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Abstract: Thalassemia is one of the major inherited haematological disorders in the Southeast Asia
region. This study explored the potential utility of red blood cell (RBC) parameters and reticulo-
cyte cell population data (CPD) parameters in the differential diagnosis of α and β-thalassaemia
traits as a rapid and cost-effective tool for screening of thalassemia traits. In this study, a total of
1597 subjects (1394 apparently healthy subjects, 155 subjects with α-thalassaemia trait, and 48 subjects
with β-thalassaemia trait) were accrued. The parameters studied were the RBC parameters and
reticulocyte CPD parameters derived from Unicel DxH800. A novel algorithm named αβ-algorithm
was developed: (MN-LMALS-RET × RDW) − MCH) to discriminate α from β-thalassaemia trait
with a cut-off value of 1742.5 [AUC = 0.966, sensitivity = 92%, specificity = 90%, 95% CI = 0.94–0.99].
Two prospective studies were carried: an in-house cohort to assess the specificity of this algorithm in
310 samples comprising various RBC disorders and in an interlaboratory cohort of 65 α-thalassemia
trait, and 30 β-thalassaemia trait subjects to assess the reproducibility of the findings. We propose
the αβ-algorithm to serve as a rapid, inexpensive surrogate evaluation tool of α and β-thalassaemia
in the population screening of thalassemia traits in geographic regions with a high burden of these
inherited blood disorders.

Keywords: cell population data; algorithm; α-thalassemia; β-thalassaemia; VCS parameters

1. Introduction

Thalassaemia and haemoglobin variant disorders occur widely worldwide, with an
estimation of 7% of the world population being carriers, as reported by the World Health
Organisation (WHO) [1]. About 300,000–500,000 children were diagnosed with significant
haemoglobin disorders, and of these, about 80% were born in developing countries [1]. In
Malaysia, thalassaemia is the commonest single gene disorder characterised by defects
in synthesising one or more globin chains [2]. Individuals with homozygous and double
heterozygous mutations are associated with thalassaemia major or intermedia phenotype,
high morbidity and mortality, whereas individuals with heterozygous mutations are carri-
ers without exhibiting adverse morbidity [2]. Alpha (α) and beta (β) thalassaemia are the
commonest types of thalassaemia in Malaysia [3].

Malaysian Thalassaemia Registry (2009) revealed that 3310 out of 4541 registered
patients consist of transfusion-dependent β-thalassaemia major and HbE/β-thalassaemia
patients [4]. Clinical management of these patients includes transfusion, iron chelation
therapy, and haematopoietic stem cell transplantations, which are expensive and a burden
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to the country’s healthcare system [5]. Besides patient management, the National Thalas-
saemia Prevention and Control Programme was actively carried out nationwide to provide
population screening and counselling at primary healthcare facilities and health education
and promotions to disseminate knowledge and awareness about the consequences of these
disorders [4].

α-thalassaemia is characterised by the deficiency or absence of α-globin chain syn-
thesis due to deletions of one or more α-globin genes located in chromosome 16 [6].
The severity of α-thalassaemia is characterised by the number of gene deletions, where
single gene deletions result in α-thalassaemia silent carriers, two gene deletions ensue
α-thalassaemia trait (minor), three gene deletions eventuate in haemoglobin H (HbH), and
four-gene deletions result in haemoglobin Bart’s, which usually results in fatal hydrops
fetalis that have very high fatality rate [7]. On the other hand, β-thalassaemia is caused
by the reduced or absent β-globin chain synthesis due to mutations in the β-globin gene
on chromosome 11 [8]. Generally, β-thalassaemia is categorised as β-thalassaemia trait
(minor), β-thalassaemia intermedia, and β-thalassaemia major based gene defects and
severity of the decrease in β-globin chains production [9].

Preliminary identification of thalassaemia carriers is carried out by a screening pro-
gram by full blood count (FBC) analysis as the baseline test to scrutinise the red blood
cell indices, followed by morphologic examination of peripheral blood smears and subse-
quent confirmation by high-performance liquid chromatography (HPLC), haemoglobin
(Hb) electrophoresis, and molecular genetics testing [4]. Each of the confirmation tests
mentioned has its limitation, necessitating a combination of a few tests for differential
diagnosis of α and β-thalassaemia. For instance, HPLC is not sufficient to discreetly de-
tect variants as it is not sensitive and specific enough for an α-thalassaemia detection,
especially in the presence of haemoglobin Constant Spring (non-deletion α-thalassaemia),
indicated by the presence of a very tiny peak of Hb that is often missed [10,11]. In contrast,
it is seen on the capillary electrophoresis (CE) electropherogram. Besides that, Hb elec-
trophoresis also cannot be used as the sole technique to distinguish α- and β-thalassaemia.
Haemoglobin electrophoresis with β-thalassaemia trait usually shows reduced or absent
adult haemoglobin (HbA), elevated levels of haemoglobin A2 (HbA2), and increased foetal
haemoglobin (HbF) [10,12]. However, a normal concentration of HbA2 does not rule out
the β-thalassaemia trait, especially if there is a concurrent iron deficiency or δ-thalassaemia,
which can lower HbA2 levels into the normal range. Therefore, a combination of other
methods is required for confirmatory diagnosis [12]. Combinations of these multiple testing
are rather costly and require expertise to make accurate and reliable diagnoses as there
are substantial overlaps among these disorders [10]. Numerous combinations of red cell
indices have been suggested to distinguish different types of thalassaemia as this would
allow cost optimisation as only patients requiring further investigations are subjected to
expensive haemoglobin electrophoresis and molecular genetics testing.

Along with the advent of new generation full blood count (FBC) analysers, advanced
parameters such as cell population data (CPD), which measure the characteristics of cells
based on multiple light scatters, are being explored to understand the diagnostic utilities
of these parameters better. The CPD parameters provide information on the volume
(V), conductivity (C), and light scatter angles (ALL, LALS, LMALS, UMALS, and MALS)
for reticulocytes, which are important in the assessment of bone marrow red blood cell
production efficiency and detection of haemoglobin disorders such as thalassaemia and
anaemia [13]. In this study, we explored the potential utility of reticulocyte CPD and
aimed to construct an algorithm that could serve as a rapid tool and an inexpensive
surrogate method for the discrimination of α- and β-thalassaemia traits in population-
based thalassemia screening programs held not only in Malaysia but also in other countries
with a high burden of these red cell disorders.
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2. Materials and Methods

A total of 1597 subjects were included in the primary assessment and algorithm
development cohort. The subjects were recruited between September 2011 and February
2019 in a study to establish reference intervals for haematological parameters in Malaysian
adults reported in Ambayya et al. (2014) [14]. These cases were retrospectively analysed
and categorised into 1394 apparently healthy subjects, 155 subjects with α-thalassemia trait,
and 48 subjects with β-thalassemia trait.

Two ethical approvals were obtained for this study from the Medical Research Ethics
Committee of the Ministry of Health Malaysia. First, for the recruitments of subjects
in the reference interval establishments for haematological parameters (Research ID 10-
277-5480) and second, for the exploration of haematological parameters available in FBC
analysers in haematological disorders (NMRR 17-2708-38327). Written informed consent
was obtained from all subjects before recruitment. Samples were processed according to
the recommendation by International Council for Standardisation in Haematology [15–17].

All samples were processed as described in Ambayya et al. (2014) [14]. Initial screen-
ing test to rule out anaemia and thalassemia include full blood count (FBC) analysis of red
cell indices (MCH < 27 pg, MCV < 80 fl, RDW > 14%) that was performed on Unicel DxH
800 (Beckman Coulter, Miami, FL, USA). Then, peripheral blood film (PBF) was processed
using SP1000i automated slide maker (Sysmex, Kobe, Japan) and reviewed by qualified
laboratory personnel. Haemoglobin analysis was carried out on Capillarys 2 (Sebia, France)
and followed by H inclusion detected by supravital brilliant cresyl blue (BCB) staining
(Merck Millipore, Darmstadt, Germany). Iron studies assayed in this study include serum
ferritin (Modular E170, Roche, Switzerland) and soluble transferrin receptor (Cobas Integra
400, Roche, Switzerland). In subjects with increased serum ferritin [males > 400 ng/mL,
females > 150 ng/mL], C-reactive protein was performed using AU480 (Bekman Coulter,
USA). DNA testing for confirmation of α -thalassaemia carriers was conducted in cases se-
lected cases that required definitive diagnosis. The analyses’ pipeline adopted in this study
was based on Malaysia’s Management of transfusion-dependent thalassaemia (Clinical
Practice guideline) v2009 [4].

Comparison of red blood cell (RBC) and reticulocyte routinely reported parameters,
research parameters, and cell population data (CPD) were retrieved from Unicel DxH
800. Description of the CPD parameters is in Supplementary S1. Several strategies were
developed first to scrutinise these parameters between the control group (apparently
healthy individuals) and subjects diagnosed with α and β-thalassaemia and then select
significant indices for a mathematical algorithm development that displayed the largest
area under the curve (AUC) as a single parameter.

All statistical analyses were performed using IBM SPSS Statistics 22 software (SPSS,
Chicago, IL, USA). The Kolmogorov-Smirnov test of normality was carried out for distri-
bution assessment of each parameter (RBC parameters, research parameters, and CPD).
One-way variance analysis (ANOVA) with homogeneity of variance test was conducted
and followed by a post-hoc test. Tukey test was done on parameters that fulfilled the
homogeneity of variance, while Games-Howell test for the parameters that did not fulfil
the homogeneity of variance. Then, the Welch test was done to verify parameters that did
not fulfil the homogeneity of variance. For the initial assessment of differences between
the α and β-thalassaemia trait subjects, an independent t-test was conducted to test the
parameters at a significance level of 0.05. Receiver Operating Characteristic (ROC) curves
were generated for parameters that yielded p-values of <0.05. ROC analysis with p-values
of <0.05 and AUC > 0.8 was considered significant in this study, and for each shortlisted
parameter, cut-off points were determined by considering the sensitivity and specificity.

A novel algorithm, termed as αβ-algorithm, was formed by utilising routinely re-
ported RBC parameters and reticulocyte CPD with AUC > 0.9 to discriminate α and
β-thalassaemia traits. This algorithm was tested in comparison with a control group co-
hort (apparently healthy individuals), α and β-thalassaemia traits. Following that, two
prospective validation cohorts were designed and carried out to ensure the reliability, repro-
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ducibility, and robustness of (αβ-algorithm) when heterogenous RBC disorders are present
in a diagnostic setting: an in-house cohort and an interlaboratory cohort in collaboration
with Gribbles Pathology, Malaysia. For the in-house validation cohort, 310 samples were
recruited from various red cell disorders subjects (119 α-thalassemia trait, 48 β-thalassemia
trait, 15 haemoglobin E trait, 84 iron deficiency anaemia (IDA), and 44 iron deficiency
(ID)). We compared the distribution of cases among these red cell disorders to assess the
overlap of cut-offs between other cases (non-α or β-thalassemia trait). As for the interlab-
oratory cohort, 95 samples were included (65 α-thalassemia trait, 30 β-thalassemia trait)
recruited during general health screening programs. We used VassarStats clinical calculator
(http://vassarstats.net/clin1.html, accessed on 16 September 2021) to obtain sensitivity,
specificity, positive, and negative predictive values to discriminate α and β-thalassaemia
traits [15].

3. Results
3.1. Development of (αβ Algorithm) Using a Primary Retrospective Cohort

A total of 1597 subjects (1394 control group/apparently healthy; 155 α-thalassemia
trait; 48 β-thalassemia trait) were assessed in this study. The distribution of cases and
summary of statistics for RBC parameters, sTFR, serum ferritin, and haemoglobin analysis
(HBA, HBA2, and HBF) are detailed in Table 1. After performing normality testing, we
then compared the groups (control, α, and β-thalassaemia traits) by performing ANOVA
and post hoc tests, and the diagnostic performance was determined by ROC analyses, as
summarised in Supplementary S2.

Table 1. Distribution of cases and statistics of RBC parameters, serum ferritin, haemoglobin analysis (HBA, HBA2, and HBF).

Groups Statistics HB
(g/dL)

RBC (10
/mcL)

HCT
(%)

MCV
(fL)

MCH
(pg)

MCHC
(g/dL)

RDW
(%)

TSfR
(mg/L)

Ferritin
(mcg/L)

HBA
(%)

HBA2
(%)

HBF
(%)

Alpha
trait

N 155 155 155 155 155 155 155 155 155 155 155 155
Mean 12.56 5.15 39.03 76.27 24.57 32.19 15.43 4.14 117.03 97.50 2.43 0.58

SD 1.22 5.08 3.46 5.66 2.18 0.86 1.45 1.39 138.70 0.36 0.25 0.53
Med 12.45 0.59 38.60 77.60 25.10 32.10 15.30 3.90 72.00 97.60 2.40 0.35
Min 10.10 3.57 32.20 60.10 19.20 29.90 12.90 1.50 3.00 95.50 1.90 0.20
Max 16.30 6.76 49.60 98.50 32.80 35.30 21.40 9.90 766.00 98.10 3.50 2.20

Range 6.20 3.19 17.40 38.40 13.60 5.40 8.50 8.40 763.00 2.60 1.60 2.00

Beta trait

N 48 48 48 48 48 48 48 nd nd 48 48 48
Mean 11.64 5.43 36.69 68.00 21.57 31.73 17.31 - - 93.83 5.23 1.13

SD 0.87 0.55 2.60 6.24 2.17 0.73 2.01 - - 0.96 0.49 0.76
Med 11.80 5.39 36.80 65.40 20.70 32.00 16.55 - - 93.70 5.40 1.00
Min 10.20 4.51 32.00 61.50 18.30 29.60 14.80 - - 91.70 4.40 0.30
Max 13.20 6.45 40.90 82.10 26.30 32.90 24.30 - - 95.40 6.00 3.50

Range 3.00 1.94 8.90 20.60 8.00 3.30 9.50 - - 3.70 1.60 3.20

Control
group

(healthy
male)

N 477 477 477 1394 a 1394 a 1394 a 1394 a 1394 a 477 1394 a 1394 a 1394 a

Mean 14.91 4.83 43.84 89.61 30.12 33.62 13.51 3.19 265.56 97.34 2.61 0.58
SD 1.06 0.41 2.73 4.00 1.58 0.87 0.72 0.90 230.02 0.32 0.24 0.42

Med 14.90 4.91 43.60 89.50 30.10 33.60 13.40 3.10 217 97.40 2.60 0.40
Min 12.50 3.83 37.40 80.30 26.9 30.10 11.70 0.90 37 94.90 1.10 0.20
Max 16.90 5.61 48.20 107.80 43.50 48.20 19.00 8.80 1138 98.90 3.50 2.50

Range 4.40 1.78 10.80 27.50 17.90 18.10 7.30 7.90 1101 4.00 2.40 2.30

Control
group

(healthy
female)

N 917 917 917 1394 a 1394 a 1394 a 1394 a 1394 a 917 1394 a 1394 a 1394 a

Mean 13.00 4.24 38.54 89.61 30.12 33.62 13.51 3.19 106.89 97.34 2.61 0.58
SD 0.81 0.32 2.61 4.00 1.58 0.87 0.72 0.90 114.04 0.32 0.24 0.42

Med 12.90 4.23 38.50 89.50 30.10 33.60 13.40 3.10 74 97.40 2.60 0.40
Min 11.60 2.97 26.80 80.30 26.9 30.10 11.70 0.90 14 94.90 1.10 0.20
Max 14.90 5.15 44.40 107.80 43.50 48.20 19.00 8.80 669 98.90 3.50 2.50

Range 4.60 2.18 17.60 27.50 17.90 18.10 7.30 7.90 655 4.00 2.40 2.30

nd refers to no data. Serum ferritin and sTfR are not tested in β-thalassaemia trait subjects. a Based on the haematological reference range
for Malaysian adults [18], specific gender-based calculations were performed for HB, RBC, HCT, and serum ferritin. Whereas for the other
parameters (MCV, MCH, MCHC, RDW, TSfR, Ferritin, HBA, HBA2, and HBF), no gender-based calculation was done as no clinically
gender-based associated variation was reported [18].

http://vassarstats.net/clin1.html
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ROC analysis involved 203 subjects (155 α-thalassaemia trait and 48 β-thalassaemia
trait), in which five parameters were notably higher (MCV, MCH, MAF, MN-V-RET, MN-
V-NRET) in α than in the β-thalassaemia trait. The following parameters were lower in
α than in the β-thalassaemia trait: RDW, MN-MALS-RET, MN-LMALS-RET, and MN-
LMALS-NRET, as shown in Table 2. Three parameters (MN-LMALS-RET, MCH, and RDW)
possessed the largest AUC distinguishing α from β-thalassaemia. To improve the sensitivity
and specificity of these parameters, a mathematical algorithm (αβ-algorithm) was devised
(MN-LMALS-RET × RDW) − MCH) to robustly distinguish α from β-thalassaemia trait
with a cut-off of 1742.5, the AUC, sensitivity, and specificity were 0.966 (95% CI: 0.94,
0.99), 92% and 90%, respectively. ROC curves of RBC parameters and reticulocyte CPDs
are depicted in Figure 1a,b. Figure 2 displays the ROC curve for the αβ-algorithm. Box
and whisker plots for the for MCH, RDW, MN-LMALS-RET, and the αβ-algorithm that
delineate the α,β-thalassaemia trait and the control group (apparently healthy subjects) are
represented in Figure 3a–d. The αβ-algorithm is incorporated into the screening algorithm
for voluntary and cascade screening in the Clinical Practice Guideline for Management of
Transfusion Dependent Thalassaemia in Malaysia, as depicted in Figure 4 [4].

Table 2. The ROC data elaboration for each reticulocyte CPD to distinguish α from β-thalassaemia.

Parameters AUC 95% CI
Cut-Off

Sens (%) Spec (%)
α-Thalassaemia β-Thalassaemia

αβ-algorithm 0.966 0.939, 0.993 <1742.50 >1742.50 91.49 90.22
RDW 0.911 0.864, 0.958 <15.85 >15.85 82.98 84.78

MN-LMALS-RET 0.868 0.810, 0.927 <109.50 >109.50 80.85 75.00
MCH 0.861 0.796, 0.925 >22.30 <22.30 76.09 74.47

MN-V-RET 0.853 0.783, 0.923 >47.50 <47.50 81.52 76.59
MN-V-NRET 0.853 0.780, 0.926 >35.50 <35.50 85.87 74.47

MCV 0.836 0.764, 0.909 >70.80 <70.80 75 74.47
MAF 0.823 0.753, 0.894 >8.95 <8.95 70.65 70.21

MN-MALS-RET 0.816 0.744, 0.888 <118.50 >118.50 74.47 73.91
MN-LMALS-NRET 0.813 0.743, 0.883 <43.50 >43.50 72.34 70.65

AUC, area under the curve; 95% CI, 95% confidence interval; thal, thalassaemia; MCV, mean corpuscular volume; MCH, mean corpuscular
haemoglobin; MAF, microcytic anaemia factor; RDW, red blood cells distribution width; MN-LMALS-RET, lower median angle light scatter
reticulocyte; Sens, sensitivity, Spec, specificity. Refer to Supplementary S1, Description of CPD Parameters for the CPD abbreviations).

Figure 1. (a,b) ROC curves of RBC parameters and reticulocyte CPD to distinguish α from β thalassaemia trait.
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Figure 2. The ROC curve for discriminating α from β-thalassaemia traits generated from
the αβ-algorithm.

Figure 3. (a–d) Box and whisker plot for MCH, RDW, MN-LMALS-RET (labelled as @MNLMALSRET in Figure 3c and the
αβ-algorithm between the α and β-thalassaemia trait and the control group (apparently healthy subjects). * refers to the outliers.
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Figure 4. Flowchart representing the αβ-algorithm incorporated into the screening algorithm for voluntary and cascade
screening in Malaysia’s Clinical Practice Guideline for Management of Transfusion Dependent Thalassaemia [4].

3.2. αβ-Algorithm Validation Studies
3.2.1. In-House Validation

In-house validation in a cohort of 310 subjects comprising various red cell disorders
as summarised in Table 3 and Supplementary S3 and corresponding box and whisker plot
is depicted in Figure 5. As shown, between the quartile 1 (Q1) to quartile 3 (Q3) of α tha-
lassemia and β thalassemia traits, there was no significant overlap, comprising the majority
of the cases included in this cohort. The overlapping cases require confirmation by HPLC
and DNA testing. There is a significant overlap between the IDA and β thalassemia trait.

Table 3. In-house validation of the αβ-algorithm to distinguish between various red cell disorders.

Algorithm Alpha Trait Beta Trait HbE Trait IDA ID

N 119 48 15 84 44
Mean 1667.82 1960.19 1586.31 1874.90 1430.13
Med 1660.10 1890.40 1587.60 1857.90 1403.65
SD 148.21 248.65 80.58 245.80 153.62

Max 2058.20 2819.50 1771.80 2526.20 1745.80
Min 1422.70 1604.30 1441.20 1422.80 1132.90

Variance 21,966.37 61,829.15 6493.59 60,417.72 23,598.58
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Figure 5. Box and whisker plot for the αβ-algorithm in various red cell disorders (IDA, HbE trait
(labelled as HBE in this figure), iron deficiency, α thalassaemia trait (labelled as alpha thalassemia),
and β-thalassaemia trait (labelled as beta-thalassemia). Outliers are marked as “*” and “0” in the
HbE trait and β-thalassaemia trait groups.

3.2.2. Interlaboratory Validation Cohort

An interlaboratory validation cohort that included 95 samples (65 α-thalassemia
trait, 30 β-thalassemia trait) were subjected to the developed mathematical algorithm.
β-thalassaemia trait was assigned as the positive group, and α-thalassaemia trait was
assigned as the negative group, as shown in Table 4 and Supplementary S4. This αβ-
algorithm yielded a sensitivity of 92.85% (CI:0.75, 0.99) and specificity of 94.03% (CI:0.84,
0.98) in discriminating β-thalassaemia trait from the α-thalassaemia trait with a positive
predictive accuracy of 86.67% (CI:0.68, 0.95) and negative predictive accuracy of 96.9%
(CI:0.88, 0.99).

Table 4. Interlaboratory comparison of the αβ-algorithm in differentiating α-thalassemia trait and 30
β-thalassemia trait.

Condition

Algorithm Prediction Absent Present Total

(MNLMALSRET × RDW) − MCH
Positive 4 26 30

Negative 63 2 65
Total 67 28 95

4. Discussion

Distinguishing between various thalassaemia traits is essential in clinical decision-
making as it will influence the treatment options and outcome of the patients [16]. However,
the diagnosis of thalassaemia traits requires time and resources as various screening and
confirmatory testing, including FBC, morphological review of blood smears, haemoglobin
electrophoresis, and molecular genetic analysis to establish a reliable and robust diagno-
sis [17]. Several algorithms based on RBC indices have been proposed to differentiate iron
deficiency anaemia and thalassaemia traits [17], including Mentzer Index [19], England &
Fraser Index [20], Shine and Lal formula [21], Ehsani formula [22], Srivastava formula [23],
Palestinian population [24], Green & King Index [25], and RDW Index [26].



Diagnostics 2021, 11, 2163 9 of 12

In more recent studies, researchers have been exploring machine learning algorithm-
based studies with advancements in data science [27,28]. In a study in Thailand, a web-
based prediction tool for discrimination of thalassemia trait and IDA was developed using
a machine learning algorithm. However, in this study, the authors did not delineate the
subtypes of thalassemia but created a support vector machine (SVM) model to distinguish
IDA from thal trait, named ThalPred [27]. One of the largest studies performed in Israel
validated Shine’s formula and in-house developed SVM formula. This study included a
total of 64,586 subjects. Their SVM formula displayed high sensitivity(>98%) and >99.77%
negative predictive value that is robust in distinguishing the β-thalassemia carrier from
normal count subjects and iron-deficient women [28].

Previously, using the CPD parameters generated by Beckman Coulter DxH 800, Ng
and the team proposed an algorithm to differentiate IDA from thalassaemia traits among
its subjects. With a cut-off value of 23, the area under the curve (AUC) of 0.995 (95% CI
of 0.99–1.00), the algorithm achieved a sensitivity of 97% and specificity of 99.1%. They
suggested that no biochemical marker of iron status such as serum ferritin testing is
required with this formula; hence, simplified diagnostic workup of IDA and thalassemia
was proposed [16]. However, these formulas were devised from various populations
with varying sensitivity and specificity, with none specific for differentiation of α and β-
thalassaemia, without incorporating reticulocyte CPD parameters, as done in this present
study [17,29,30].

The differentiation of α and β-thalassaemia based on the red blood cells parameter
(Hb level, MCH, MCV, and RBC level) was performed in 2018 by R. Azma et al. in an
LH 750 FBC analyser by Beckman Coulter (USA). A total of 299 subjects (α-thalassaemia
traits, n = 160 and β-thalassaemia traits, n = 139) were included for this study. It showed
that α-thalassaemia carriers have higher Hb level (α-thalassaemia carrier: 12.1 ± 1.31; β-
thalassaemia carrier: 10.6 ± 1.8, p-value: 0.00 *), MCV (α-thalassaemia carrier: 71.0 ± 6.1; β-
thalassaemia carrier: 68.7 ± 7.2, p-value: 0.044 *), MCH (α-thalassaemia carrier: 22.8 ± 2.3;
β-thalassaemia carrier: 21.8 ± 2.7, p-value: 0.056) RBC level (α-thalassaemia carrier:
5.3 ± 0.7; β-thalassaemia carrier: 4.9 ± 0.9, p-value: 0.001 *), compared to β-thalassaemia
carriers [31]. Although this study was not done based on CPD parameters, similar results
were observed in our present study. The MCV and MCH parameters are shown to have no-
tably higher values among subjects with α-thalassaemia trait compared to β-thalassaemia
trait, in accordance with the findings from this study, as depicted in Table 1.

In this present study, we successfully developed an algorithm (αβ-algorithm) based on
reticulocyte CPD parameters that will serve as the downstream tool after FBC is performed
to distinguish α versus β-thalassaemia trait, using Beckman Coulter Unicel DxH 800. The
ROC-curve analysis revealed three parameters with the highest AUC, MN-LMALS-RET,
MCH, and RDW, with good sensitivity and specificity (Figures 1a,b and 2). The αβ-
algorithm was devised by combining the aforementioned parameters ((MN-LMALS-RET
× RDW) − MCH) that resulted in higher AUC with better sensitivity and specificity to
discriminate α from β-thalassaemia traits. The rationales for the αβ-algorithm were MN-
LMALS-RET, which measures the red blood cell volume in the reticulocyte channel through
lower median angle light scattering [32], MCH indicates the amount of haemoglobin in a
red blood cell [33], and RDW helps to measure variation in red blood cell size [12].

Our prospective study revealed the usefulness of the αβ-algorithm as a downstream
pipeline following FBC analysis, as depicted in Figure 4. Based on Figure 5, when this algo-
rithm was evaluated in a cohort of various red cell disorders, there was an overlap between
the subgroups, especially between the β-thalassemia trait and IDA groups. Nevertheless,
the diagnostic pipeline for cases suspected as IDA differs in the Malaysian clinical practice
guideline, so this overlap will not impact the role of this algorithm in the differential
diagnosis of α and β-thalassemia. Interlaboratory validation showed that the findings are
reproducible in another laboratory setting with similar Unicel DxH 800, hence reiterating
the usefulness of the αβ-algorithm in the screening of thalassemia cases, in particular, α
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and β-thalassemia in geographical locations with a high prevalence of thalassaemias such
as Malaysia and other Asian countries.

There are several limitations of this study: First, it included a relatively low number
of α and β-thalassemia cases. Secondly, β-thalassemia group, the maximum value of MCV
was 82 that overlaps with the minimum MCV of 80 in the healthy control group. In such
cases, other RBC indices (RBC, MCH) and HPLC would aid in the differential diagnosis
of β-thalassemia. Ideally, molecular analysis for both alpha and beta mutations needs to
be performed on all samples so as not to miss out on the silent α or β thalassemia during
screening. However, we did not perform molecular analysis on all cases because of the
high testing cost and rarity of silent β-thalassemia [34,35].

We propose the vigorousness of this αβ-algorithm be validated in a larger cohort
in other geographical locations that exhibit high prevalence and incidence of α and β-
thalassaemia traits. Based on this study, we recommend the FBC analysis is performed
within 6 h of sampling following International Council for Standardisation in Haematology
(ICSH) guidelines [36]. Apart from that, the transportation and storage of samples con-
dition must meet the guidelines recommended by The Clinical and Laboratory Standard
Institute (CLSI) [37]. Any deviation from adhering strictly to these guidelines may affect
the sensitivity and specificity of this algorithm as CPD parameters are highly affected by
the structural changes of the cells.

5. Conclusions

Devising an algorithm that accurately distinguishes α and β-thalassaemia traits using
CPD parameters derived from FBC analyser is essential in the pipeline of large population-
based screening carried out in Malaysia as high prevalence of these inherited disorders are
reported. Implementing the αβ-algorithm in the screening laboratory will promote cost
optimisation as only suspected subjects will be included in the downstream pipeline before
performing haemoglobin electrophoresis and/or further specific genetic testing, as depicted
in Figure 4. The applicability of the αβ-algorithm is relatively straightforward without
involving any additional cost to the diagnosis and requires no sophisticated analysis and
expertise. Hence, we strongly recommend adopting this αβ-algorithm in all screening
laboratories with access to similar CPD parameters nationwide and other geographical
regions with a high prevalence of thalassaemia-related disorders [38,39].
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