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Abstract: Background: Functional outcomes after acute ischemic stroke are of great concern to
patients and their families, as well as physicians and surgeons who make the clinical decisions. We
developed machine learning (ML)-based functional outcome prediction models in acute ischemic
stroke. Methods: This retrospective study used a prospective cohort database. A total of 1066 patients
with acute ischemic stroke between January 2019 and March 2021 were included. Variables such as
demographic factors, stroke-related factors, laboratory findings, and comorbidities were utilized at
the time of admission. Five ML algorithms were applied to predict a favorable functional outcome
(modified Rankin Scale 0 or 1) at 3 months after stroke onset. Results: Regularized logistic regression
showed the best performance with an area under the receiver operating characteristic curve (AUC) of
0.86. Support vector machines represented the second-highest AUC of 0.85 with the highest F1-score
of 0.86, and finally, all ML models applied achieved an AUC > 0.8. The National Institute of Health
Stroke Scale at admission and age were consistently the top two important variables for generalized
logistic regression, random forest, and extreme gradient boosting models. Conclusions: ML-based
functional outcome prediction models for acute ischemic stroke were validated and proven to be
readily applicable and useful.

Keywords: ischemic stroke; functional outcome; algorithm; machine learning; prediction

1. Introduction

Stroke is a representative disease with high mortality and morbidity [1], with 30–70%
of stroke survivors reportedly remaining disabled [2]. Functional disability, directly and
indirectly, affects the rest of the patient’s life. It not only adversely affects the patient’s
return to society and work but also places a burden on family members [3]. Moreover,
disability is an important cause of psychiatric complications, such as depression, which
significantly reduces the long-term quality of life of patients [4]; therefore, the prognosis
related to functional ability after a stroke is understandably one of the most important
concerns for patients and their families. In addition, the need for predicting functional
recovery is required by physicians and surgeons who need to establish long-term treatment
plans [5].

From these requirements, several prediction tools using the risk scoring method have
been proposed for acute ischemic stroke, which account for the majority of stroke [6]. The
representative tools are the Acute Stroke Registry and Analysis of Lausanne (ASTRAL)

Diagnostics 2021, 11, 1909. https://doi.org/10.3390/diagnostics11101909 https://www.mdpi.com/journal/diagnostics

https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-1288-470X
https://orcid.org/0000-0002-2232-065X
https://doi.org/10.3390/diagnostics11101909
https://doi.org/10.3390/diagnostics11101909
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/diagnostics11101909
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics11101909?type=check_update&version=2


Diagnostics 2021, 11, 1909 2 of 12

score and ischemic stroke predictive risk score (ISCORE) [7,8]. These tools have the
advantage of being simple and readily available with few variables; therefore, they can
make a quick prediction with only the findings within a short time after hospitalization [9].
In previous studies, external validation results for short-term functional outcome prediction
of these tools have shown an area under the receiver operating characteristic curve (AUC)
range of approximately 0.8, indicating that these tools were effective [10–12].

Meanwhile, research applying machine learning (ML) algorithms in disease diagnosis
and prognosis prediction has been growing in recent years [13,14], and more specifi-
cally, studies using ML for outcome prediction in acute ischemic stroke have been pub-
lished [15,16]. Compared with existing risk scoring methods, the ML-based prediction
model has the advantage of being able to easily process a large number of samples and
variables using electric health recording [17]. In addition, unlike fixed risk scoring tools,
there is an evolutionary advantage that advanced ML-based models can be continuously
established [18].

Based on this background, this study aimed to develop ML-based models capable of
predicting the short-term favorable functional outcomes after acute ischemic stroke through
the experience of a single cerebrovascular-specialty hospital in South Korea. Specifically, to
share the advantageous features of existing risk scoring tools, the models were specifically
developed to be applied within a short time after the stroke occurrence by using variables
that can be utilized immediately after admission. Moreover, 37 variables were included
by utilizing the advantages of ML modeling based on electric health recording to enable
more precise and detailed outcome prediction. The predictive performances of several ML
algorithms were evaluated and the best model was identified. Additionally, the variable
importance related to the prediction performance was identified.

2. Materials and Methods
2.1. Data Source and Patients

This retrospective study used a prospectively enrolled cohort dataset from a single
center and was conducted using the electronic health records of patients admitted to
Pohang Stroke and Spine Hospital with acute ischemic stroke between January 2019
and March 2021. This study was reviewed and approved by the Institutional Review
Board (Approval number: PSSH0475-2021-08-HR-016-01) and performed in compliance
with the Declaration of Helsinki and the International Conference on Harmonization–
Good Clinical Practice Guideline. Simultaneously, all patients included in the study were
enrolled in the multicenter, prospective, and hospital-based stroke registry (Korean Stroke
Registry; www.strokedb.or.kr; accessed on 25 August 2021) in South Korea. Patients or
their family members provided written informed consent to agree to the utilization of
the patient’s non-identifiable information for research purposes when registered in the
Korean Stroke Registry (Research management number: PSSH0475-201901-HR-001). We
completed the final dataset for this study by applying the following exclusion criteria in
order: (1) follow-up loss at 3 months, (2) having a missing value, (3) taking more than
7 days from the onset (or last normal time [LNT]) to hospitalization, (4) previous neurologic
deficit (modified Rankin Scale [mRS] ≥ 2), and (5) patients who died during admission
(one died from pneumonia and another from hemorrhagic transformation). A flowchart of
patient inclusion for this study is shown in Figure 1.

2.2. Variables

Variables that were initially available on admission in patients with acute ischemic
stroke were used. The detailed definitions of all the contributing variables are presented in
the online Supplementary Materials (Document S1).

Personal factors, such as age, sex, body mass index, and abdominal circumference,
were checked. We evaluated the National Institute of Health Stroke Scale (NIHSS) at
admission, stroke subtype, onset type, onset (or LNT) to arrival time, circulatory territory,
involved side, and the type of acute intravenous/intraarterial treatments as stroke-related

www.strokedb.or.kr
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factors. We also investigated the initial laboratory findings and blood pressure at the time
of admission. Finally, comorbidities including previous stroke or transient ischemic attack,
coronary artery disease, peripheral artery diseases, hypertension, diabetes, dyslipidemia,
atrial fibrillation, smoking habit, previous administration of antiplatelet/anticoagulant,
and potential sources of cardiogenic embolism were checked and confirmed for the patients
as well.
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Figure 1. Flow chart of patient inclusion and exclusion. LNT, last normal time; mRS, modified
Rankin Scale.

The dependent variable was defined as mRS values at 3 months after the onset of the
stroke and dichotomized for prediction. Favorable outcomes were defined as mRS scores
of 0 and 1, and this group was designated as the target class, with follow-up mRS values
measured at an outpatient clinic by a neurologist or neurosurgeon. In the case of not being
able to visit the hospital, the mRS measurement was conducted in the form of a telephone
interview with patients or their families through a structured questionnaire according to
the Korean Stroke Registry guideline [19].

2.3. Data Analysis and Machine Learning Processes

All statistical analyses and machine learning processes were performed using R
software 4.1.0 (R Core Team, R Foundation for Statistical Computing, Vienna, Austria).
The entire code used for data analyses and the ML processes in this study, as well as the
corresponding results, are available in the online Supplementary Materials (Document S2).
The entire ML modeling process is summarized in Figure 2.

Comparative analyses were conducted between outcome groups with mRS < 2 or
mRS ≥ 2 at 3 months after stroke onset. Continuous variables were expressed as the
mean ± standard deviation, and an independent t-test was used to compare the two groups.
Categorical variables were presented as frequencies and proportions, and the chi-squared
(trend) test was performed for comparative analysis, with the statistical significance defined
as p < 0.05.

Serial data pre-processing was performed for ML algorithm training and validation.
Variables with near-zero variances were identified and removed, with correlation coef-
ficients evaluated to confirm the collinearity between continuous variables. After the
variable selection was completed, centering and scaling for continuous variables and one-
hot encoding for categorical variables were conducted. The dataset was then randomly
split into training and test sets at a ratio of 7:3, and the synthetic minority oversampling
technique (SMOTE) and adaptive synthetic (ADASYN) sampling were then applied to the
training set to deal with the imbalance in the target class.
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boosting; AUC, area under the receiver operating characteristic curve; ACC, accuracy.

Five ML algorithms were evaluated in this study, namely, regularized logistic re-
gression (RLR), support vector machines (SVM), random forest (RF), k-nearest neighbors
(KNN), and extreme gradient boosting (XGB). Internal validation was performed by ap-
plying these ML algorithms to the training dataset, where pre-processing was completed.
To obtain an optimal training model, 10-fold cross-validation with 10 repetitions was per-
formed, with both random and grid search methods applied for hyperparameter tuning.
An external validation was then performed on the test dataset using the trained models.
This study used AUC as the main metric and investigated the F1-score and overall accuracy
to evaluate model performance. The best-performing model was then selected for each ML
algorithm based on external validation results. The variable importance from ensemble
algorithms (RF and XGB) and a linear model (RLR) was also determined, with the top
10 important variables from each algorithm identified.

3. Results
3.1. Baseline Characteristics

Amongst the 1066 patients analyzed, 745 (69.9%) and 321 (30.1%) patients had favor-
able and unfavorable outcomes at the 3-month follow-up, respectively.

Table 1 describes personal and stroke-related features in both outcome groups. The
favorable outcome group was 65.8 ± 11.3 years old, which was significantly younger than
that of the unfavorable outcome group, 74.4 ± 11.4 years old (p < 0.001), and the proportion
of men was significantly lower (33.7% vs. 48.6%; p < 0.001). In the favorable outcome
group, NIHSS at admission was significantly lower (2.3 ± 3.2 vs. 6.3 ± 5.9; p < 0.001), and
the proportion without acute intravenous/intraarterial treatments was significantly higher
(90.3% vs. 79.1%; p < 0.001); however, in the favorable outcome group, significantly higher
hemoglobin, and triglyceride levels (p < 0.001 and p = 0.004, respectively), and significantly
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lower random glucose and blood urea nitrogen levels (p = 0.028 and p = 0.007, respectively)
were found.

Table 1. Baseline characteristics and stroke-related factors in each group.

Variables mRS < 2 (n = 745) mRS ≥ 2 (n = 321) p Value

Age, years old 65.8 ± 11.3 74.4 ± 11.4 <0.001
Male, n (%) 251 (33.7) 156 (48.6) <0.001
Body mass index, kg/m2 24.2 ± 3.1 23.8 ± 3.5 0.060
Abdominal circumference, cm 85.2 ± 9.2 84.6 ± 10.2 0.310
NIHSS at admission 2.3 ± 3.2 6.3 ± 5.9 <0.001
Clear onset, n (%) 605 (81.2) 245 (76.3) 0.082
Onset (or LNT) to arrival, day 1.4 ± 1.6 1.2 ± 1.5 0.120
Stroke subtype, n (%) 0.066

Small vessel occlusion 289 (38.8) 106 (33.0)
Large artery atherosclerosis 280 (37.6) 143 (44.5)
Cardiogenic embolism 79 (10.6) 40 (12.5)
Others 97 (13.0) 32 (10.0)

Circulation, n (%) 0.097
Anterior 521 (69.9) 244 (76.0)
Posterior 223 (29.9) 76 (23.7)
Multiple 1 (0.1) 1 (0.3)

Side, n (%) 0.264
Right 350 (47.0) 153 (47.7)
Left 341 (45.8) 136 (42.4)
Bilateral 54 (7.2) 32 (10.0)

Acute treatment, n (%) <0.001
None 673 (90.3%) 254 (79.1%)
Intravenous only 13 (1.7%) 10 (3.1%)
Intraarterial only 38 (5.1%) 42 (13.1%)
Intravenous and

intraarterial 21 (2.8%) 15 (4.7%)

Systolic blood pressure, mmHg 156.6 ± 27.0 159.0 ± 26.1 0.179
Diastolic blood pressure, mmHg 87.6 ± 15.4 87.1 ± 16.3 0.609
Hemoglobin, g/dl 14.1 ± 1.7 13.4 ± 1.9 <0.001
Platelet, 103/µL 238.3 ± 66.1 231.5 ± 68.6 0.125
Total cholesterol, mg/dl 191.8 ± 46.5 188.6 ± 48.4 0.305
Triglyceride, mg/dl 166.4 ± 131.4 141.2 ± 127.2 0.004
High density lipoprotein, mg/dl 49.3 ± 12.2 48.1 ± 11.6 0.135
Low density lipoprotein, mg/dl 109.4 ± 40.6 113.0 ± 42.6 0.189
Random glucose, mg/dl 140.8 ± 57.1 149.7 ± 62.6 0.028
HbA1c, % 6.2 ± 1.2 6.4 ± 1.4 0.077
Blood urea nitrogen, mg/dl 16.4 ± 5.4 17.7 ± 7.6 0.007
Creatinine, mg/dl 0.9 ± 0.3 0.9 ± 0.4 0.389

mRS, modified Rankin Scale; NIHSS, National Institutes of Health Stroke; LNT, last normal time.

Table 2 presents the underlying risk factors for both outcome groups. It was found
that the ratio of current smokers was significantly higher in the favorable outcome group
(p = 0.002), whilst atrial fibrillation was significantly higher in the unfavorable outcome
group (p = 0.009). There were no significant differences in other risk factors found between
the two groups.

3.2. Data Pre-Processing

The following variables were removed that showed near-zero variance: previous
transient ischemic attack, previous peripheral artery diseases, previous cancer, previous
administration of anticoagulant, and high and medium risks of potential sources of car-
diogenic embolism. It should also be noted that none of the continuous variables showed
any collinearity.
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Table 2. Underlying risk factors in each group.

Variables mRS < 2 (n = 745) mRS ≥ 2 (n = 321) p Value

Previous stroke, n (%) 0.785
None 640 (85.9) 270 (84.1)
Hemorrhagic 17 (2.3) 9 (2.8)
Ischemic 85 (11.4) 40 (12.5)
Mixed 2 (0.3) 2 (0.6)
Unknown 1 (0.1) 0 (0.0)

Previous TIA, n (%) 14 (1.9) 4 (1.2) 0.633
Previous PAD, n (%) 4 (0.5) 3 (0.9) 0.746
Previous CAD, n (%) 72 (9.7) 38 (11.8) 0.337
Previous cancer, n (%) 9 (1.2) 5 (1.6) 0.868
Previous hypertension, n (%) 0.224

None 293 (39.3) 109 (34.0)
Known 395 (53.0) 188 (58.6)
Diagnosed at admission 57 (7.7) 24 (7.5)

Previous diabetes, n (%) 0.087
None 556 (74.6) 223 (69.5)
Known 159 (21.3) 88 (27.4)
Diagnosed at admission 30 (4.0) 10 (3.1)

Previous dyslipidemia, n (%) 0.650
None 278 (37.3) 122 (38.0)
Known 222 (29.8) 87 (27.1)
Diagnosed at admission 245 (32.9) 112 (34.9)

Smoking, n (%) 0.002
None 499 (67.0) 252 (78.5)
Current 242 (32.5) 69 (21.5)
Quit ≥ 5 years 2 (0.3) 0 (0.0)
Quit < 5 years 2 (0.3) 0 (0.0)

Previous AF, n (%) 0.009
None 658 (88.3) 261 (81.3)
Known 41 (5.5) 30 (9.3)
Diagnosed at admission 46 (6.2) 30 (9.3)

Previous antiplatelet, n (%) 191 (25.6) 81 (25.2) 0.950
Previous anticoagulation, n (%) 19 (2.6) 14 (4.4) 0.170
PSCE-high risk, n (%) 20 (2.7) 8 (2.5) >0.999
PSCE-medium risk, n (%) 34 (4.6) 17 (5.3) 0.721

mRS, modified Rankin Scale; TIA, transient ischemic attack; PAD, peripheral artery disease; CAD, coronary artery
disease; AF, atrial fibrillation; PSCE, potential sources of cardiogenic embolism.

After random splitting, the training and test datasets were divided into 769 and
297 samples, respectively, with the proportions of favorable and unfavorable outcome
groups in the training dataset being 537 and 232, respectively. After applying SMOTE, the
ratios were 537 and 464, respectively, and after applying ADASYN, the ratios were 537 and
555, respectively. In the test dataset, the two outcome groups had ratios of 208 and 89.

3.3. Performances of Machine Learning Algorithms

RLR showed the best performance among all ML algorithms utilized with an AUC of
0.86 (95% confidence interval [CI], 0.82–0.90). Meanwhile, SVM showed the second-highest
AUC of 0.85 (95% CI, 0.81–0.89) and recorded the highest overall accuracy and F1-score
(0.80 and 0.86, respectively). RF and KNN showed an AUC value of 0.82 (95% CI, 0.77–0.87),
and XGB was 0.81 (95% CI, 0.76–0.86) (Table 3 and Figure 3). The confusion matrix for each
ML algorithm is presented in Supplementary Table S1.

Among the optimal training models of the best test prediction result for each ML
algorithm, SVM, XGB, and KNN showed the best performance when target class balancing
was not performed. Contrarily, the best-performed model was generated in RLR and
RF when SMOTE and ADASYN were applied, respectively. Supplementary Table S2
shows the balancing method and hyperparameter tuning results for the best model of each
ML algorithm.
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Table 3. Model performances of each machine learning model on the test dataset.

Metric RLR SVM RF KNN XGB

AUC
(95% CI)

0.86
(0.82–0.90)

0.85
(0.81–0.89)

0.82
(0.77–0.87)

0.82
(0.77–0.87)

0.81
(0.76–0.86)

F1 0.84 0.86 0.85 0.84 0.85

Accuracy
(95% CI)

0.78
(0.73–0.83)

0.80
(0.75–0.85)

0.77
(0.72–0.82)

0.73
(0.67–0.78)

0.77
(0.72–0.82)

Sensitivity
(95% CI)

0.83
(0.77–0.87)

0.90
(0.86–0.94)

0.89
(0.83–0.92)

0.99
(0.97–1.00)

0.89
(0.84–0.93)

Specificity
(95% CI)

0.69
(0.58–0.77)

0.56
(0.46–0.66)

0.53
(0.43–0.63)

0.10
(0.05–0.18)

0.50
(0.39–0.60)

Precision
(95% CI)

0.86
(0.81–0.90)

0.83
(0.77–0.87)

0.81
(0.76–0.86)

0.72
(0.67–0.77)

0.80
(0.75–0.85)

NPV
(95% CI)

0.63
(0.53–0.72)

0.71
(0.60–0.81)

0.66
(0.55–0.76)

0.90
(0.60–0.98)

0.66
(0.54–0.76)

RLR, regularized logistic regression; SVM, support vector machines; RF, random forest; KNN, k-nearest neighbors;
XGB, extreme gradient boosting; AUC, area under the receiver operating characteristic curve; ACC, accuracy;
NPV, negative predictive value.
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3.4. Variable Importance

For RLR, NIHSS was the most important variable for model performance, followed by
age and hemoglobin. Both RF and XGB represented the same top three results of variable
importance; the most important variable for the prediction performance was the NIHSS
score at admission, followed by age and time to arrival. NHISS at admission and age were
also the two most important variables in the three ML models. Finally, random glucose,
hemoglobin, and triglyceride levels were identified as the top ten important variables in all
three models (Figure 4).
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Additionally, random glucose, hemoglobin, and triglyceride were also included in the top ten important variables in all
three models. NIHSS, National Institute of Health Stroke Scale; IV, intravenous; IA, intraarterial.

4. Discussion

This study demonstrated models that predict the short-term functional prognosis
of patients with acute ischemic stroke using ML algorithms. All ML algorithms utilized
showed validated results with AUC > 0.8. In particular, the proposed models were estab-
lished based on initial evaluation and examination findings at the time of admission, which
has the advantage of being able to predict a favorable outcome within a short time after
hospitalization. Moreover, this feature can be useful to physicians and surgeons in making
clinical decisions or informing patients and their families.

The proposed ML models’ performance was either similar to or slightly better than
existing risk scoring tools such as ASTRAL and ISCORE; nevertheless, it is difficult to
conclude that our ML models using more variables are a much-improved prediction tool.
The reason for this finding can be attributed to the following. The first is the difference
in outcome definition. Unlike both ASTRAL and ISCORE, where mRS 0–2 was defined
as a good outcome, only mRS 0 and 1 were defined as favorable outcomes in this study.
According to mRS [20], if based on dependency, grade 2 or less can be viewed as a favorable
outcome; however, when a narrow favorable outcome criterion was applied, we considered
the absence of disability and maintenance of usual daily activities; therefore, it is difficult
to compare these two risk scoring tools directly with the proposed ML models because of
the different target outcome definitions. The second reason can be inferred from the results
of the variable importance. The ASTRAL score is based on six contributing factors: age,
NIHSS score, time delay, visual field defect, glucose level, and level of consciousness [7].
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ISCORE is calculated based on age, sex, preadmission functionality, cancer, atrial fibrillation,
congestive heart failure, renal function, stroke subtype, glucose level, and stroke severity [8].
There is a significant overlap between the contributing factors of these two tools and
the variables with high importance in our ML models. Several more variables were
utilized compared to the existing risk scoring tools by taking advantage of ML-based data
processing; however, it was found that they shared a similar critical variables list.

There have been previous studies on the ML-based predictions of functional outcomes
in acute ischemic stroke. Heo et al. [11] predicted a favorable functional outcome at the
3-month follow-up. They designated mRS 0–2 as the target class and directly compared
the predictive power of their ML models to the ASTRAL score. Hence, the deep neural
network recorded a significantly higher AUC than the ASTRAL score; however, there
was no significant difference in the AUC between the ASTRAL score and RF and logistic
regression. Alaka et al. [21] also presented ML-based models for predicting the 3-month
functional outcome by targeting mRS > 2 in ischemic stroke. The external validation results
in their study were inferior to our study, with an AUC range of 0.66 to 0.71. This difference
is thought to be due to our model using more sample sizes and variables than theirs.
Jang et al. [22] defined mRS > 1 at 3 months in acute ischemic stroke as a bad outcome
and performed an analysis based on the same outcome class classification as ours. Among
the ML models presented by them, XGB, RF, and SVM showed the highest AUC value
of 0.84; our RLR and SVM models slightly outperformed the other models with higher
AUC values.

Among the ML algorithms we applied, RLR showed the best performance. Regulariza-
tion lowers the weight of the parameter to reduce the complexity of the dataset and prevent
overfitting [23,24]. Thus, a linear model sometimes outperforms ensemble algorithms, such
as RF and XGB [25,26]. We were able to optimally train our best model by applying L1
regularization, which avoids overfitting by increasing the sparsity [27]. Based on this, it is
inferred that our prediction model performed better on the dataset with lower complexity
in a relatively limited manner. Consequently, our linear model showed better prediction
performance than the other ML algorithms in this study.

The target class in the dataset is slightly imbalanced. We applied the SMOTE and
ADASYN methods to address this problem. Both SMOTE and ADASYN are KNN-based
up-sampling methods [28,29]. We obtained the best results by applying SMOTE to our
best model, RLR. RF was able to obtain optimal results by applying ADASYN; however,
in SVM and KNN, the training model without balancing showed better results, which is
thought to be because the balancing of the training set caused overfitting. XGB can avoid
overfitting even with balancing methods; however, the AUC was slightly higher when
we did not implement balancing methods. Consequently, to create an ideal ML-based
prediction model, it is necessary to confirm the results derived from the original dataset
as well as the results with target class balancing. Additionally, it is necessary to consider
overfitting caused by up-sampling.

Our ML models showed relatively low specificity, which is thought to be because our
target was the majority class. We chose AUC as the main metric because it is not affected
by the majority or minority of the target class [30,31]. In contrast, we should interpret the
overall accuracy with caution because majority class predictivity may be overestimated
in imbalanced data [32]. In fact, we selected the RLR model as the best model because it
showed the test prediction result with the highest AUC and the most balanced sensitivity
and specificity values among the investigated models.

There were several limitations to this study. First, mRS was used as an indicator
of functional outcome, which had the advantage of an intuitive understanding of the
functional level; however, it can be challenging to obtain a detailed reflection of the various
neurologic symptoms observed after ischemic stroke, such as dysarthria-clumsy hand,
ataxic hemiparesis, and pure sensory stroke. In particular, there may be a discrepancy be-
tween the measured functional score and the discomfort of the symptoms felt by the patient
in these subtypes [33]; therefore, it was believed that a better model could be presented if
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more specific clinical data were added. Second, it was a single-center study. Therefore, an
integrated, multicenter study is required to generalize this study’s result and may present
better results. Finally, relatively broad inclusion criteria were also applied to develop
a generally applicable model for acute ischemic stroke, which may have contributed to
the bias.

5. Conclusions

This study demonstrated that ML-based models early and effectively predicted favor-
able functional outcomes at 3 months after acute ischemic stroke. All ML-based prediction
models in this study showed validated results, with an AUC > 0.8. In particular, RLR
showed the best performance, with SVM showing promising results as well. Both models
exhibited similar or slightly better performance than existing risk scoring tools or previously
proposed ML-based prediction models; moreover, they are useful because they are readily
applicable, informative to patients and families, and support clinical decision-making.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/diagnostics11101909/s1, Table S1: Optimal training model of each machine learning algorithm,
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R Markdown.
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