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Abstract: Major hemorrhage is often associated with trauma-induced coagulopathy. Targeted blood
product replacement could achieve faster hemostasis and reduce mortality. This study aimed
to investigate whether thromboelastography (TEG®) goal-directed transfusion improved blood
utilization, reduced mortality, and was cost effective. Data were prospectively collected in a U.K.
level 1 trauma center, in patients with major hemorrhage one year pre- and post-implementation
of TEG® 6s Hemostasis Analyzers. Mortality, units of blood products transfused, and costs were
compared between groups. Patient demographics in pre-TEG (n = 126) and post-TEG (n = 175)
groups were similar. Mortality was significantly lower in the post-TEG group at 24 h (13% vs. 5%;
p = 0.006) and at 30 days (25% vs. 11%; p = 0.002), with no difference in the number or ratio of
blood products transfused. Cost of blood products transfused was comparable, with the exception
of platelets (average £38 higher post-TEG). Blood product wastage was significantly lower in the
post-TEG group (1.8 ± 2.1 vs. 1.1 ± 2.0; p = 0.002). No statistically significant difference in cost was
observed between the two groups (£753 ± 651 pre-TEG; £830 ± 847 post-TEG; p = 0.41). These results
demonstrate TEG 6s-driven resuscitation algorithms are associated with reduced mortality, reduced
blood product wastage, and are cost neutral compared to standard coagulation tests.
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1. Introduction

Thirty percent of patients with major hemorrhage in trauma develop associated trauma-induced
coagulopathy (TIC) [1–3]. The wars in Iraq and Afghanistan focused attention on trauma resuscitation
and the use of blood and blood products in a 1:1:1 ratio. Subsequently, the Pragmatic Randomized
Optimal Platelet and Plasma Ratios (PROPPR) and Prospective, Observational, Multicenter, Major Trauma
Transfusion (PROMMTT) trials [4,5] aimed to define both the value of the 1:1:1 transfusion ratio on
outcomes and whether a 1:1:2 ratio was equivalent or better.

Following current practices, a trauma patient presenting with major hemorrhage will activate
the massive transfusion protocol (MTP) and is categorized as a code red patient. This results in them
receiving multiple blood products such as packed red blood cells (RBCs), platelets, and fresh frozen
plasma (FFP) [6–8]. Further blood product requirement is often directed by routine coagulation testing,
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such as PT (prothrombin time) and APTT (activated partial thromboplastin time). However, the use
of these tests in such a dynamic situation can end up providing historical results due to the time
required for results to become available, impairing decision-making. Site-of-care viscoelastic testing,
as recommended by the European and U.S. trauma guidelines, [7,9,10] may be beneficial in the trauma
setting to guide blood product usage.

Thromboelastography (TEG® analyzer) is a viscoelastic method that shows a dynamic clotting profile.
With the development of the TEG® 6s Hemostasis Analyzer (Haemonetics Corp., Boston, MA, USA), testing
is available at the site of care providing rapid, individual patient coagulation assessment. Viscoelastic
assays are thought to be more reliable than conventional clotting tests, providing a more accurate and
rapid assessment of coagulopathy that is more predictive of massive transfusion needs [3,11–20].

Managing uncontrollable hemorrhage of the trauma patient more effectively with target-driven
blood product replacement could achieve hemostasis quicker and, therefore, reduce mortality due to
hemorrhage in trauma [21]. Following a predetermined algorithm and goal-directing transfusions
to individual patients could make blood product utilization more efficient and, therefore, reduce the
overall cost of transfusions [7].

The use of TEG has shown promise in the goal-directed use of blood products in the resuscitation
of the hemorrhaging major trauma patient [22–24]. Studies show that the TEG device provides
an indication of which blood product the patient is deficient in, allowing a more goal-directed
resuscitation transfusion algorithm. This allows the trauma team to replace specific blood products to
counteract the deficiency, ultimately leading to potentially improved hemorrhage control, reduced costs,
and more effective TIC control [22–24]. The TEG 6s device uses resonance-frequency viscoelasticity
measurements with assays carried out using a multi-channel microfluidic cartridge and is associated
with higher precision and greater ease of use compared with the TEG® 5000 [25]. TEG 6s has also
shown close correlation to the TEG 5000 device in clinical practice for the treatment of trauma patients,
with improved within-device reliability [26].

The aim of this study was to investigate the effect of TEG 6s on mortality when used for goal-directed
hemostatic therapy for massive hemorrhage in major trauma patients in a level one U.K. trauma center.
The study also sought to establish whether TEG goal-directed MTP improved blood utilization during
massive hemorrhage in major trauma and, subsequently, reduced the overall cost of transfusion.

2. Materials and Methods

2.1. Data Collection

Data were prospectively collected in a U.K. level 1 trauma center in patients who activated the major
hemorrhage protocol one year pre- and one year post-implementation of a TEG 6s-driven transfusion
algorithm into the center’s code red resuscitation protocol. Inclusion criteria were major hemorrhage
protocol activation, code red trauma call, code amber trauma call with suspicion of significant active
bleeding, and blood transfusion commenced in a trauma patient. We excluded patients who were
secondary transfers from other trauma units, major trauma patients who activated the MTP 24 h post
admission, age < 16, pregnant patients, and non-trauma patients activating the major hemorrhage protocol.

Data were collected on age, gender, mechanism, site of injury, injury severity score (ISS), shock index
(SI), blood products used and wasted, outcomes at 24 h, and TEG results. Cost was defined as overall
blood product usage and TEG cartridge cost within initial 24 h and wastage of blood products requested
but not transfused and not re-issued by blood bank.

2.2. Thromboelastography

The TEG 6s Hemostasis Analyzer (Haemonetics Corp., Boston, MA, USA) is a new-generation
thromboelastography device used at the site of care, which requires ~0.6 mL of titrated blood taken
from a 2 mL sodium citrate vacutainer tube. The full results of the TEG 6s sample are available in just
over 30 min, but critical clinically relevant results and information are available within 2 min (Figure 1).



Diagnostics 2020, 10, 486 3 of 12

An initial TEG 6s sample and coagulation sample were taken immediately on admission of trauma
patients who fitted the inclusion criteria, and, if clinically indicated, transfusion was commenced with
pack 1 of our MTP as described below. We then continued to use TEG 6s to guide the patients’ blood
transfusion by taking a TEG 6s sample for every 4 units of red cells transfused, 6 h after hemostasis had
occurred (defined as surgical hemostasis or when patient no longer required blood product transfusion,
e.g., fresh frozen plasma (FFP), Octaplas, platelets, or cryoprecipitate), and 24 h after admission to
assess the sustainability of clot and evidence of missed coagulopathy.
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Figure 1. Thromboelastography (TEG) measurements shown in graphical format explaining the results
of the relevant areas of the curve. LY30: Hyperfibrinolysis after 30 min suggests the stability of the clot
formed; MA: maximum amplitude is suggestive of the strength of the clot formed; R: reaction time and
length of time taken to initiate clot formation.

2.3. Massive Transfusion Protocol (MTP)

The MTP comprised the following: Pack 1: 4 units of packed RBCs and 2 units of FFP; Pack 2:
6 units of RBCs, 5 units of Octaplas, 1 adult unit of platelets, 2 units of cryoprecipitate; Pack 3: the same
as pack 2. As per the Clinical Randomization of an Antifibrinolytic in Significant Hemorrhage 2
(CRASH-2) study [27], tranexamic acid was given to all patients prior to their arrival at the trauma center.

2.4. Pre-TEG Group

In the retrospective control study group, the patient was assessed by the trauma team leader as
requiring activation of the MTP and this was continued or stood down as the clinical picture necessitated
and evolved. Standard coagulation tests were taken and used to direct MTP if still clinically relevant.
Coagulation test reference ranges in our hospital trust were as follows: PT: 10.0–12.0, APTT: 21.0–29.0,
thrombin time (TT): 13.0–20.0, fibrinogen: 1.80–4.00. The MTP policy was to use the following values to
goal-direct blood transfusion when using standard coagulation assays to maintain the following standard
coagulation results: platelets > 75 × 109/L, PT/APTT < 1.5 × normal, fibrinogen > 1.5–2.0 g/L.

2.5. Post-TEG Group

In the post-TEG group, pack 1 of the MTP was given as a standard course and then the TEG
6s sample was used to guide transfusion of product alongside the transfusion of RBCs (Figure 2).
The reference ranges for a normal RapidTEG assay are as follows: activated clotting time (ACT)
82–152 s, maximal amplitude (MA) 52–70 mm, and lysis 30 (LY30) 0.0–2.2%. The reference range
for a normal functional fibrinogen assay is MA 15–30 mm. The major trauma algorithm was based
on an earlier version of the published implementing Treatment Algorithms for the Correction of
Trauma-Induced Coagulopathy (iTACTIC) trial algorithm [28], which underwent several subsequent
revisions. While this algorithm was initially generated for the TEG 5000, validation data showed
equivalent values were applicable for the TEG 6s, which was used in the iTACTIC trial [25,26].
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Data from the validation and method comparison studies by Gurbel et al. [25] and Neal et al. [26]
demonstrate that the TEG 6s device has close correlation to the TEG 5000 device with improved
inter-device reliability. At the time the iTACTIC trial algorithm changed to its final published form,
the study had already started using the earlier version of the algorithm for clinical decision-making.
Retrospective calculations using the newer citrated functional fibrinogen (CFF)-MA target indicated
that it would have caused many more units of cryoprecipitate to be administered with no apparent
benefit, and therefore, the study continued with the original thresholds shown in Figure 2.
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Figure 2. Major Trauma TEG 6s protocol. ACT, TEG activated clotting time; CFF, citrated functional
fibrinogen; CRT, citrated RapidTEG; FFP, fresh frozen plasma; LY30, lysis 30; MA, maximal amplitude.

Initial RapidTEG ACT < 120 s with no clinical evidence of bleeding was used to stand down the
MTP prior to transfusion. If TEG 6s was not available, the MTP was given as standard.

If there was suspicion of hemorrhage, but the patient did not require immediate transfusion of
blood product, a TEG 6s sample was taken to assess their coagulopathic state and the result used
to guide the clinician as to whether or not to activate the MTP. Despite the initial TEG 6 s sample
occasionally being normal or near normal on a hemodynamically unstable patient, we encouraged the
use of the leading clinician’s clinical decision-making in order to hold or continue blood transfusion
and to reassess coagulopathy status after 4 units of RBCs. We collected blood transfusion data for the
first 24 h period after the patient was admitted.

2.6. Economic Analysis

The cost of blood products transfused was compared between groups, for individual products
and in total. The costs of TEG cartridges and standard coagulation tests were also considered. The cost
of hospital length of stay was not included as this is likely to be affected by multiple factors. For the
subgroup of patients with wastage data, the cost of wasted blood products was also factored into
the analysis. As with blood product usage, data on the cost of transfused units were available for
all patients. However, costs of wasted products were not available for all patients, and hence fewer
patients were included in the analyses involving this information.
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2.7. Statistical Analysis

All analyses compared the pre- and post-TEG groups. A pragmatic time period of one year pre- and
post-implementation of TEG 6s was chosen to inform the number of patients in the study. The groups were
compared in terms of demographics, injury characteristics, and baseline variables. Continuous variables
were compared between groups using the unpaired t-test, if found to be normally distributed, and the
Mann–Whitney test if not. The chi-square test was used to compare categorical variables between groups.

The units of blood products transfused were also compared between groups. All blood product
outcomes were found to have a positively skewed distribution, and so the Mann–Whitney test was
used for these analyses. Equivalent statistical methods were used to compare the number of units
wasted between groups. The chi-square test was used to compare the occurrence of any transfusion,
and a massive transfusion, between the pre- and post-TEG groups.

The costs of blood products transfused and wasted was compared between groups. The number
of units of blood products and the cost outcomes were found to follow positively skewed distributions.
Therefore, a bootstrapping approach was used to compare the costs of the two groups. This involved
resampling data at random from each cohort multiple times, to generate a confidence interval for the
mean cost difference between groups. The cost of TEG cartridges was factored in to create the total
cost for each patient.

Other outcomes compared between groups in the final analysis included: total hospital length of
stay (LOS), compared between groups using the Mann–Whitney test as it was found to have a positively
skewed distribution; and mortality at 24 h and 30 days, which was compared using a chi-squared test.

3. Results

3.1. Patient Demographics

There were 126 patients in the pre-TEG group and 175 in the post-TEG group. There was no
statistical difference between the groups for ISS, SI, injury site, and mechanism, excluding gender (the
post-TEG group had fewer females, p < 0.05). There was an average of 1.8 cartridges per post-TEG
patient with the majority of patients (61%) requiring just 1 cartridge (Table 1).

Table 1. Summary of demographics and baseline characteristics.

Outcome Category Pre-TEG
(n = 126)

Post-TEG
(n = 175) p-Value

Age - 47.2 ± 23.6 43.1 ± 20.2 0.11
Sex Male 84 (67%) 137 (78%) 0.02

Female 42 (33%) 38 (22%)
Shock index - 0.87 [0.69, 1.08] 0.82 [0.65, 1.10] 0.78

GCS - 15 [8, 15] 14 [8, 15] 0.37
Injury severity score - 25 [13, 33] 22 [13, 34] 0.75
Mechanism of injury Blunt 107 (85%) 149 (85%) 0.96

Penetrating 19 (15%) 26 (15%)
Injury site 1 Head 39 (35%) 54 (31%) 0.54

Chest 61 (54%) 95 (55%) 0.92
Abdominal 42 (37%) 71 (41%) 0.54

Pelvis 28 (25%) 33 (19%) 0.24
MSK 65 (58%) 103 (59%) 0.78

Lactate - 3.4 [2.4, 5.6] 3.0 [1.9, 4.5] 0.06
TEG cartridges - - 1.8 ± 1.4 -
TEG cartridges 1 - 107 (61%) -

(categorical) 2 - 35 (20%)
3 - 17 (10%)

4+ - 16 (9%)

GCS, Glasgow Coma Scale; MSK, musculoskeletal. Summary statistics are: Mean ± standard deviation, Median
[inter-quartile range], or Number (percentage). p values < 0.05 are in bold to indicate significance. 1 Patients could
have more than one injury site.



Diagnostics 2020, 10, 486 6 of 12

3.2. Mortality

Mortality at both 24 h and 30 days was significantly lower in the post-TEG group compared to the
pre-TEG group. Only 5% (n = 8/175) of patients in the post-TEG group died within 24 h, compared
to 13% (n = 17/126) in the pre-TEG group, a difference that was statistically significant (p = 0.006).
Mortality at day 30 in the pre-TEG group was more than double that of the post-TEG group (25%
[n = 32/126] compared to 11% [n = 20/175]; p = 0.002). However, total hospital LOS was significantly
greater in the post-TEG group (p < 0.001), with a median LOS of 14 days, compared to a median of
9 days for the pre-TEG group in line with survival bias (Table 2).

Table 2. Mortality.

Outcome Pre-TEG
(n = 126)

Post-TEG
(n = 175) p-Value

Total hospital LOS 9 [3, 19] 14 [6, 27] <0.001
24 h mortality 17 (13%) 8 (5%) 0.006

30 day mortality 32 (25%) 20 (11%) 0.002

Summary statistics are: Median [inter-quartile range], or Number (percentage). LOS, length of stay. p values < 0.05
are in bold to indicate significance.

3.3. Blood Product Usage

There was no difference between groups in the number of blood products transfused, although there
was a trend for increased use of platelets in the post-TEG group (0.2 ± 0.5 pre-TEG; 0.4 ± 0.8 post-TEG;
p = 0.05). The occurrence of any transfusion was slightly lower in the post-TEG group (86% pre-TEG
vs. 78% post-TEG; p = 0.08), although this difference did not quite reach statistical significance.
Conversely, the occurrence of a massive transfusion was slightly higher in the post-TEG group
(3% pre-TEG; 8% post-TEG; p = 0.08), but this difference did not reach statistical significance (Table 3).
The ratio of blood:FFP:platelets transfused was similar between groups (1.00:0.70:0.24 pre-TEG;
1.00:0.67:0.42 post-TEG).

Table 3. Blood product usage.

Outcome Pre-TEG
(n = 126)

Post-TEG
(n = 175) p-Value

Units transfused
RBC 3.6 ± 3.3 3.9 ± 4.0 0.91

FFP/Octaplas 2.5 ± 3.4 2.6 ± 3.8 0.98
Platelets 0.2 ± 0.5 0.4 ± 0.8 0.05

Cryoprecipitate 0.3 ± 1.0 0.5 ± 1.1 0.14
All products combined 6.7 ± 7.5 7.5 ± 8.8 0.94

Any transfusion 108 (86%) 136 (78%) 0.08
Massive transfusion 1 4 (3%) 14 (8%) 0.08
Massive transfusion 2 27 (21%) 41 (23%) 0.68

Outcome Pre-TEG
(n = 126)

Post-TEG
(n = 129) p-Value

Units wasted
RBC 0.2 ± 0.7 0.1 ± 0.5 0.02

FFP/Octaplas 1.6 ± 2.0 0.9 ± 1.8 0.004
Platelets 0.0 ± 0.1 0.0 ± 0.1 0.58

Cryoprecipitate 0.0 ± 0.3 0.1 ± 0.5 0.10
All products combined 1.8 ± 2.1 1.1 ± 2.0 0.002

Summary statistics are as follows: Mean ± standard deviation, or Number (percentage). 1 Defined as >10 units
of RBCs transfused; 2 defined as >10 units of any blood product transfused. p values < 0.05 are in bold to
indicate significance.
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The results for blood products wasted suggested that FFP/Octaplas (1.6 ± 2.0 pre-TEG;
0.9 ± 1.8 post-TEG; <0.01) and RBC (0.2 ± 0.7 pre-TEG; 0.1 ± 0.5 post-TEG; p < 0.02) wastage was
significantly lower in the post-TEG group. Additionally, the overall blood product wastage was
significantly lower in the post-TEG group (1.8 ± 2.1 pre-TEG; 1.1 ± 2.0 post-TEG; p = 0.002). A mean of
1.1 units was wasted per patient in the post-TEG group, compared to 1.8 units in the pre-TEG group
(Table 3). More post-TEG patients had no transfusion, as the MTP was stood down prior to transfusion.

3.4. Cost Outcomes

The cost of blood products transfused was comparable between groups with the exception of
platelets. Results suggest that there was a significantly higher cost of platelets in the post-TEG group
than in the pre-TEG group (41 ± 90 pre-TEG; 79 ± 152 post-TEG; p = 0.008), on average by £38. However,
the overall cost of transfusions did not significantly vary between the groups (625 ± 655 pre-TEG;
678 ± 786 post-TEG; p = 0.52). When the total cost, including the cost of TEG cartridges, was taken
into account, patients in the post-TEG group had a mean cost of £127 per patient more than the
pre-TEG patients (625 ± 655 pre-TEG; 753 ± 828 post-TEG; p = 0.14); however, this difference did not
reach statistical significance (Table 4). Wastage of blood products overall was significantly lower in
the post-TEG group (127 ± 146 pre-TEG; 74 ± 133 post-TEG; p = 0.002), by a mean of £53. (Table 3).
In particular, wastage of FFP/Octaplas was significantly higher in the pre-TEG group (99 ± 128 pre-TEG;
57 ± 112; p = 0.004), by a mean of £42 per patient.

Table 4. Cost outcomes.

Outcome
Pre-TEG

Mean ± SD
(n = 126)

Post-TEG
Mean ± SD

(n = 175)

Difference 1

Mean (95% CI)
p-Value

Units transfused
RBC 432 ± 401 472 ± 480 40 (−54, 133) 0.42

FFP/Octaplas 142 ± 196 111 ± 191 −30 (−67, 17) 0.18
Platelets 41 ± 90 79 ± 152 38 (10, 68) 0.008

Cryoprecipitate 10 ± 32 15 ± 36 5 (−3, 11) 0.24
All products combined 625 ± 655 678 ± 786 53 (−91, 227) 0.52

TEG cartridges - 74 ± 59 -
Total cost 1 2 625 ± 655 753 ± 828 127 (−22, 308) 0.14

Units wasted
RBC 26 ± 80 10 ± 60 −15 (−33, 1) 0.07

FFP/Octaplas 99 ± 128 57 ± 112 −42 (−69, −14) 0.004
Platelets 2 ± 17 3 ± 24 1 (−3, 7) 0.57

Cryoprecipitate 1 ± 8 3 ± 14 2 (0, 5) 0.09
All products combined 127 ± 146 74 ± 133 −53 (−91, −17) 0.002

Total cost 2 3 753 ± 651 830 ± 847 78 (−88, 304) 0.41
1 Difference calculated as post-TEG minus pre-TEG; 2 Cost calculated as cost of total units transfused plus TEG
cartridges; 3 Cost calculated as cost of total units transfused, total units wasted plus TEG cartridges. p values < 0.05
are in bold to indicate significance

When the data on blood product utilization, wastage, and the costs of TEG cartridges is taken into
account the results suggest no evidence of a statistically significant difference between the overall cost
in the two groups over the initial 24 h (753 ± 651 pre-TEG; 830 ± 847 post-TEG; p = 0.41; Table 4).

4. Discussion

This study demonstrates that the use of TEG 6s in a trauma setting improves patient outcomes and
is also cost neutral compared with standard coagulation tests. In this prospective study of 301 patients
treated at a U.K. level 1 trauma center, TEG 6s was associated with significantly improved mortality at
24 h and at 30 days, although average hospital LOS was greater in the post-TEG group, most likely
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due to survival bias. The use of blood products between the groups was comparable and although
there was a trend for increased use of platelets in the post-TEG group, wastage of blood products was
significantly lower following use of TEG 6s. Consequently, economic analysis of the use of TEG 6s
demonstrates that it is cost neutral when compared to the pre-TEG group.

TIC can exacerbate severe bleeding in trauma patients and there is a need for rapid site-of-care
management to guide transfusion and improve outcomes. The time needed to turnaround standard
coagulation tests varies; however, it is generally accepted that the time taken is too long (typically
45–60 min to run the tests not including time taken to transfer the samples and results to/from the
hospital laboratory) [29]. Viscoelastic monitoring using thromboelastography (TEG) is well positioned
to quickly assess a patient’s coagulation profile—initial results can be obtained in as little as 10 min
with full results available after 30–60 min directly at the site of care [29–32]. TEG is also able to
guide hemostatic replacement according to individual patient needs [21] and has an advantage over
conventional coagulation tests in the treatment of trauma [20]. As a result, use of TEG has been
associated with improved patient outcomes, particularly reduction in mortality as demonstrated
in this study. Reductions in mortality have also been demonstrated in previous studies; a recent
randomized clinical trial demonstrated improved mortality at 28 days following TEG compared to
standard coagulation tests (19.6% TEG; 36.4% standard coagulation tests; p = 0.049) [21]. A further
study also demonstrated that TEG-defined hypercoagulable patients had lower 24 h mortality (0.0%
vs. 5.5% vs. 27.8%, adjusted p < 0.001) and lower 7 day mortality (0.0% vs. 5.5% vs. 36.1%, adjusted
p < 0.001) compared to those with a normal TEG profile or hypocoagulable patients [33]. Several
observational studies have also examined the effect of TEG-guided transfusion on mortality outcomes;
whilst some small studies demonstrated lower mortality [3,34–36] others demonstrated no overall
difference in mortality outcomes [34,37,38]. Use of TEG or rotational thromboelastometry (ROTEM)
has also been shown to be predictive of coagulopathy-related death in several studies [34]. The TEG 6s
device has been validated against the TEG 5000 [25] and has shown high reliability and efficacy for use
in trauma treatment [26]. The TEG 6s device is also easier to use due to the cartridge system and less
sensitive to surrounding vibrations and temperature compared with the TEG 5000 [37]. This makes
the device highly suitable for use in trauma patients at the site of care, which may not be located in a
traditional hospital setting.

This study did not demonstrate a difference in the overall number of blood products transfused
between the pre- and post-TEG groups; however, reduction in blood product usage following TEG has
been demonstrated. A cohort study demonstrated lower exposure to blood products with ROTEM-guided
transfusion—red blood cell transfusion was avoided in 29% of ROTEM-guided patients, compared to
3% in the routine coagulation test-guided groups (p < 0.001) [37]. Similarly, a modeling study suggested
that rapid-TEG guided transfusion would reduce the proportion of patients requiring blood products
from 73.1% to 53.9% (p = 0.03) [39]. Interestingly, in this study, there was a slightly higher occurrence of
massive transfusion in the post-TEG group. This may be due to the increased sensitivity but reduced
specificity of viscoelastic tests to identify or predict the need for massive transfusion [31,40,41]. There was
also a significant increase in platelet transfusion in the post-TEG group in this study—this may be due
to the ability of the viscoelastic test to better identify trauma-induced coagulopathies [34]. In particular,
viscoelastic tests have demonstrated ability to detect platelet dysfunction in trauma patients and have
shown lower platelet response [42], increased platelet dysfunction [43,44], and lower platelet component
of clot elasticity in trauma patients [45].

Importantly, this study aimed to assess the cost effectiveness of TEG 6s in trauma care. There is
little previous literature surrounding the cost effectiveness of viscoelastic monitoring and guidance in
the trauma setting. A previous economic evaluation was performed for NICE (National Institute for
Health and Care Excellence). Within this evaluation, both TEG and ROTEM were found to be more
cost effective than standard care tests, with the per patient saving estimated as £688 for ROTEM and
£721 for TEG [46]. However, as there were limited data available from trauma patients, results were
extrapolated from other populations. This study therefore addresses a major need in the trauma care
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setting. Consistent with the findings of Whiting et al. 2015 [46], these data suggest that use of TEG 6s is
cost neutral compared to standard coagulation tests when used to treat trauma patients. Although the
overall costs of transfusions (including the cost of the TEG cartridge) was increased in the post-TEG
group, there was a reduction in wastage of all blood products in this group compared to the pre-TEG
group. This is of particular importance given that blood product resource is highly valuable, and its
collection, processing, and storage are associated with significant costs.

The results from this study are highly supportive of the use of TEG 6s for the treatment of trauma
patients. However, there are a few limitations that should be taken into account. This was a prospective
study, and as such, patients were not randomized to TEG/standard monitoring and a control group
was not utilized. Instead, the group was compared to a retrospective control—namely patients who
were treated one year prior to the introduction of TEG-guided therapy. The results from this study
also only represent the findings at one single center within the U.K., further multi-center and larger
studies will be needed to fully assess the efficacy and cost-effectiveness of viscoelastic monitoring for
the treatment of trauma patients.

5. Conclusions

In conclusion, the introduction of site-of-care viscoelastic testing is becoming more commonplace
for the treatment of trauma and major bleeding. These results demonstrate that TEG 6s-driven
resuscitation algorithms are associated with comparable blood product utilization and reduced blood
product wastage and are therefore cost neutral when compared to standard coagulation tests. Use of
TEG 6s also demonstrated improvement in mortality independent of the transfusion ratio, although
the mechanism of this needs further assessment.
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