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Abstract: Cervical cancer remains a major public health concern in developing countries due to
financial and human resource constraints. Visual inspection with acetic acid (VIA) of the cervix was
widely promoted and routinely used as a low-cost primary screening test in low- and middle-income
countries. It can be performed by a variety of health workers and the result is immediate. VIA
provides a transient whitening effect which appears and disappears differently in precancerous and
cancerous lesions, as compared to benign conditions. Colposcopes are often used during VIA to
magnify the view of the cervix and allow clinicians to visually assess it. However, this assessment
is generally subjective and unreliable even for experienced clinicians. Computer-aided techniques
may improve the accuracy of VIA diagnosis and be an important determinant in the promotion
of cervical cancer screening. This work proposes a smartphone-based solution that automatically
detects cervical precancer from the dynamic features extracted from videos taken during VIA. The
proposed solution achieves a sensitivity and specificity of 0.9 and 0.87 respectively, and could be a
solution for screening in countries that suffer from the lack of expensive tools such as colposcopes
and well-trained clinicians.

Keywords: cervical cancer; visual inspection with acetic acid; automatic detection; screening

1. Introduction

In 2020, cervical cancer, a largely avoidable disease, affected approximately 600,000 women
worldwide and resulted in more than 340,000 deaths [1]. The World Health Organiza-
tion (WHO) emphasized the importance of acting immediately to combat cervical cancer
through a triple intervention strategy that should be reached by the year 2030, including (i)
90% of girls fully vaccinated by 15 years of age, (ii) 70% of women screened with a high-
performance test twice in their lifetime, and (iii) 90% of women identified with cervical
disease receive treatment and care.

Cervical cancer is caused by persistent high-risk human papillomavirus (HPV) infec-
tion and develops through precursor precancerous lesions named cervical intraepithelial
neoplasia grade 2 (CIN2) and grade 3 (CIN3). As far as it concerns screening, WHO rec-
ommended, for low- and middle-income countries (LMICs), HPV testing as a primary
screening test [2]. Nevertheless, screening with HPV testing alone could result in unnec-
essary treatment due to its limited positive predictive value and specificity. Therefore,
to identify women requiring treatment, visual inspection with acetic acid (VIA) of HPV-
positive women is recommended by WHO. VIA has been used for several years in LMICs
as a primary screening test, whereby the appearance of aceto-white areas after the applica-
tion of a 3–5% acetic acid solution helps to define the pathological areas of the cervix and
permits their immediate treatment. For countries where HPV testing is not affordable, VIA
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is still recommended by WHO as a stand-alone screening modality in its “see and treat”
strategy [2]. However, VIA is a highly subjective procedure with a diagnostic accuracy
for detecting precancer and cancer, varying from setting to setting [3–6]. Consequently,
tools for a reliable noninvasive detection and characterization of neoplastic lesions based
on quantitative diagnostic algorithms are desirable to assist front-line providers when
performing VIA, especially in low-resource settings.

There are several techniques for computer-aided diagnosis of cervical cancer [7–10].
Most of them use cytological images [11–17]. However, an increasing number of studies
are developing methods for automatic classification of images captured during VIA, and
often, adding images taken during the visual inspection with Lugol’s iodine (VILI) or with
the green lens. Particularly, the authors of [18–21] apply convolutional neural networks
(CNN) to images captured with colposcopes.

Nevertheless, standard colposcopes are rarely available for screening in low-income
countries due to limited financial resources, health manpower, and facilities. Consequently,
recent studies are using other acquisition devices. For instance, a low-cost and portable
colposcope has been developed and used to acquire images during VIA and VILI [22,23].
From these images, textural-based features are extracted and used in a support vector ma-
chine model. Another example is a colposcope based on a smartphone with optical lenses
attached that incorporates an Artificial Intelligence (AI) classifier [24,25]. The smartphone-
based system was evaluated in [26], after highly selecting the images and using gynecologic
oncologists’ impressions as a reference standard, showing a large variable diagnosis among
experts and demonstrating the potential of smartphones as an aiding tool for VIA. In [27],
the authors used images taken during VIA with a fixed-focus camera. Finally, authors
in [28] developed a digital video colposcope with an optical head that evaluates the effect
of aceto-whitening based on the evolution of the diffuse reflectance with respect to time.
As a result, it provides a dynamic spectral imaging (DSI) map that has proven to be useful
to assist biopsy of suspicious lesions and distinguish high-grade CIN [29–32].

The approaches described are based on the analysis of a single static image taken
during VIA and, often, combining additional images taken during VILI or with the green
lens. By contrast, authors in [33] used five colposcopic images taken during VIA and
used a graph convolutional network to classify them. Similarly, authors in [34] used
multiple images taken during VIA, one image during VILI, and one taken with the green
colposcope lens.

In this project, instead of using a colposcope and static images, we use dynamic images
recorded via a smartphone during VIA [35]. It is our conviction that the different evolution
of the color in the images of neoplastic and healthy tissue after application of acetic acid
is a key element for detecting cervical precancer and cancer. Furthermore, the minimal
training required for using our diagnosis system, and the increasing penetration rate of
smartphones in LMICs, makes it ideal for countries with limited healthcare resources,
where it can be easily integrated into a single-visit approach [36].

The rest of the paper is organized as follows. Section 2 presents the dataset and the
proposed classification algorithm. In Section 3, the performance of the proposed scheme is
analyzed by comparing it with the histology results, the colposcopists’ diagnosis, and the
colposcopists’ annotations after VIA. Finally, Section 4 presents an evaluation of the results
and Section 5 concludes the paper.

2. Materials and Methods
2.1. Dynamic Image Dataset

The appearance of aceto-white areas after the application of an acetic acid solution
helps to define the pathological areas of the cervix. The CIN2 and CIN3 precancerous
lesions (collectively referred to as CIN2+) tend to become whiter just after the application
of the acetic acid, and then the whiteness decreases smoothly. By contrast, in the non-
neoplastic tissue, the whiteness remains more constant. Most lesions can be distinguished
one minute after the application of acetic acid, although it is reasonable to do VIA up to
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3 min [37]. In this work, the temporal evolution of neoplastic and non-neoplastic areas will
be the key feature used for its classification.

2.1.1. Smartphone as an Acquisition Device

To acquire the dynamic images, we use a Samsung Galaxy S5 (Samsung, Seoul, South
Korea) with a camera of 16 megapixels, that record 2 min videos during VIA at 1 frame
per second (fps). Patients are placed in the lithotomy position and a speculum is inserted
and adjusted to provide more visibility. The smartphone is fixed to a tripod to minimize
the movements during recording and placed around 15 cm of the vaginal vestibule. The
recording is started immediately after the application of 3% acetic acid.

Our smartphone-based artificial intelligence classifier is intended to be introduced in
LMICs using primary HPV screening in a “screen and treat” approach. The mobile app
will be used as a triaging method to refer women testing positive for HPV for treatment.
Therefore, our dataset used to train the algorithm is derived from a selected group of
HPV-positive women aged between 30 to 49 years, which is the age group recommended
by WHO for screening asymptomatic women in LMICs [2].

Video sequences were obtained after informed and signed consent from 44 asymp-
tomatic HPV-positive women at the colposcopy consultation in Maternity of Geneva
(Geneva University Hospitals), Switzerland, and at the Gynecologic Department of the Dis-
trict Hospital of Dschang, Cameroon. The cases from Geneva were referred for colposcopy
after positive cytology and HPV testing, whereas Cameroonian cases were women screened
with HPV testing in a “test-triage-and-treat program”. All HPV-positive women received
VIA for triage and biopsies, endocervical brushing (ECB), and cytology as a quality control
measure [36].

Cervical tissue obtained from biopsies, ECB, or conization served as the reference
standard to evaluate the accuracy of the algorithm in this study. Adjudicated histopathol-
ogy diagnosis was made after preparation of slides in the Division of Pathology (Geneva
University Hospitals). Guided biopsies were performed on all visible lesions. If no le-
sion was seen, a random biopsy at 6 o’clock within the transformation zone and near
the squamocolumnar junction was obtained. ECB was performed on all women, with
or without visible lesions. The adjudicated diagnoses of 44 cases revealed 15 of them as
negative (including 3 CIN1 cases) and 29 as positive (11 CIN2 and 18 CIN3 cases).

Three expert colposcopists (gynecologic oncologists) from the Geneva University
Hospitals analyzed the 44 recorded videos, blinded from the histopathologic diagnoses,
and were asked to (i) classify them as positive (CIN2+) or negative and (ii) draw the
neoplastic lesions on the last frames of the videos.

Note that more sequences had been acquired but some of them were discarded due
to severe movement and blurriness. The dataset specifications are shown in Table 1. Due
to the limited amount of data, the classification is performed pixel-wise, classifying each
pixel independently. Leave-one-out cross-validation was applied at the patient level, i.e.,
the video’s pixels of the patient being diagnosed were not used to train the model for
that patient.

2.1.2. Labels

Each acquisition is labelled negative or positive based on histologic assessment, and,
when positive, the neoplastic area (CIN2+) is delineated manually in the last frame of the
dynamic image by an expert colposcopist. Two challenges are faced here. First, the selected
area may be inaccurate for the pixels close to the boundaries. Second, movement during
acquisitions causes variations of the acetowhite region’s position from frame to frame.
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Table 1. Dataset specifications.

Dataset Specifications

Number of sequences available 68
Total number of discarded sequences 24
Missing histology results and VIA annotations 2
Severe movement 16
Blurriness 2
Blood flow that prevents the visualization of the cervix tissue 3
Excess of mucus that prevents the visualization of the cervix tissue 1
Total number of sequences used 44
Number of positive sequences 29
CIN3 18
CIN2 11
Negative sequences 15
CIN1 3
Negative 12
Video length (seconds) 120
Number of frames 120
Number of selected positive pixels 21,851
Number of selected negative pixels 93,725

To palliate these two issues, the ground truth labels are eroded and dilated using
a disk as a morphological operator whose size is manually set based on the size of the
positive region. Pixels for training the neural network are randomly selected from the
modified labels: positive pixels from the eroded label and negative pixels from the dilated,
ensuring that none of the pixels selected are close to the boundaries between neoplastic
(CIN2+) and non-neoplastic regions and the image borders. Figure 1 shows a label drawn
by a colposcopist after histological confirmation of a CIN2+ lesion, and the resulting eroded
and dilated labels. Note that the area where negative pixels are chosen was obtained not
only by dilating the original label but also masking it to avoid regions far from the center of
the cervix. From the 44 recorded videos, 21,851 positive pixels and 93,725 negative pixels
were selected for training.

Diagnostics 2021, 11, x FOR PEER REVIEW 5 of 16 
 

 

   
(a) (b) (c) 

Figure 1. For the supervised learning, positive and negative pixels are chosen from area far from 
ground truth contours, to avoid mislabeled training data due to inaccurate labeling. From left to 
right: (a) Label drawn by the colposcopist, validated by biopsy, (b) eroded label, where positive 
pixels are chosen from (green region), (c) dilated and masked label, where negative pixels are cho-
sen from (green region). 

2.2. Classifier 
As mentioned previously, this work is based on the analysis of dynamic image se-

quences of the cervix under a contrast agent to observe the reaction of cells with acetic 
acid (VIA) during a defined time window, and regarding the color evolution of each re-
gion, deciding whether that region is suspicious or not. Therefore, the intensity curves of 
the pixels of the video are the key elements of our prediction. 

To do so, as shown in Figure 2, we propose a pipeline to process each dynamic image. 
The different components of the pipeline are described in this section. 

 
Figure 2. Pipeline of the proposed approach. The features mentioned on the intensity curve, such 
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Figure 1. For the supervised learning, positive and negative pixels are chosen from area far from
ground truth contours, to avoid mislabeled training data due to inaccurate labeling. From left to
right: (a) Label drawn by the colposcopist, validated by biopsy, (b) eroded label, where positive
pixels are chosen from (green region), (c) dilated and masked label, where negative pixels are chosen
from (green region).

2.2. Classifier

As mentioned previously, this work is based on the analysis of dynamic image se-
quences of the cervix under a contrast agent to observe the reaction of cells with acetic acid
(VIA) during a defined time window, and regarding the color evolution of each region,
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deciding whether that region is suspicious or not. Therefore, the intensity curves of the
pixels of the video are the key elements of our prediction.

To do so, as shown in Figure 2, we propose a pipeline to process each dynamic image.
The different components of the pipeline are described in this section.
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Figure 2. Pipeline of the proposed approach. The features mentioned on the intensity curve, such as how fast it is becoming
fast and level of whiteness, are only human interpretation of the curves and are not pre-computed; the proposed network
only uses the raw data at its input.

2.2.1. Preprocessing

From each patient, a two minute Red Green Blue (RGB) video was captured, and it was
sampled to obtain 120 frames. Motion compensation based on the point feature matching
technique [38] was applied, ensuring the method to be robust to small movements of
the camera. The frames are cropped to center the cervix and spatially resized to have
a resolution of 150 × 150 pixels. An example of the effect of motion compensation is
shown in Figure 3 where the ground truth labels, drawn by the expert colposcopist in the
last frame of the video, are plotted in the first, middle, and last frames of the recording.
When considering the frames recorded without applying motion compensation, the region
bounded by the colposcopist’s label changes considerably from frame-to-frame, while
when stabilizing the video, the defined region remains more constant.

After stabilizing the video, each color channel was scaled to the range [−0.5, 0.5]. To
reduce the complexity of the problem, we used principal component analysis (PCA) [39].
PCA is defined as an orthogonal linear transformation that transforms the data, an RGB
vector in this case, to a new coordinate system with a reduced dimensionality. The RGB
values of a given positive pixel for each frame of the video create an elongated cluster
which can be represented by a line. This line, called principal axis and represented in
Figure 4a, is estimated to keep the variance at its maximum. Once this axis is obtained,
the input data is projected to convert a three-channel pixel to a scalar, while keeping the
color evolution still visible (Figure 4b). Note that the principal axis is not the same for
every sequence. However, as their variances are not significant, we used the average line
of principal axes of our training set.
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Figure 4. (a) An example of Red Green Blue (RGB) values of a positive pixel, projected on the principal
axis, to reduce the dimensionality of the input data. (b) Resulting video frame after combining the
three color channels.

Once the RGB pixel values are converted to a scalar, the first ten frames are discarded
since they are the most affected by movement. The sequence is then downsampled to
11 time points using cubic spline interpolation, which are the final input to the neural net.
Recall that the classification is performed pixel-wise. Thus, each pixel with its correspond-
ing 11 time points is an independent input to the neural network.

For the training data, the positive and negative pixels were selected, as explained
in Section 2.1.1. Two additional steps were applied to the pixels selected for training.
First, pixels that contain reflections were identified by thresholding the amplitude of the
maximum of its time evolution. Figure 5c shows the detected reflections for a specific
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sequence. Second, data augmentation by scaling was applied to positive pixels, ensuring
an equal number of positive and negative pixels for training.

Diagnostics 2021, 11, x FOR PEER REVIEW 7 of 16 
 

 

 
 

(a) (b) 

Figure 4. (a) An example of Red Green Blue (RGB) values of a positive pixel, projected on the prin-
cipal axis, to reduce the dimensionality of the input data. (b) Resulting video frame after combin-
ing the three color channels. 

Once the RGB pixel values are converted to a scalar, the first ten frames are discarded 
since they are the most affected by movement. The sequence is then downsampled to 11 
time points using cubic spline interpolation, which are the final input to the neural net. 
Recall that the classification is performed pixel-wise. Thus, each pixel with its correspond-
ing 11 time points is an independent input to the neural network. 

For the training data, the positive and negative pixels were selected, as explained in 
Section 2.1.1. Two additional steps were applied to the pixels selected for training. First, 
pixels that contain reflections were identified by thresholding the amplitude of the maxi-
mum of its time evolution. Figure 5c shows the detected reflections for a specific sequence. 
Second, data augmentation by scaling was applied to positive pixels, ensuring an equal 
number of positive and negative pixels for training. 

    

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 5. (a) Ground truth label drawn in the image corresponding to one minute, (b) probability 
map, (c) detected reflections, (d) probability map after identifying reflections, (e) distance map, (f) 
modified probability map after multiplying by the distance map, (g) region growing segmentation 
results, (h) resulting prediction after closing operation drawn in the image corresponding to one 
minute. 

Figure 5. (a) Ground truth label drawn in the image corresponding to one minute, (b) probability map, (c) detected
reflections, (d) probability map after identifying reflections, (e) distance map, (f) modified probability map after multiplying
by the distance map, (g) region growing segmentation results, (h) resulting prediction after closing operation drawn in the
image corresponding to one minute.

2.2.2. Neural Network Architecture

The classification was performed by using an artificial neural network (ANN), which
has been proven to have the capability to model complex relationships between inputs
and outputs to find patterns in data. We trained our network in a supervised manner,
and we attempted to learn a function that maps an input to an output based on example
input–output pairs, with the input being the intensity curve of a pixel. The neural network
applied contains three layers: one input layer, a hidden layer with 15 nodes, and an
output layer.

Leave-one-out cross-validation at the patient level was applied: when testing the
algorithm for a specific patient, its pixels are removed from the training set and are not
used for training or validation.

2.2.3. Postprocessing

As an output of the ANN, the probability of each pixel of being precancerous is given,
which can be combined as shown in Figure 5b, resulting in a probability map. Reflections
were detected as in the preprocessing of training pixels (Figure 5c), and the probability was
set to 0.5 (Figure 5d). The probability map was then multiplied by a distance map with
maximum and minimum of 1 and 0.5 (Figure 5e). The distance map applied intends to
emphasize that precancerous regions tend to appear in the central regions of the cervix.
The final probability map is shown Figure 5f.

From the resulting probability map, region growing segmentation was applied as follows:

1. The first seed is randomly selected from the highest values of the modified probability
map and added to the region.
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2. The pixel’s four adjacent neighbors are separately analyzed. Any neighbor is consid-
ered to lie on the affected region if they satisfy two criteria:

i. Homogeneity criterion: the difference between the seed probability and the
neighbor should be less than a fixed threshold.

ii. Minimum probability criterion: the probability of the neighbor should be
above a threshold.

3. The newly added pixels are compared to their own neighbors under the same criteria.
4. Steps 2 and 3 are repeated until the criteria are not met for any neighbor of the pixels

lying on the region.
5. A new seed is selected such that it has the highest probability and has not been

identified as part of the region before.
6. The procedure is repeated until the predefined maximum number of seeds has been

distributed.

Following the region growing segmentation, a closing operation was performed,
which is dilation followed by erosion with the same kernel, and the contours of the found
regions were obtained. An example of the results of the region growing segmentation and
closing operation is shown in Figure 5g,h, respectively. Finally, a threshold was applied to
the size of the lesions detected, deciding whether they are neoplastic (positive) or not.

3. Results

In this section, we examine the results and performance of our classifier. Since the
number of sequences is low, leave-one-out cross-validation was applied at the patient level.
To guarantee class balance, the same number of negative pixels as total positive pixels
available for training were randomly selected. The parameters used are specified in Table 2.

Table 2. Algorithm parameters.

Preprocessing Parameters

Mean principal axis [0.3609, 0.5941, 0.7074]
Discarded number of frames First 10
Downsampling factor 0.1
Number of input features ANN 11
Range scaling coefficients used for data augmentation [0.9, 1.15]
Reflections’ threshold 0.25

ANN Parameters

Number of nodes 15
Number of hidden layers 1

Postprocessing Parameters

Homogeneity criteria probability threshold 0.27
Probability threshold 0.50
Reflections’ threshold 0.25
Number of seeds 5
Closing cluster kernel [7, 7]
Final size threshold 450

The classifier results will be compared to (i) histologic assessment and colposcopists’
diagnosis, and (ii) colposcopists’ annotations after VIA. Figure 6 shows the algorithm
results for five examples of the dataset.
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3.1. Comparision of the Final Sequence Classification, Colposcopists’ Classification,
and Histology Results

In this section, the results of our model are compared to the output of the histologic
assessment (negative or positive for CIN2+), considered as the reference standard. From
the 44 sequences classified, 39 were classified correctly as positive or negative, giving rise
to an accuracy of 0.89. The precision, sensitivity, and specificity achieved were 0.93, 0.90,
and 0.87, respectively (Table 3).

Table 3. Algorithm and colposcopists’ classification results based on histologic assessment.

Algorithm Colposcopist 1 Colposcopist 2 Colposcopist 3

True Positives 26 23 14 22
True Negatives 13 12 10 13
False Positives 2 3 5 2
False Negatives 3 6 15 7
Accuracy 0.89 0.80 0.55 0.80
Precision 0.93 0.88 0.74 0.92
Sensitivity 0.90 0.79 0.48 0.76
Specificity 0.87 0.80 0.67 0.87
Cohen’s kappa - 0.62 0.25 0.53

The 44 sequences of the database have been shown to three colposcopists and classified
as positive or negative, giving rise to the results shown in Table 3. None of the colposcopists
reached a better performance than the algorithm, achieving, on average, an accuracy,
precision, sensitivity, and specificity of 0.71, 0.85, 0.68, and 0.78, respectively. The Cohen’s
kappa coefficient between the three colposcopists and the proposed method has been
computed, which varies within the range from 0.25 to 0.62. Consequently, there is a fair to
substantial agreement between the algorithm and the three expert colposcopists.
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The 5 sequences wrongly classified by the algorithm are shown in Figure 7. The first
two are false positives: (a) an ectropion associated with inflammation and (b) an area of
metaplasia. Case (a) has also been misclassified by one of the colposopists. The last three
are false negative, (c), (d), and (e). For these cases, the transformation zone (TZ), i.e., the
area that almost all manifestations of cervical carcinogenesis occur, is not fully visible and
extends into the endocervical canal. In a case where precancerous lesions accompany TZ
into the endocervical canal, visual inspection may be negative. For this reason, (c), (d), and
(e) have also been misclassified by the colposcopists. Nevertheless, note that our model
has found lesions similar to the ground truth in (d) and (e), but due to their small size, it
has discarded them as negative.
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3.2. Comparision of the Predicted Lesions by the Algorithm and Annotations by Colposcopists
during VIA

VIA presents a high observer variability among colposcopists. Therefore, the annota-
tions drawn in the last frames of our sequences are subjective, a fact highlighted in Figure 8,
where the annotations given by the three colposcopists for five positive patients and the
resulting predictions are represented. Note that in Figure 8a–d, colposcopists even disagree
if lesions are placed in the two sides of the cervix or not, and in all cases, the annotations
are significantly different.
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Figure 8. Colposcopists’ annotations and algorithm’s predicted labels drawn in one-minute frames.

We have extracted the positive and negative pixels for training the annotations given
by the first colposcopist (represented in green) after erosion and dilation, but we have
estimated the performance of the lesion positioning of our model by comparing the results
to three available annotations. Note that the inaccuracy of the annotations is aggravated by
the movement, especially present in the borders of the lesions.

Each preprocessed dynamic image contains 150 × 150 pixels which are independently
classified. On the one hand, the corresponding annotation indicates us as to whether a pixel
lies on a neoplastic lesion or not. On the other hand, the proposed method, after the region
growing and closing operation, classifies every pixel as belonging to a neoplastic lesion or
not. By comparing both, we can compute for each image the accuracy, precision, sensitivity,
and specificity achieved by the classification of its pixels. Table 4 presents the results after
averaging among images and comparing them to the three available annotations. The
algorithm achieved, averaging the results for the three colposcopists’ annotations, a mean
accuracy, precision, sensitivity, and specificity of 0.92, 0.53, 0.48, and 0.96, respectively.
To evaluate the overlapping between the ground truth labels and the predicted ones, the
Intersection over Union (IoU) has been computed, which is, on average, 0.32.

Table 4. Results when comparing predicted lesions by the algorithm and visual inspection with
acetic acid (VIA) annotations by colposcopists.

Colposcopist 1 Colposcopist 2 Colposcopist 3

Accuracy 0.92 ± 0.10 0.92 ± 0.08 0.91 ± 0.15
Precision 0.57 ± 0.28 0.49 ± 0.29 0.55 ± 0.3

Sensitivity 0.46 ± 0.25 0.49 ± 0.29 0.5 ± 0.3
Specificity 0.97 ± 0.04 0.96 ± 0.05 0.96 ± 0.04

Intersection over Union (IoU) 0.32 ± 0.19 0.32 ± 0.20 0.33 ± 0.19

4. Discussion

In this study, we have developed and validated a smartphone-based solution that
automatically detects cervical precancer from videos taken during VIA, intended to be
used in sub-Saharan Africa as a triage method of HPV-positive women. We have measured
the diagnostic accuracy of the model for detecting CIN2+ lesions and compared with the
diagnostic accuracy of gynecologic oncologists. The proposed method has achieved an
accuracy, sensitivity, and specificity of 0.89, 0.9, and 0.87, using histologic assessment as a
reference standard.

The proposed algorithm results in a significant improvement compared to the reported
sensitivities and specificities of VIA, which vary between 0.25 and 0.80, and between 0.40
and 0.90 among studies [3,4,40,41]. Furthermore, in our study, we asked three expert
colposcopists blinded from the histopathologic diagnoses to classify the dynamic images
from our database. The algorithm outperformed all of three of the experts, achieving a
mean improvement of accuracy, sensitivity, and specificity of 17.42%, 21.84%, and 8.89%.
The Cohen’s kappa coefficient, averaging among colposcopists, is 0.47, which implies that
there is a moderate agreement between the proposed algorithm and the experts.

Tools using AI for cervical cancer screening have shown impressive effectiveness in
automatic classification of cervical neoplastic lesions, as shown in Table 5, where some
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of the latest results in the literature are presented. It is important to emphasize that our
algorithm presents comparable results to these state-of-the-art computer-aided diagnosis
techniques, but with a much simpler setting: only VIA images are used and acquired with
a smartphone, without any additional accessory. The other approaches in Table 5 require
the use of colposcopes, which are rarely available in low-income countries, and some of
them require a more sophisticated setup, acquiring images not only during VIA, but also
during VILI and with the green lens.

Table 5. Comparison of the proposed and state-of-the-art methods published between 2019 and 2021.

Accuracy Sensitivity Specificity Acquisition
Device

Number of
Images Captured

during VIA

Additional
Images Used

Number
of Patients

Asiedu et al. [22] 0.8 0.81 0.786 Portable
colposcope 1 VILI 134

Miyagi et al. [19] 0.82 0.80 0.88 Colposcope 1 None 330
Yue et al. [34] 0.96 0.95 0.98 Colposcope 5 VILI and green lens 679
Li et al. [33] 0.78 0.78 Not specified Colposcope 4 Pre-acetic acid 7668

Kudva et al. [42] 0.94 0.91 0.89 Colposcope 1 None 2198
Zhang et al. [43] 0.76 0.44 0.88 Colposcope 1 None 229

Proposed algorithm 0.89 0.9 0.87 Smartphone 120 None 44

Furthermore, in this work, we have been severely limited by the number of available
sequences. To overcome this limitation, the inputs to the neural network are pixels’ time
evolutions and leave-one-out cross-validation, at the patient level, has been applied. Nev-
ertheless, the pixel classification approach poses several challenges. First, the selection
of positive and negative pixels relies on very subjective colposcopists’ annotations and
they are affected by movement. The subjectivity of the annotations has been demonstrated
by comparing the annotations of the three colposcopists. We have palliated these issues
by (i) applying motion compensation, (ii) selecting the pixels after eroding and dilating
the annotations, and (iii) post-processing together the neural network’s output of all the
pixels of one dynamic image’s pixels, ensuring homogeneity between neighboring pixels.
Second, while the patient classification can be objectively evaluated by comparing it to the
histological assessment, the colposcopists’ annotations are not an objective ground truth of
the positions of the lesions. To have an estimation of the performance of the positioning,
the predicted lesions have been compared with three colposcopists’ annotations. Third,
specular reflections during recording hinder the classification of the pixels. For training,
our method discards the pixels containing reflections, which are automatically detected.
When predicting an image, the probability of the pixels containing reflections is set to 0.5,
before starting the postprocessing of the image.

Our model failed to classify 5 sequences out of 44: in 3 of them, TZ was not fully
visible and extended into the endocervical canal. The vast majority of precancers occur
in the TZ. Therefore, if TZ lies in the endocervical canal, precancerous lesions may not
be visible. For this reason, these three cases have been misclassified by colposcopists
and by the algorithm. A cervical ectropion associated with inflammation and a case of
metaplasia were misclassified as positive. Benign lesions such as inflammations, metaplasia,
leukoplakia, condyloma, and CIN1 will be added as an additional class in our model in the
near future. Our goal is implementing an algorithm able to distinguish between neoplastic
lesions, benign lesions, and normal epithelium.

Among the different advantages of our screening tool, the minimal training required
for using it and the increasing penetration rate of smartphones in LMICs make it ideal for
countries with limited healthcare resources, where it can be easily integrated into a single-
visit approach with the aim of reducing the preventable burden of morbidity, mortality,
disability, and of reducing inequality.

Because this is a proof-of-principle investigation, it has limitations. Our selected
dataset of video sequences contains a large number of positive cases, which does not
correspond to the CIN2+ prevalence of a real-world setting in sub-Saharan Africa. Although
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these results are promising, further work is needed to improve the performance of the
algorithm. First, we will increase the amount of training data and secondly, the upgraded
algorithm will be validated in Cameroon in a real-life diagnosis process.

5. Conclusions

This work presented a smartphone-based algorithm to detect precancerous lesions
from videos taken during VIA. Using the histological assessment as a gold standard, the
proposed model achieved an accuracy, sensitivity, and specificity of 0.89, 0.9, and 0.87.
Furthermore, the algorithm was compared to three gynecologic oncologists, outperforming
all of them. The proposed model could create a new opportunity to facilitate the triage of
HPV-positive women in LMICs.
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