COVID-19, though viral in origin, creates a uniquely different presentation in CXRs
compared with other viral pneumonia manifestations.

Keywords: augmentation; chest X-rays; convolutional neural network; COVID-19; deep learning;
pneumonia; localization

1. Introduction

The novel coronavirus disease 2019 (COVID-19) is caused by a strain of coronavirus called severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that originated in Wuhan in the Hubei
province in China. On 11 March 2020, the World Health Organization (WHO) declared the disease
as a pandemic [1], and as of this writing (in late April 2020), there are more than 2.7 million globally
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confirmed cases with over 190,000 reported deaths with unabated growth. The disease is detected using
reverse transcription-polymerase chain reaction (RT-PCR) tests that are shown to exhibit high specificity
but variable sensitivity in detecting the presence of the disease [2]. However, these test kits are in
limited supply in some geographical regions, particularly third-world countries [3]. The turnaround
time is reported to be 24 h in major cities and even greater in rural regions. This necessitates the need
to explore other options to identify the disease and facilitate swift referrals for the COVID-19-affected
patient population in need of urgent medical care.

A study of the literature shows that individuals suffering from COVID-19 disease commonly
present with hyperthermia and difficulty with breathing. The disease manifests in the lungs as
ground-glass opacities, with peripheral, bilateral, and predominant basal distribution [2]. These patterns
are visually similar to, yet distinct from, those caused by non-COVID-19-related viral pneumonia
and those caused by other bacterial and fungal pathogens [2]. Further, the current literature studies
revealed that it is difficult to distinguish viral pneumonia from others caused by bacterial and fungal
pathogens [4]. Figure 1 shows instances of chest X-rays (CXRs) of clear lungs, bacterial pneumonia,
and COVID-19-related pneumonia, respectively.
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Figure 1. Chest X-rays (CXRs) showing (a) clear lungs; (b) bacterial pneumonia infection manifesting as
consolidations in the right upper lobe and retro-cardiac left lower lobe; and (c) COVID-19 pneumonia
infection showing bilateral manifestations. Blue frames in (c) denote radiologist annotations indicating
disease regions, which serve as ground truth in our analysis.

While not recommended as a primary diagnostic tool due to the risk of increased transmission,
chest radiography and computed tomography (CT) scans are used to screen/confirm respiratory
damage in COVID-19 disease and evaluate its progression [3]. CT scans are reported to be less
specific than RT-PCR but highly sensitive in detecting COVID-19, and can play a pivotal role in
disease diagnosis/treatment [3]. However, the American College of Radiology has recommended
against the use of CT scans as a first-line test [5]. Additional considerations of the increased risk of
transmission, access, and cost also contribute to the recommendation. When radiological imaging is
considered necessary, portable chest X-rays (CXRs) are considered a good and viable alternative [2].
However, in a pandemic situation, the assessment of the images places a huge burden on radiological
expertise, which is often lacking in regions with limited resources. Automated decision-making
tools could be valuable in alleviating some of this burden, and also as a research tool for quantifying
disease progression.

A study of the literature shows that automated computer-aided diagnostic (CADx) tools built with
data-driven deep learning (DL) algorithms using convolutional neural networks (CNN) have shown
promise in detecting, classifying, and quantifying COVID-19-related disease patterns using CXRs and
CT scans [2,3,6], and can serve as a triage under resource-constrained settings, thereby facilitating
swift referrals that need urgent patient care. These tools combine elements of radiology and computer
vision to learn the hierarchical feature representations from medical images to identify typical disease
manifestations and localize suspicious regions of interest (ROI).
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It is customary to train and test a DL model with the data coming from the same target distribution
to offer probabilistic predictions toward categorizing the medical images to their respective categories.
Often, this idealized target is not possible due to the limited data availability, or weak labels. In the
present situation, despite a large number of cases worldwide, we have very limited COVID-19
CXR image data that are publicly available to train DL models where the goal is to recognize CXR
images showing COVID-19-related viral pneumonia from those caused by other non-COVID-19 viral,
bacterial, and other pathogens. Acquiring such data remains a goal for medical societies such as the
Radiological Society of North America (RSNA) [7] and Imaging COVID-19 AI Initiative in Europe [8].
The large number of training data enables a diversified feature space across categories that help to
enhance inter-class variance, leading to a better DL performance. The absence of such data leads to
model overfitting and poor generalization to unseen real-world data. Under these circumstances, data
augmentation has been proven to be effective in training discriminative DL models [9]. There are several
data augmentation methods discussed in the literature for improving performance in natural computer
vision tasks. These include traditional augmentation techniques like flipping, rotations, color jittering,
random cropping, and elastic distortions and generative adversarial networks (GAN)-based synthetic
data generation [10]. Other methods such as random image cropping and patching (RICAP) [11]
are proposed for natural images to augment the training data to achieve superior performance on
CIFAR-100 and ImageNet classification tasks.

Unlike natural images, such as those found in ImageNet [12], medical images tend to have different
visual characteristics exhibiting high inter-class similarities and highly localized ROI. Under these
circumstances, traditional augmentation methods that introduce simple pixel-wise image modifications
are shown to be less effective [13]. On the other hand, GAN-based DL models that are used for
synthetic data generation are computationally complex and the jury is still out on the anatomical and
pathological validity of synthesized images. These networks are hard to train due to the problem of
Nash equilibria, defined as the zero-sum game between the generator and the discriminator networks,
where they contest with each other in improving performance [14]. Further, these networks are shown
to be sensitive to the selection of architecture and hyperparameters and often get into mode collapse,
resulting in a degraded performance [14]. In general, there is a great opportunity for research in
developing effective data augmentation strategies for medical visual recognition tasks. Goals for such
medical data augmentation techniques include reducing overfitting and regularization errors in a
data-scarce situation. The urgency offered by the pandemic has led to the motivation behind this study.

In this work, we use weakly labeled CXR images that are automatically pooled from publicly
available pneumonia datasets to augment training data toward classifying them into bacterial and viral
pneumonia classes and compare the performance with non-augmented training. The goal is to improve
COVID-19 detection in CXRs on the hypothesis that it is a kind of viral pneumonia. This would
leverage the large collections of images toward meeting an emergent goal.

2. Materials and Methods

2.1. Data and Workflow

This retrospective analysis was performed using four publicly available CXR collections:
(i) Pediatric CXR dataset [4]: A set of 5232 anterior–posterior (AP) projection CXR images of

children of 1 to 5 years of age acquired as part of the routine clinical care at the Guangzhou Children’s
Medical Center in China. The set contains 1583 normal, 2780 bacterial pneumonia, and 1493 CXRs
showing non-COVID-19 viral pneumonia, respectively;

(ii) RSNA CXR dataset [15]: The RSNA, Society of Thoracic Radiology (STR), and the National
Institutes of Health (NIH) jointly organized the Kaggle pneumonia detection challenge to develop image
analysis and machine learning algorithms to automatically categorize the CXRs as showing normal,
non-pneumonia-related or pneumonia-related opacities. The publicly available data are a curated
subset of 26,684 AP and posterior–anterior (PA) CXRs showing normal and abnormal radiographic
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patterns, taken from the NIH CXR-14 dataset [16]. It includes 6012 CXRs showing pneumonia-related
opacities with ground truth (GT) bounding box annotations for these on 1241 CXRs;

(iii) CheXpert CXR dataset [17]: A subset of 4683 CXRs showing pneumonia-related opacities
selected from a collection of 223,648 CXRs in frontal and lateral projections, collected from 65,240
patients at Stanford Hospital, California, and labeled for 14 thoracic diseases by extracting the
labels from radiological texts using an automated natural language processing (NLP)-based labeler,
conforming to the glossary of the Fleischner Society;

(iv) NIH CXR-14 dataset [16]: A subset of 307 CXRs showing pneumonia-related opacities selected
from a collection of 112,120 CXRs in frontal projection, collected from 30,805 patients. Images are
labeled with 14 thoracic disease labels extracted automatically from radiological reports using an
NLP-based labeler;

(v) Twitter COVID-19 CXR dataset: A collection of 135 CXRs showing COVID-19-related viral
pneumonia, collected from SARS-CoV-2-positive subjects, has been made available by a cardiothoracic
radiologist from Spain via Twitter (https://twitter.com/ChestImaging). The images are made available
in JFIF format at approximately a 2K × 2K resolution;

(vi) Montreal COVID-19 CXR dataset: As of 14 April 2020, a collection of 179 SARS-CoV-2-positive
CXRs and others showing non-COVID-19 viral disease manifestations has been made publicly available
by the authors of [18] in their GitHub repository. The CXRs are made available in AP and PA projections.

Tables 1–3 show the distribution of the data used toward the baseline training and evaluation,
weak-label augmentation, and COVID-19 classification, respectively. The GT disease bounding box
annotations for a sample of the COVID-19 CXR data, containing 27 CXRs collectively from the Twitter
COVID-19 and Montreal COVID-19 CXR collections, were set by the verification of publicly identified
cases from an expert radiologist who annotated the sample test collection.

Table 1. Baseline dataset characteristics. Numerator and denominator denote the number of train and
test data, respectively. Note that this dataset predates the onset of SARS-CoV2 virus, and therefore the
viral pneumonia is of non-COVID-19 type.

Dataset Bacterial (Proven) Pneumonia Viral (Proven) Pneumonia

Pediatric 2538/242 1345/148

Table 2. Characteristics of datasets used for weak-label classification.

Dataset Pneumonia of Unknown Type

RSNA 6012
CheXpert 4683

NIH 307

Table 3. Distribution of COVID-19 CXR data.

Dataset COVID-19 Viral Pneumonia

Twitter COVID-19 135
Montreal COVID-19 179

Figure 2 illustrates the graphical abstract of the proposed study. Broadly, our workflow consisted
of the following steps: First, we preprocessed the images to make them suitable for use in DL. Then, as
shown in Figure 2a, we evaluated the performance of a custom CNN and a selection of pre-trained
CNN models for categorizing the pediatric CXR collection, referred to as baseline, into bacterial or
viral pneumonia. The trained model was further evaluated for its ability to categorize the publicly
available COVID-19 CXR collections as showing viral pneumonia. Next, as shown in Figure 2b, we used
the trained model from Figure 2a to weakly label CXRs as showing bacterial or viral pneumonia in
other pneumonia datasets (RSNA, CheXpert, and NIH). Then, as shown in Figure 2c, the baseline

https://twitter.com/ChestImaging
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training data were augmented with these weakly labeled CXRs to improve the detection performance
with both (i) the baseline test data and (ii) the COVID-19 CXR collections.
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Figure 2. Graphical abstract of the proposed study. (a) Model training and evaluation with baseline
pediatric CXR data; (b) using the best performing model from (a) to weakly classify CXRs from
Radiological Society of North America (RSNA), National Institutes of Health (NIH), and CheXpert
containing pneumonia-related opacities, as showing bacterial or viral pneumonia; and (c) augmenting
the baseline training data with weakly labeled CXRs to check for performance improvement.

This discriminative training data augmentation strategy recognizes biological similarity in
viral and COVID-19 pneumonia, i.e., both are viral; however, it also notes the distinct radiological
manifestations between each other as well as with non-viral pneumonia-related opacities. Rejects from
the classifier developed in this study are not necessarily normal and should be subjected to a separate
clinical assessment.
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2.2. Lung ROI Segmentation and Preprocessing

It is important to add controls during the training of the data-driven DL methods for disease
screening/diagnosis. Learning irrelevant feature representations could adversely impact the clinical
decision-making. To assist the DL model to focus on pulmonary abnormalities, we used a dilated
dropout U-Net [19] to segment the lung ROI from the background. Dilated convolutions are shown to
improve performance [20] with exponential receptive field expansion while preserving spatial resolution
with no added computational complexity. A Gaussian dropout with an empirically determined value
of 0.2 was used after the convolutional layers in the network encoder to avoid overfitting and improve
generalization. A publicly available collection of CXRs and their associated lung masks [21] was
used to train the dilated dropout U-Net model to generate lung masks of 224 × 224 pixel resolution.
Callbacks were used to store the best model weights after each epoch. The generated masks were
superimposed on the original CXRs to delineate the lung boundaries, crop them to the size of a
bounding box, and re-scale them to 224 × 224 pixel resolution to reduce the computational complexity.
Figure 3 shows the segmentation steps performed in this study.
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ROI cropping.

Additional preprocessing steps performed were as follows: (i) CXRs were thresholded at to
remove very bright pixels to remove text annotations (empirically determined to be in the range
(235–255) that might be present in the cropped images. Missing pixels were in-painted using the
surrounding pixel values. (ii) Images were normalized to make the pixel values lie in the range (0–1).
(iii) CXR images were median-filtered to remove noise and preserve edges. (iv) Image pixel values
were centered and standardized to reduce the computational complexity. Next, the cropped CXRs
were used to train and evaluate a custom CNN and a selection of pretrained models at the different
learning stages performed in this study.

2.3. Models and Computational Resources

The performance of a custom CNN model whose design is inspired by the wide residual network
(WRN) architecture proposed in [22] and a selection of ImageNet pretrained CNN models was evaluated
during the different stages of learning performed in this study. The benefit of using a WRN compared
with the traditional residual networks (ResNets) [23] is that it is shallower, resulting in shorter training
times while producing similar or improved accuracy. In this study, we used a WRN-based custom
CNN architecture with dropouts used in every residual block. After the pilot empirical evaluations,
we used a network depth of 28, a width of 10, and a dropout ratio of 0.3 for the custom WRN used in
this study.

We evaluated the performance of the following pretrained CNN models, viz., (a) VGG-16 [24],
(b) Inception-V3 [25], (c) Xception [26], (d) DenseNet-121 [27], and (e) NasNet-mobile [28].
The pretrained CNNs were instantiated with their ImageNet [12] pretrained weights and truncated at
their fully connected layers. The output feature maps were global average-pooled and fed to a final
dense layer with Softmax activations to output the prediction probabilities.

The following hyperparameters of the custom WRN and pretrained CNNs were optimized
through a randomized grid search method: (i) momentum, (ii) L2-weight decay, and (iii) initial learning
rate of the stochastic gradient descent (SGD) optimizer. We initialized the search ranges to (0.80–0.99),
(1 × 10−8–1 × 10−2), and (1 × 10−7–1 × 10−3) for the learning momentum, L2-weight decay, and initial
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learning rate, respectively. The custom WRN was initialized with random weights and the pretrained
models were fine-tuned end-to-end with smaller weight updates to make them data-specific and
classify the CXRs to their respective categories. Callbacks were used to monitor the model performance
with the validation data and store the best model weights for further analysis with the hold-out
test data.

The performances of the custom WRN and the pretrained CNN models were evaluated in terms
of (i) accuracy, (ii) area under the curve (AUC), (iii) sensitivity or recall, (iv) specificity, (v) precision,
(vi) F-score, and (vii) Mathews correlation coefficient (MCC). The models were trained and evaluated on
a Windows System with Intel Xeon CPU 3.80 GHz with 32 GB RAM and NVIDIA GeForce GTX 1070 GPU.
We used Keras 2.2.4 API version with Tensorflow backend and CUDA/CUDNN dependencies.

2.4. Weakly Labeled Data Augmentation

Our approach builds from following the literature which stated that CXRs showing COVID-19
viral pneumonia manifestations are visually similar to, yet distinct from, those caused by bacterial,
fungal, and other non-COVID-19-related viral pneumonia [2]. First, we trained the custom WRN and
the pretrained models on the pediatric CXR collection [4] and evaluated them on the ability to categorize
the hold-out test data, listed in Table 1, into bacterial or viral pneumonia types. We selected the best
performing model on this baseline data. Next, we conducted two evaluations with this model: (i) we
identified viral pneumonia CXRs from the Twitter-COVID-19 and Montreal-COVID-19 collections;
and (ii) we evaluated its performance in weakly categorized CXRs showing pneumonia of an unknown
type from the RSNA, CheXpert, and NIH CXR collections, listed in Table 2, as belonging to the bacterial
or viral pneumonia opacity categories. These weakly classified CXRs were used to augment the baseline
training data. This weakly labeled augmentation was motivated by the need to expand the learned
feature space. The augmentation enabled the following: (i) to make the training distribution encompass
the variability in the test distribution; (ii) to enhance the inter-class discrimination; and (iii) to decrease
the generalization error by training with samples from a diversified distribution. The model was
trained with various combinations of the augmented training data and evaluated against the baseline
test data and CXRs identifying viral pneumonia from the Twitter-COVID-19 and Montreal-COVID-19
CXR collections.

2.5. Salient ROI Localization

Visualization helps in interpreting the model predictions and identify the salient ROI involved
in decision-making. In this study, the learned behavior of the best performing baseline model
in categorizing the CXRs to the bacterial and viral pneumonia classes was visualized through
gradient-weighted class activation maps (Grad-CAM) [29]. Grad-CAM is a gradient-based visualization
method where the gradients for a given class are computed concerning the features extracted from
the deepest convolutional layer in a trained model and are fed to a global average pooling layer to
obtain the weights of importance involved in decision-making. This results in a two-dimensional heat
map which is a weighted combination of the feature maps involved in categorizing the image to its
respective class.

3. Results

Table 4 shows the optimal hyperparameter values obtained using a randomized grid search for
the custom WRN and pretrained CNNs. These are used for the model training and evaluation. For the
model validation, we allocated 20% of the training data which was randomly selected. The performance
achieved by the models is shown in Table 5.

It can be observed that the VGG-16 model demonstrates superior performance in terms of accuracy
and AUC with the baseline test data. The Xception model gives higher precision and specificity
than the other models. However, the VGG-16 model outperformed the others in classifying the
pediatric CXRs as showing bacterial or viral pneumonia when considering the F-score and MCC. Both
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these scores provide a balanced precision and sensitivity measure. The performance excellence of
the VGG-16 model can be attributed to (i) the optimal architecture depth for learning the data and
(ii) the ability to extract diversified features that categorize the CXRs to their respective categories.
These deductions are supported by the reduced performance of deeper models like DenseNet-121
which possibly suffered from overfitting. Therefore, we select the VGG-16 model for further evaluating
against the Twitter-COVID-19 and Montreal-COVID-19 CXR collections as showing viral pneumonia.
The performance achieved is shown in Table 6. Figure 4 shows the confusion matrix obtained toward
classifying the Twitter- and Montreal-COVID-19 CXR collections as showing viral pneumonia.

Table 4. Optimal values for the hyperparameters for the custom wide residual network (WRN) and
pretrained convolutional neural networks (CNNs) obtained through the randomized grid search
(M: momentum, ILR: initial learning rate, and L2: L2-weight decay).

Models
Optimal Values

M ILR L2

Custom 0.90 1 × 10−3 1 × 10−5

Pretrained 0.95 1 × 10−3 1 × 10−6

Table 5. Performance achieved by the deep learning (DL) models in classifying the pediatric CXR
dataset (baseline) into bacterial and viral categories. Here, Acc.: accuracy, Sens.: sensitivity, Prec.:
precision, F: F-score, and MCC: Matthews correlation coefficient.

Models Acc. AUC Sens. Spec. Prec. F MCC

Custom WRN 0.8974 0.9534 0.9381 0.8311 0.9008 0.9191 0.7806
VGG-16 0.9308 0.9565 0.9711 0.8649 0.9216 0.9457 0.8527

Inception-V3 0.9103 0.937 0.9587 0.8311 0.9028 0.9299 0.8085
Xception 0.9282 0.954 0.9546 0.8852 0.9315 0.9429 0.8469

DenseNet-121 0.9026 0.9408 0.967 0.7973 0.8864 0.925 0.7931
NASNet-mobile 0.9282 0.9479 0.9753 0.8514 0.9148 0.944 0.8477

Bold numerical values denote superior performance.

Table 6. Performance metrics achieved in classifying the Twitter- and Montreal-COVID-19 CXR
collections as showing viral pneumonia.

Model
Accuracy

Twitter-COVID-19 Montreal-COVID-19

VGG-16 0.2885 0.5028

It was surprising to observe, from Table 6 and Figure 4, that the baseline-trained VGG-16 model did
not deliver superior performance in identifying COVID-19 CXRs in the Twitter- and Montreal-COVID-19
CXR collections. We attribute this to two possibilities: (i) limited variance in the training distribution
and hence a narrow feature space to learn the related patterns; or (ii) that COVID-19 manifestation is
distinct from viral pneumonia even though it is caused by the SARS-CoV-2 virus.

The learned behavior of the baseline-trained VGG-16 model with the pediatric CXR and COVID-19
CXR collections is interpreted through Grad-CAM visualizations and is shown in Figure 5.
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Diagnostics 2020, 10, 358 10 of 17

Diagnostics 2020, 10, x FOR PEER REVIEW 10 of 17 

 

It was surprising to observe, from Table 6 and Figure 4, that the baseline-trained VGG-16 model 
did not deliver superior performance in identifying COVID-19 CXRs in the Twitter- and Montreal-
COVID-19 CXR collections. We attribute this to two possibilities: (i) limited variance in the training 
distribution and hence a narrow feature space to learn the related patterns; or (ii) that COVID-19 
manifestation is distinct from viral pneumonia even though it is caused by the SARS-CoV-2 virus. 

The learned behavior of the baseline-trained VGG-16 model with the pediatric CXR and COVID-
19 CXR collections is interpreted through Grad-CAM visualizations and is shown in Figure 5. 

 

Figure 5. Original CXRs and their salient ROI visualization: (a) and (b) show a CXR with bilateral 
bacterial pneumonia and the corresponding Grad-CAM visualization; (c) and (d) show a CXR with 
viral pneumonia manifestations and the corresponding salient ROI visualization; and (e) and (f) show 
a sample CXR from the Montreal-COVID-19 CXR collection with ground truth (GT) annotations and 
corresponding salient ROI visualization. Blue frames in (e) denote radiologist annotations indicating 
disease regions, which serve as ground truth in our analysis.   

The gradients for the bacterial and viral pneumonia classes that are flowing into the deepest 
convolutional layer of the trained model are used to interpret the neurons involved in the decision-
making. The heat maps obtained as a result of weighing these feature maps are superimposed on the 
original CXRs to identify the salient ROI involved in categorizing the CXRs to their respective classes. 
It is observed that the model is correctly focusing on the salient ROI for the baseline test data coming 
from the same training distribution that helps to categorize them into bacterial and viral pneumonia 
classes. However, the salient ROI involved in categorizing an image from the Montreal-COVID-19 
CXR collection that comes from a different distribution compared with the baseline data did not 
properly overlap with the GT annotations. This further underscores the inference above that the 
model did not learn the disease manifestations in the aforementioned COVID-19 CXR collections, 
suggesting that their appearances are distinct. 

With data-driven DL methods, the training data may contain samples that do not contribute to 
decision-making. Modifying the training distribution could provide an active solution to improve 
performance with a similar and/or different test distribution. In response, our approach is to expand 

Figure 5. Original CXRs and their salient ROI visualization: (a,b) show a CXR with bilateral bacterial
pneumonia and the corresponding Grad-CAM visualization; (c,d) show a CXR with viral pneumonia
manifestations and the corresponding salient ROI visualization; and (e,f) show a sample CXR from the
Montreal-COVID-19 CXR collection with ground truth (GT) annotations and corresponding salient
ROI visualization. Blue frames in (e) denote radiologist annotations indicating disease regions, which
serve as ground truth in our analysis.

The gradients for the bacterial and viral pneumonia classes that are flowing into the deepest
convolutional layer of the trained model are used to interpret the neurons involved in the
decision-making. The heat maps obtained as a result of weighing these feature maps are superimposed
on the original CXRs to identify the salient ROI involved in categorizing the CXRs to their
respective classes. It is observed that the model is correctly focusing on the salient ROI for the
baseline test data coming from the same training distribution that helps to categorize them into
bacterial and viral pneumonia classes. However, the salient ROI involved in categorizing an image
from the Montreal-COVID-19 CXR collection that comes from a different distribution compared
with the baseline data did not properly overlap with the GT annotations. This further underscores
the inference above that the model did not learn the disease manifestations in the aforementioned
COVID-19 CXR collections, suggesting that their appearances are distinct.

With data-driven DL methods, the training data may contain samples that do not contribute to
decision-making. Modifying the training distribution could provide an active solution to improve
performance with a similar and/or different test distribution. In response, our approach is to expand
the training data feature space to create a diversified distribution that could help learn and improve
the performance with the baseline test data coming from the same distribution as the training data
and/or with other test data coming from a different distribution. In this study, we propose to expand
the training data feature spaces by augmenting them with weakly classified CXR images. For this,
the best-performing, baseline-trained VGG-16 model is used to weakly classify the CXR images from
the NIH, RSNA, and CheXpert collections showing pneumonia-related opacities as showing bacterial
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or viral pneumonia. The weakly labeled images are further used to augment the baseline training
data to evaluate for an improvement in performance toward categorizing the pediatric CXR test,
Twitter-COVID-19, and Montreal-COVID-19 CXR collections. Table 7 shows the number of samples
across the bacterial and viral pneumonia categories after augmenting the baseline pediatric CXR
training data with weakly labeled images from the respective CXR collections. The performance
metrics achieved with the augmented training data are shown in Table 8.

Table 7. Number of samples in weakly labeled augmented training data.

Dataset BP VP

Baseline + NIH 2720 1470
Baseline + CheXpert 4683 3883

Baseline + RSNA 6577 3318
Baseline + NIH + CheXpert 4865 4008

Baseline + NIH + RSNA 6759 3443
Baseline + CheXpert + RSNA 8722 5856

Baseline + NIH + CheXpert + RSNA 8904 5981

Table 8. Performance metrics achieved with the different combinations of augmented training data
toward classifying the pediatric CXR (baseline) test data into bacterial and viral pneumonia categories.

Dataset Acc. AUC Sens. Spec. Prec. F MCC

Baseline 0.9308 0.9565 0.9711 0.8649 0.9216 0.9457 0.8527

Data augmentation with weakly labeled images

Baseline + NIH 0.9179 0.9600 0.9587 0.8514 0.9134 0.9355 0.8249
Baseline + CheXpert 0.9405 0.9689 0.9877 0.8624 0.9201 0.9542 0.8716

Baseline + RSNA 0.9359 0.9592 0.9877 0.8514 0.9158 0.9503 0.8653
Baseline + NIH + CheXpert 0.9333 0.9606 0.9835 0.8514 0.9154 0.9483 0.8594

Baseline + NIH + RSNA 0.9231 0.9642 0.9959 0.8041 0.8926 0.9415 0.8411
Baseline + CheXpert + RSNA 0.9359 0.9628 0.9835 0.8582 0.919 0.9501 0.8647

Baseline + NIH + CheXpert + RSNA 0.9154 0.9542 0.9794 0.8109 0.8944 0.935 0.8217

Bold numerical values denote superior performance.

Note that the baseline training data augmented with weakly labeled CXR images from the
CheXpert CXR collection demonstrated superior performance in all metrics compared with the
non-augmented and other training data augmentations. This underscores the fact that this augmentation
approach resulted in a favorable increase in the training data size, encompassing a diversified
distribution to learn and improve the performance in the baseline test data, compared with that of the
non-augmented training. We studied the effect of weakly labeled data augmentation in classifying
the Twitter- and Montreal-COVID-19 CXR collections as belonging to the viral pneumonia category.
The results are as shown in Table 9.

The empirical evaluations demonstrate that the baseline training data augmented with the weakly
labeled CXR images from the CheXpert collection improved the performance with an accuracy of
0.5555 and 0.6536, as compared with the non-augmented baseline (0.2885 and 0.5028) in classifying the
Twitter- and Montreal-COVID-19 CXR collection, respectively, as belonging to the viral pneumonia
category. The performance degradation with other combinations of weakly labeled data augmentation
underscores the fact that (i) adding more data introduces noise into the training process and (ii)
increasing the number of training samples does not always improve performance.
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Table 9. Performance metrics achieved through weakly labeled data augmentation toward classifying
the Twitter- and Montreal-COVID-19 CXR collections as belonging to the viral pneumonia category.

Dataset
Accuracy

Twitter-COVID-19 Montreal-COVID-19

Baseline 0.2885 0.5028

Data augmentation with weakly labeled images

Baseline + NIH 0.1037 0.2625
Baseline + CheXpert 0.5555 0.6536

Baseline + RSNA 0.2296 0.4469
Baseline + NIH + CheXpert 0.1852 0.4078

Baseline + NIH + RSNA 0.1407 0.4413
Baseline + CheXpert + RSNA 0.2222 0.4357

Baseline + NIH + CheXpert + RSNA 0.1852 0.4413

Bold numerical values denote superior performance.

4. Discussion

In this section, we present the results from our analyses following our suspicion that even
though COVID-19 pneumonia is caused by a virus (SARS-CoV-2), its manifestations in CXRs are
distinct from other viral pneumonia patterns. To test our hypothesis, we introduced the Twitter- and
Montreal-COVID-19 CXR collections, separately, to the best-performing weakly labeled augmented
training data, i.e., Baseline + CheXpert. This is illustrated in Figure 6, and the results are shown in
Table 10, below.
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Table 10. Performance metrics achieved using augmenting the best-performing weakly labeled
augmented training data with one of the COVID-19 CXR collections toward classifying another
COVID-19 CXR collection as belonging to the viral pneumonia category.

Dataset
Accuracy

Twitter-COVID-19 Montreal-COVID-19

Baseline 0.2885 0.5028

Baseline + CheXpert 0.5555 0.6536

Baseline + CheXpert + Twitter - 0.7095
Baseline + CheXpert + Montreal 0.8889 -

Bold numerical values denote superior performance.

The results in Table 10 support our hypothesis that augmenting the best-performing weakly
labeled augmented training data with class-specific data, since they are sufficiently distinct, is necessary
to obtain improvement. We are intrigued by the disparity in improvement, however. Recall that the
Twitter-COVID-19 collection was posted from a hospital in Spain. In contrast, the Montreal-COVID-19
collection is sourced broadly and does not typify the pneumonia opacity from a select population.
Thus, the variety introduced by augmenting with the Montreal-COVID-19 data results in a much
greater boost in performance as compared with Twitter-COVID-19.

Next, to test the degree to which COVID-19 is distinct from routine viral pneumonia manifestations,
we augmented the baseline directly with the individual COVID-19 images.

It is observed from Table 11 that augmenting the baseline training data with the Twitter-COVID-19
CXR collection significantly improved the performance in detecting COVID-19 CXRs in the Montreal
collection as belonging to the viral pneumonia category. We observed similar improvements in
performance with the Twitter-COVID-19 CXRs when the baseline training data is augmented with
the Montreal-COVID-19 CXR collection. This suggests that weakly labeled augmentation might be
hurting rather than helping the detection of COVID-19. While this may seem counter to our original
hypothesis, recall that weakly labeled augmentation is very valuable when there are insufficient data
for a subclass. This is supported by the results shown in Table 8 above. In the case of COVID-19,
note that the collections are very small and need some additional training images. Therefore, these
augmented training images must be selected wisely.

Table 11. Performance metrics achieved using augmenting training data directly with one of the
COVID-19 CXR collections toward classifying another COVID-19 CXR collection as belonging to the
viral pneumonia category.

Dataset
Accuracy

Twitter-COVID-19 Montreal-COVID-19

Baseline 0.2885 0.5028

Baseline + Twitter-COVID-19 - 0.9778
Baseline + Montreal-COVID-19 0.9926 -

Bold numerical values denote superior performance.

Confusion matrices for the results in Table 11 above are shown in Figure 7, while Figure 8 shows
the learned behavior of the trained model. We observe that the learned interpretation is correctly
focusing on the salient ROI, matching with the GT annotations that help to categorize COVID-19 CXRs
as showing viral pneumonia. This is a significant improvement over the non-augmented training
results shown in Figure 5.
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COVID-19 CXR collections. Enlarged text labels have been manually superimposed for clarity.
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Figure 8. Original CXRs, heat maps, and salient ROI visualization: (a–c) show a sample Montreal-COVID-19
CXR with GT annotations, the corresponding heat map, and Grad-CAM visualization; (d–f) show a sample
Twitter-COVID-19 CXR with GT annotations, the heat map, and its associated class activation maps.
Blue frames in (a,d) denote radiologist annotations indicating disease regions, which serve as ground
truth in our analysis.

5. Conclusions and Future Work

Weakly labeled data augmentation helped to improve performance with the baseline test data
because the CXRs with pneumonia-related opacities in the CheXpert collection have a similar
distribution to bacterial and non-COVID-19 viral pneumonia. This similarity helped to expand
the training feature space by introducing a controlled class-specific feature variance that improves
performance with the baseline test data. However, with COVID-19 CXRs, weakly labeled data
augmentation did not deliver superior performance on its own, primarily due to the small data set
size—which is the base reason for weakly labeled augmentation with data from other collections—and
distinct opacity patterns compared with other viral and bacterial pneumonia. In clinical use, it could
quickly help to separate patients with COVID-19 opacities (true positives) and refer the rest for
further clinical assessment. As future work, we aim to expand the analysis to multi-class problems.
Constructing model ensembles to combine the predictions of models trained on various combinations
of augmented training data might further improve the COVID-19 detection performance.
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