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Abstract: Background: The apnea/hypopnea index (AHI) is the primary outcome of a polysomnog-
raphy assessment (PSG) for determining obstructive sleep apnea (OSA) severity. However, other
OSA severity parameters (i.e., total arousal index, mean oxygen saturation (SpO2%), etc.) are cru-
cial for a full diagnosis of OSA and deciding on a treatment option. PSG assessments and home
sleep tests measure these parameters, but there is no screening tool to estimate or predict the OSA
severity parameters other than the AHI. In this study, we investigated whether a combination of
breathing sounds recorded during wakefulness and anthropometric features could be predictive of
PSG parameters. Methods: Anthropometric information and five tracheal breathing sound cycles
were recorded during wakefulness from 145 individuals referred to an overnight PSG study. The
dataset was divided into training, validation, and blind testing datasets. Spectral and bispectral
features of the sounds were evaluated to run correlation and classification analyses with the PSG
parameters collected from the PSG sleep reports. Results: Many sound and anthropometric features
had significant correlations (up to 0.56) with PSG parameters. Using combinations of sound and
anthropometric features in a bilinear model for each PSG parameter resulted in correlation coefficients
up to 0.84. Using the evaluated models for classification with a two-class random-forest classifier
resulted in a blind testing classification accuracy up to 88.8% for predicting the key PSG parameters
such as arousal index. Conclusions: These results add new value to the current OSA screening tools
and provide a new promising possibility for predicting PSG parameters using only a few seconds of
breathing sounds recorded during wakefulness without conducting an overnight PSG study.

Keywords: obstructive sleep apnea; screening; machine learning; correlation; trachea; sleep report

1. Introduction

Obstructive sleep apnea (OSA) is a common disorder characterized by repetitive
partial or complete episodes of airflow obstruction that can result in intermittent hypoxia,
transient hypercapnia, and arousals from sleep. Commonly, the severity of OSA is mainly
determined by the apnea/hypopnea index (AHI), which represents the number of ap-
nea/hypopnea events per hour of sleep. Based on the AHI values for adults, the severity of
OSA is categorized into no-OSA (AHI < 5), mild (5 ≤ AHI < 15), moderate (15 ≤ AHI < 30),
and severe OSA (AHI ≥ 30) [1]. However, many other parameters are measured during
overnight polysomnography (PSG), the gold standard of sleep apnea detection.

Approximately 1 billion of the world’s population between the ages of 30 and 69 years
are estimated to have OSA [2]; yet, it is still underdiagnosed [3]. OSA diagnosis and
recommending a treatment option using the gold-standard PSG are expensive, laborious,
and time-consuming; also, PSG is not available in remote areas. There are portable PSG
monitoring devices that can be lent to individuals to assess their OSA overnight at home.
However, to recommend a treatment option, there is still a need for a full PSG study at
a sleep center. There are questionnaires such as STOP-BANG or the Epworth sleepiness
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score for a quick OSA screening, but they lack objectivity and have very poor specificity
(~20) [4,5], which can increase the waiting list and lead to unnecessary referrals to sleep
centers for full PSG studies; hence, adding unnecessary costs to the health care system. On
the other hand, undiagnosed OSA, in particular, increases the perioperative morbidity and
mortality risks for OSA patients undergoing surgery requiring full anesthesia [6]. Therefore,
there is a need for a quick, objective screening tool to aid fast and accurate results with
high sensitivity and specificity of OSA detection.

Our previous studies [7,8] have shown the ability to predict the severity of OSA, based
on AHI, by analyzing a few minutes of breathing sounds recorded during wakefulness.
We also demonstrated the effects of anthropometric information on the classification
process [7,9]. Our latest OSA screening algorithm, called AWakeOSA [8], resulted in a
blind testing accuracy >81% with a balanced specificity and sensitivity with a threshold of
AHI ≥ 15. The threshold of AHI ≥ 15 was used because it is the most clinically accepted
threshold to identify individuals with OSA who might benefit from the treatment [10].

Currently, AHI is the primary PSG parameter for determining an individual’s OSA
severity. However, other PSG parameters, such as total time of sleep (TST), total arousal
index, and mean oxygen saturation (SpO2%) of TST, are also important for a full clinical
diagnosis of OSA [11]. Using the AHI parameter alone neglects events’ duration, oxygen
desaturation depth, the difference of impact between apneic and hypopnic events, etc.
Nevertheless, knowing these parameters helps with understanding one’s OSA pathology
and choosing the proper treatment [12].

The upper airway (UA) of OSA patients is characterized by a structural deformation,
narrower cross-sectional area, and more regional stiffness compared to those of healthy
individuals [13,14]. These changes of the UA affect breathing sounds as they are generated
by the flow of air in the UA [15]. To the best of our knowledge, there is no published
work predicting PSG parameters, other than AHI, using a screening tool conducted during
wakefulness. Therefore, this study for the first time demonstrates the proof of concept of
a technique to predict PSG parameters representing OSA severity without a sleep study
and only using a few tracheal breathing sounds recorded during wakefulness and the
person’s anthropometric information such as neck circumference (NC), body mass index
(BMI), etc. Hence, we hypothesize that breathing sounds characteristics (features) would
be representative of the OSA severity. More specifically, we hypothesize that tracheal
breathing sounds have features capable of predicting PSG parameters such as total arousal
index, mean SpO2%, etc. that are related to OSA severity.

2. Materials and Methods

We attempted to solve a two-class classification problem to predict each PSG parameter
separately. The data of each PSG parameter was divided into two severity classes/groups
based on a threshold (see Section 2.3). One of the two groups represented the normal case,
while the other represented the abnormal case. For each PSG parameter, a classification
threshold was evaluated, distinctive features were selected, and a model was created using
anthropomorphic parameters and breathing sound features. Then the model was used
in a classification approach to predict the PSG parameter’s severity group (normal or
abnormal); violating the threshold (in the abnormal group) implied a high risk of OSA
severity; check Figure 1 for the general flow of the process.

2.1. Study Population

The data for this study were adopted from our previous study [8]. During wakefulness,
about 1–2 h prior to conducting the PSG study at Sleep Disorders Center in Misericordia
Health Centre (Winnipeg, Canada), breathing sound recording was performed. Patients
diagnosed with any other respiratory diseases were excluded. We obtained the PSG study
report of the participants after a sleep technician completed their overnight PSG assessment
analysis. All study participants signed an informed consent approved by the Biomedical
Research Ethics Board of the University of Manitoba (approved on 27 October 2011) prior
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to the breathing experiment. Out of the 199 individuals in our previous study, data of the
145 (60 females) participants who had a complete PSG report were considered in this study.

Diagnostics 2021, 11, x  3 of 20 
 

 

 
Figure 1. The general flow chart of the process. 

2.1. Study Population 
The data for this study were adopted from our previous study [8]. During wakeful-

ness, about 1–2 h prior to conducting the PSG study at Sleep Disorders Center in Miseri-
cordia Health Centre (Winnipeg, Canada), breathing sound recording was performed. Pa-
tients diagnosed with any other respiratory diseases were excluded. We obtained the PSG 
study report of the participants after a sleep technician completed their overnight PSG 
assessment analysis. All study participants signed an informed consent approved by the 
Biomedical Research Ethics Board of the University of Manitoba (approved on 27 October 
2011) prior to the breathing experiment. Out of the 199 individuals in our previous study, 
data of the 145 (60 females) participants who had a complete PSG report were considered 
in this study. 

2.2. Procedure and Measurements 
Prior to recording, we collected the height, weight, age, Mallampati score (MpS), neck 

circumference, and smoking history of each participant. For simplification, the AHI of 15 
was used to represent the anthropometric parameters in the two severity groups. We 
checked whether the data followed the normal distribution for each anthropometric pa-
rameter by using the Lilliefors test. The two severity groups were only matched in terms 
of age, and a t-test was used. 

All participants conducted a full overnight PSG study. The Sleep Centre used the 
Natus Sandman PSG collection system (Natus Canada, Oakville, ON, Canada), which rec-
orded 6 channels of electroencephalogram signals, chin and leg electromyography signals, 
electrooculography signals, electrocardiogram signals, snoring sounds, thorax and abdo-
men efforts signals, air flow and pressure signals, pulse and SpO2 signals, transcutaneous 
oxygen pressure signals, and video image for body position detection. A full overnight 
PSG study reports 79 different parameters reflecting on one’s OSA severity; they are listed 
in Table A1 of the Appendix A. The data in these reports were used for verification of our 
predictive modeling outcomes. 

Tracheal Breathing Sounds 
The tracheal breathing sounds were recorded using a Sony microphone (ECM77B—

Advance Electronics, Winnipeg, MB, Canada) during wakefulness in a supine position. 
The microphone was placed over the suprasternal notch of the trachea using a double-
sided adhesive ring tape. The acoustic signals were amplified, band-pass filtered (0.05–
5000 Hz, Biopac DA100C—BIOPAC Systems Inc., Goleta, CA, USA), and sampled at 
10,240 Hz. Participants were instructed to breathe five deep breaths through their nose, 
then another five cycles through their mouth; for more details on the recording protocol 
and the preprocessing stage, see [15]. The spectra and bi-spectra of the signals were esti-

Figure 1. The general flow chart of the process.

2.2. Procedure and Measurements

Prior to recording, we collected the height, weight, age, Mallampati score (MpS),
neck circumference, and smoking history of each participant. For simplification, the AHI
of 15 was used to represent the anthropometric parameters in the two severity groups.
We checked whether the data followed the normal distribution for each anthropometric
parameter by using the Lilliefors test. The two severity groups were only matched in terms
of age, and a t-test was used.

All participants conducted a full overnight PSG study. The Sleep Centre used the
Natus Sandman PSG collection system (Natus Canada, Oakville, ON, Canada), which
recorded 6 channels of electroencephalogram signals, chin and leg electromyography sig-
nals, electrooculography signals, electrocardiogram signals, snoring sounds, thorax and
abdomen efforts signals, air flow and pressure signals, pulse and SpO2 signals, transcu-
taneous oxygen pressure signals, and video image for body position detection. A full
overnight PSG study reports 79 different parameters reflecting on one’s OSA severity;
they are listed in Table A1 of the Appendix A. The data in these reports were used for
verification of our predictive modeling outcomes.

Tracheal Breathing Sounds

The tracheal breathing sounds were recorded using a Sony microphone (ECM77B—
Advance Electronics, Winnipeg, MB, Canada) during wakefulness in a supine position. The
microphone was placed over the suprasternal notch of the trachea using a double-sided adhe-
sive ring tape. The acoustic signals were amplified, band-pass filtered (0.05–5000 Hz, Biopac
DA100C—BIOPAC Systems Inc., Goleta, CA, USA), and sampled at 10,240 Hz. Participants
were instructed to breathe five deep breaths through their nose, then another five cycles
through their mouth; for more details on the recording protocol and the preprocessing
stage, see [15]. The spectra and bi-spectra of the signals were estimated using the welsh
method [16] and an indirect class conventional bispectrum estimator [17], respectively. The
breathing sounds’ characteristic features, used to predict AHI in our previous study [8],
were also used to predict the PSG parameters (other than AHI) in this study (see Table 1
for the list of features).
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Table 1. Descriptions and details of the selected anthropometric and sound features.

FL BM Feature’s Definition

F1 - Body mass index (BMI)

F2 - Age

F3 - Sex

F4 - Weight

F5 - Neck circumference (NC)

F6 - Mallampati score (MpS)

F7 InsN f 2=525
f 1=350 Mean o f P( f )

F8 ExpM f 2=130
f 1=235 Mean o f P( f )− f 2=1410

f 1=1260 Mean o f P( f )

F9 InsN f 2=115
f 1=275 Mean o f P( f )− f 2=1240

f 1=915 Mean o f P( f )

F10 InsM f 2=1800
f 1=75 Frequency o f the f irst peak o f P( f )

F11 InsM f 2=1700
f 1=75 Bandwidth o f the spectral centroid o f P( f )

F12 ExpM f 2=550
f 1=300 Bandwidth o f the spectral centroid o f P( f )

F13 InsM f 2=600
f 1=0 Frequency o f the f irst peak o f P( f ) using zero-crossing

F14 InsM Total B( f , f ) entropy

F15 InsM f 2=1515
f 1=1200 First − order moment o f the positive diagonal o f B( f , f )

F16 InsM f 2=1515
f 1=1200 First − order moment o f the negative diagonal o f B( f , f )

F17 ExpM f 2=235
f 1=130 Second − order moment o f the 0.5 f − f line o f B( f , f )

F18 InsN Weight center o f the positive diagonal o f B( f , f )

F19 InsN f 2=355
f 1=250 Mean o f the positive diagonal o f B( f , f )

F20 InsN f 2=355
f 1=250 Weight center o f B( f , f )

F21 InsN f 2=275
f 1=115 First − order moment o f the positive diagonal o f B( f , f )

F22 InsN f 2=525
f 1=350 Weight center o f the negative diagonal o f B( f , f )

F23 InsN f 2=350
f 1=245 Mean o f the slope o f P( f )

F24 InsN f 2=350
f 1=100 Bandwidth o f the spectral centroid o f P( f )

F25 InsM Higuchi fractal dimension

F26 InsM f 2=270
f 1=140 Geometric Mean o f B( f , f )

F27 InsM Total Weight center o f B( f , f )

F28 InsM f 2=270
f 1=140 First − order moment o f the 2 f − f line o f B( f , f )

F29 ExpM Total Weight center o f B( f , f )

F30 InsN f 2=275
f 1=130 Mean o f B( f , f )

F31 InsN f 2=275
f 1=130 Second − order moment o f the positive diagonal o f B( f , f )

F32 InsM f 2=230
f 1=130 Mean o f P( f )

F33 InsN f 2=280
f 1=130 Mean o f P( f )

F34 InsN f 2=340
f 1=240 Mean o f the slope o f P( f )
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Table 1. Cont.

FL BM Feature’s Definition

F35 InsN f 2=350
f 1=80 Bandwidth o f the spectral centroid o f P( f )

F36 InsN f 2=560
f 1=80 Spectral centroid o f P( f )

F37 InsM f 2=1800
f 1=0 Frequency o f the f irst peak o f P( f ) using zero-crossing

F38 InsM TotalWeight center o f the positive of diagonal B( f , f )

F39 InsM f 2=230
f 1=130 First − order moment o f the 2 f − f line o f B( f , f )

F40 InsM f 2=230
f 1=130 Second − order moment o f the 2 f − f line o f B( f , f )

F41 InsN f 2=280
f 1=130 Mean o f B( f , f )

F42 InsN f 2=280
f 1=130 Mean o f the negative diagonal o f B( f , f )

F43 InsN f 2=280
f 1=130 Second − order moment o f the negative diagonal o f B( f , f )

F44 ExpM f 2=485
f 1=375 Mean o f P( f )

F45 InsN f 2=500
f 1=360 Mean o f P( f )

F46 InsN f 2=1250
f 1=1010 Mean o f P( f )

F47 InsN f 2=370
f 1=270 Mean o f the slope o f P( f )

F48 ExpN f 2=550
f 1=450 Mean o f the slope o f P( f )

F49 ExpM f 2=600
f 1=200 Bandwidth o f the spectral centroid o f P( f )

F50 InsN f 2=620
f 1=440 Spectral centroid o f P( f )

F51 ExpN f 2=600
f 1=300 Bandwidth o f the spectral centroid o f P( f )

F52 InsM f 2=510
f 1=390 Weight center o f the 2 f − f line o f B( f , f )

F53 ExpM f 2=390
f 1=270 Weight center o f the negative diagonal o f B( f , f )

F54 ExpM f 2=390
f 1=270 Weight center o f the positive diagonal o f B( f , f )

F55 ExpN f 2=550
f 1=450 Mean o f the negative diagonal o f B( f , f )

F56 InsN f 2=510
f 1=355 Mean o f P( f )/ f 2=1070

f 1=820 Mean o f P( f )

F57 InsN f 2=350
f 1=250 Mean o f the slope o f P( f )

F58 InsM f 2=550
f 1=90 Spectral skewness o f P( f )

F59 InsN f 2=550
f 1=0 Frequency o f the f irst peak o f P( f ) using zero-crossing

F60 InsM f 2=250
f 1=120 Mean o f B( f , f )

F61 InsM f 2=250
f 1=120 First − order moment o f the positive diagonal o f B( f , f )

F62 InsN f 2=510
f 1=355 Weight center o f the negative diagonal o f B( f , f )

F63 InsN f 2=1070
f 1=820 Second − order moment o f the 2 f − f line o f B( f , f )

F64 ExpN f 2=600
f 1=100 Weight center o f the 0.5 f − f line o f B( f , f )

F65 InsN f 2=520
f 1=395 Mean o f P( f )

F66 InsM f 2=600
f 1=60 Frequency o f the peak o f P( f )
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Table 1. Cont.

FL BM Feature’s Definition

F67 InsN f 2=550
f 1=150 Spectral centroid o f P( f )

F68 InsM f 2=600
f 1=60 Weight center o f the 0.5 f − f line o f B( f , f )

F69 InsM f 2=600
f 1=60 Second − order moment o f the 2 f − f line o f B( f , f )

F70 InsN f 2=520
f 1=395 Weight center o f the positive diagonal o f B( f , f )

F71 InsN f 2=520
f 1=395 Mean o f the negative diagonal o f B( f , f )

F72 ExpN f 2=600
f 1=100 Weight center o f the negative diagonal o f B( f , f )

F73 InsM f 2=230
f 1=130 Mean o f P( f )/ f 2=1460

f 1=1260 Mean o f P( f )

F74 InsM f 2=1460
f 1=1090 First − order moment o f the positive diagonal o f B( f , f )

F75 InsM f 2=1460
f 1=1260 First − order moment o f the positive diagonal o f B( f , f )

F76 InsM f 2=1460
f 1=1090 Weight center o f the 0.5 f − f line o f B( f , f )

F77 InsM f 2=1460
f 1=1260 First − order moment o f the 0.5 f − f line o f B( f , f )

F78 ExpM f 2=1410
f 1=1260 First − order moment o f the negative diagonal o f B( f , f )

F79 InsN f 2=1600
f 1=300 First − order moment o f the 0.5 f − f line o f B( f , f )

Ins/Exp: inspiration/expiration, M/N: mouth/nose, mean: arithmetic mean, P(f): the power spectrum, B(f, f): the
bispectrum, f : frequency, FL: feature label, and BM: breathing maneuver.

2.3. Threshold Determination, Data Preparation, and Feature Selection

Classification threshold determination for each PSG Parameter—80% of the data were
used in the threshold determination process. In order to find a proper threshold for each
PSG parameter, we scaled the PSG parameter’s values to be normally distributed with an
absolute skewness less than 0.5. Basically, if the skewness was ≤−0.5, the PSG parameter
was squared, and if the skewness was ≥0.5, the logarithm scale of the PSG parameter
was used. Then, the overall range of a PSG parameter’s values was divided into 20 equal
divisions to form threshold candidates for the classification process. For example, the TST
range was between 0.5 and 7 h, and it had a skewness <0.5; thus, it did not require scaling.
With the above 20 equal divisions, the potential classification thresholds were found as
0.825, 1.15, 1.475, . . . 6.675.

Classification threshold selection—For each threshold candidate of a PSG parameter,
the power spectra of the sound signals of those with PSG parameter values less than the
candidate threshold were grouped together, and the same was done for those with values
higher than the candidate threshold. The average curve for each of these two groups was
calculated with its 95% confidence interval. At some frequency bandwidths, there was no
overlap between the curves of the two groups; see Figure 2 for the gaps (i.e., 150–300 Hz,
720–900 Hz, 1050–1120 Hz, and 1450–1700 Hz). Then, the average absolute difference
between the 95% confidence intervals’ boundaries at the non-overlapped regions was
evaluated. This process was repeated for each candidate threshold. Then, the threshold
with the largest gap between the two groups and a balanced number of individuals (at
least 20 individuals per group) was selected as an optimum candidate threshold. If there
was more than one selected threshold for a PSG parameter, the one with a physiological
meaning was selected. These three criteria to choose a threshold reduced the number of
PSG parameters to be predicted from 78 to 51.
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Figure 2. The average power spectrum of the signal recorded from mouth inspiration. Dotted lines
represent the 95% confidence interval. Red and blue color curves represent the groups with more
and less than a threshold, respectively. The arrow shows a large gap beyond the confidence interval
between the two groups.

Figure 3 shows an example of the gap values for different thresholds for a PSG param-
eter (i.e., the mean SpO2% during total TST); thresholds <92% or >95% had high average
gap values, but the number of individuals per group was less than 20. The physiological
meanings for different PSG parameters were discussed in the literature, in particular, the
percentage of stages III and REM of sleep [18], total arousal index [19], mean SpO2% [20],
and oxygen desaturation (de-SpO2) index [21].
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Dataset segmentation—The dataset was divided into five folds of blind testing datasets;
one-fold consisted of 20% of the data above the PSG parameter threshold and 20% of the
data below the threshold. Taking the 20% above and below the threshold guaranteed no
significant difference between the testing and training datasets, and it also made the two
datasets comparable with the same severity level. Each fold of testing (20% of the data)
with its corresponding training and validation dataset (80% of the whole dataset) were
separately analyzed. Herein, we call them the five data configurations.

Feature selection—The sound features were adopted from different anthropometric
groups of features used in our previous work [8]; therefore, some features might be highly
correlated with one another and need to be filtered. Thus, for a PSG parameter, the
correlation coefficient (CC) between every pair of sound features was calculated; if the CC
was ≥0.95, we calculated the CC between each of the two features and the PSG parameter,
and the feature with the lowest CC was subsequently removed. This approach guarantees
removing similar features. Then, each feature’s data were divided into two groups based
on the selected PSG threshold. The outliers for each feature were identified in each PSG
severity group and then removed [22]; this process is delineated in our previous work [8].
The significance between the two severity groups was calculated, and only features with a
p-value ≤ 0.05 were selected. Therefore, each PSG parameter has its own significant set of
features. These processes were separately applied to the five data configurations.

2.4. Bilinear Modeling and Correlation Analysis

A bilinear polynomial model of three variables (a three-feature combination of sound
and anthropometric features) was generated for each PSG parameter; see Equation (1)
for the polynomial model (X, Y, and Z are three features, and a is a constant). We did
not use higher-order models to avoid overfitting due to the small sample size. For sim-
plicity, we mentioned only the methodology using the three-feature combination, but
the presented results are for three-, four-, and five-feature combinations. The model was
created from each three-feature combination using the multiple linear regression function
in MatlabTM2019 [23]. Each model produced a new array of values representing the PSG
parameter. The correlation coefficient using Spearman [24] was evaluated between the
predicted (model) and actual values (extracted from the PSG report).

Predicted PSG parameter = a1XY + a2XZ + a3YZ + a4X + a5Y + a6Z + a7 (1)

The number of models was then reduced based on their correlation with the actual
PSG parameter and the percentage of overlap between different PSG parameter severity
groups; the first 20 models with the highest correlation and the lowest overlap percentage
were selected for the classification process; see [25] for more details on this step.

2.5. Classification and Prediction of PSG Parameters

Breathing sound signals are stochastic signals in nature, and the OSA disorder has
many confounding factors that affect breathing sounds, which increases the heterogeneity
and complexity of data. Therefore, it is required to have a classification process with
multiple thresholds for each feature to overcome the complexity and heterogeneity; such a
classification approach is possible in the random-forest (RF) algorithm [26]. In addition, RF
does not require a normality assumption. Therefore, a classification process was performed
using a two-class RF classifier with 1200 iterations using the selected threshold and the
selected models. For each iteration, the classifier used 65% of the training/validation
data for training and the other 35% for validation. Then, the validated classifier was used
to classify the blind testing dataset. The input for the classifier was the predicted PSG
parameter using the evaluated bilinear model; thus, it was a one-feature RF classifier.
The models (three-, four-, five-feature combinations) that provided the validation and
testing accuracies ≥70% and validation and testing sensitivities and specificities ≥50%
were selected as the best models. Then, we combined the classifier outcomes of three
models to find the best combinations covering most of the dataset while providing the
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highest classification performance. The final classification was based on the majority voting
of each individual classifier; see [25] for more details on this section. The classification
process was separately applied on the five data configurations, and then their results were
averaged for each PSG parameter separately.

3. Results

The selected anthropometric (F1–F6) and sound features (F7–F79) for the analyses are
listed in Table 1. The anthropometric characteristics of the study sample are presented in
Table 2.

Table 2. Anthropometric information characteristics of the study.

Non-OSA (AHI < 15) n = 80 OSA (AHI ≥ 15) n = 65

AHI, events/h, median (IQR) 2.9 (0.33–6.68) 29.4 (20.1–57.3)

Age, years, median (IQR) 50 (41–57) 51 (43–59)

Sex, n (%)
Female 43 (53.8) 17 (26.2)
Male 37 (46.3) 48 (73.8)

BMI, kg/m2, median (IQR) 31.2 (26.9–35.7) 34.8 (30.2–39.8)

NC, cm, mean (SD) 39.87 (4.98) 44.37 (3.74)

MpS, n (%)
I 45 (56.3) 15 (23.1)
II 21 (26.3) 23 (35.4)
III 11 (13.8) 19 (29.2)
IV 3 (3.8) 8 (12.3)

OSA is obstructive sleep apnea, NC is neck circumference, MpS is Mallampati score, IQR is interquartile range,
and SD is standard deviation. AHI is Apnea-hypopnea index; BMI is body mass index.

Table 3 shows the most significant and useful correlation coefficients (a maximum
of 0.56) between the PSG parameters and anthropometric/sound features. Only those
PSG parameters that resulted in high testing results are presented. Males had a higher
number of apneic events than females. The increase in neck circumference and/or BMI
was associated with an increase in the number of obstructive events and arousals. A
high arousal index and apnea/hypopnea index were associated with an increase in the
power of the high-frequency components of tracheal breathing sounds. Furthermore, a
high oxygen desaturation index was associated with a high first resonance frequency in
breathing sounds. Figure 4 shows the scatter plots of four PSG parameters with their
correlated features.

Table 4 shows the bilinear model feature combinations with the highest overall cor-
relation coefficients with the PSG parameters. Only the highest two model coefficients
are represented in parentheses right to the relevant feature, and the bolded feature is the
one with the highest contribution to the constructed model. Furthermore, F1 scores and
testing classification accuracies of the blind testing dataset using the corresponding models
to predict the PSG parameters are presented. The constructed models had correlation
coefficients >0.8 with nine OSA severity parameters. The supine arousal index had a
correlation coefficient of 0.8 with the F5-F6-F37-F46-F74 bilinear model, and the average
power of high frequencies for the nose inspiratory signal was the main parameter in the
bilinear model. The hypopnea index had a correlation coefficient of 0.82 with the F4-F5-
F12-F26-F38 bilinear model, and neck circumference was the main parameter in the bilinear
model. The testing classification accuracy and F1 score were 92% and 95%, respectively, for
predicting AHI measured in the supine position with a threshold of 15. The scatter plots
of the four previously mentioned PSG parameters with their highly correlated bilinear
equation models are shown in Figure 5. These plots show the enhancement in correlation
coefficients and linear relationships compared to those shown in Figure 4.
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Table 3. The spearman correlation coefficients between the anthropometric/sound feature and the PSG parameters.

PSG# PSG Parameter Anthropometric and Sound Feature Correlation Coefficient

PSG1 Stage 3 Duration % F2 −0.35

PSG2 EEG Total Arousal Index F11/F37/F8 0.35/0.33/−0.31

PSG3 Total Arousal Index F5/F11/F37 0.41/0.35/0.33

PSG4 Supine Arousal Index F5/F37/F46/F53 0.46/0.36/0.31/0.31

PSG5 Non-Supine Arousal Index F1/F4/F10/F69 0.37/0.36/0.36/0.36

PSG6 Supine Sleep % F1/F17 −0.29/0.29

PSG7 Apnea Total Index F3/F5/F51 −0.5/0.41/−0.38

PSG8 Apnea Non-REM Index F3/F5/F49 −0.51/0.46/−0.39

PSG9 Apnea Total Index (No Central) F3/F5/F51 −0.44/0.38/−0.33

PSG10 Apnea Non-REM Index (No Central) F3/F5/F49/F37 −0.45/0.43/−0.37/0.36

PSG11 Hypopnea Total Index F5/F26/F4/F37/F49 0.54/−0.45/0.41/0.4/−0.4

PSG12 Hypopnea REM Index F31 −0.34

PSG13 Hypopnea Non-REM Index F5/F4/F37/F57 0.53/0.41/0.41/0.4

PSG14 Hypopnea Total Index (No Central) F5/F32/F4/F49 0.54/−0.43/0.41/−0.4

PSG15 Hypopnea REM Index (No Central) F1/F20/F4/F6 0.3/0.28/0.27/0.26

PSG16 Hypopnea Non-REM Index (No Central) F5/F4/F37/F49 0.53/0.41/0.41/−0.4

PSG17 Supine Sleep Obs. Apnea F5/F3/49 0.43/−0.43/−0.36

PSG18 Supine Sleep Obs. Hypopnea F5/F26/F49 0.51/−0.38/−0.37

PSG19 Supine Sleep A + H (with central) F5/F37/F57/F10 0.6/0.41/0.38/0.36

PSG20 Supine Sleep A + H (without central) F5/F57/F26/F49 0.55/0.42/−0.4/−0.41

PSG21 Left-side Sleep Obs. Hypopnea F5/F1/61/F32 0.45/0.42/−0.38/−0.38

PSG22 Left-side Sleep A + H (with central) F5/F1/F32/F4 0.45/0.4/−0.39/0.36

PSG23 Left-side Sleep A + H (without central) F1/F32/F4 0.4/−0.4/0.37

PSG24 Right-side Sleep Obs. Hypopnea F26/F69/F1/F38 −0.44/−0.43/0.41/0.41

PSG25 Right-side Sleep A + H (with central) F8/F5/F67/F27 −0.43/0.43/0.41/0.4

PSG26 Right-side Sleep A + H (without central) F21/F26/F5/F8/F9 −0.43/−0.44/0.42/−0.43/−0.42

PSG27 Total AHI (With Central) F5/F21/F25/F54 0.56/−0.41/0.4/0.4

PSG28 Total AHI (Without Central) F5/F37/F57/F49 0.54/0.43/0.43/−0.42

PSG29 De-SpO2 Index Total F5/F60/F37/F1 0.56/−0.44/0.42/0.4

PSG30 De-SpO2 Index Non-REM F5/F4/F21/F37 0.55/0.43/−0.41/0.42

PSG31 De-SpO2 Index REM F1/F5/F8/F23 0.41/0.39/−0.38/0.38

PSG32 Mean SpO2% Total TST F1/F47/F4 −0.4/−0.39/−0.36

PSG33 Mean SpO2% Supine F47 −0.32

PSG34 Mean SpO2% Non-Supine F1/F4/F47/F37 −0.47/−0.43/−0.4/−0.39

PSG35 REM Latency/TST F28/F29 −0.29/0.25

PSG36 Wake after sleep Onset/TST F2 0.39

F: feature label, BMI: body mass index, NC: neck circumference, A+H: apnea and hypopnea, and REM: rapid eye movement. PSG#: PSG
parameter number. SpO2: Oxygen saturation. De-SpO2: Oxygen desaturation. EEG: Electroencephalogram. TST: total time of sleep.
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Table 4. The correlation coefficients between the PSG parameters and the outcomes of the bilinear
model for the entire dataset, as well as their blind testing F1 scores and classification accuracies.

PSG# Feature Combination CC F1-Score ACC%

PSG1 F2 F3(0.31) F46(−0.14) F74 F77 0.63 0.63 63

PSG2 F8(7.3) F12 F46(110) F49 F56 0.7 0.82 80

PSG3 F5(−31) F6(246) F37 F53 F68 0.74 0.76 81

PSG4 F5 F6(−21) F37 F46(86) F74 0.8 0.62 64

PSG5 F1 F10 F49(0.73) F56(−3.2) F72 0.71 0.62 74

PSG6 F2 F4 F33(0.07) F35 F46(2.3) 0.64 0.64 64

PSG7 F3(106) F18 F48(−1367) F50 F77 0.75 0.74 71

PSG8 F3(8.4) F37 F48(−562) F49 F51 0.72 0.67 71

PSG9 F3 F19 F46(30.7) F48(−342) F77 0.69 0.6 67

PSG10 F3(30.7) F6(64.4) F19 F53 F78 0.72 0.63 68

PSG11 F4(2.6) F5(13.4) F12 F26 F38 0.82 0.83 82

PSG12 F4(−5.5) F5 F12(−14) F49 F74 0.72 0.67 79

PSG13 F4 F5(17.1) F11 F49(−5.5) F52 0.81 0.6 62

PSG14 F1(−7.2) F4(5.5) F5 F12 F15 0.76 0.78 78

PSG15 F1(−0.96) F29 F30 F49(−1.3) 0.59 0.6 78

PSG16 F5 F6(36.3) F10 F46(288) F53 0.78 0.8 79

PSG17 F3 F46(11.1) F57(79.1) F66 F77 0.75 0.73 77

PSG18 F4 F5(9.9) F10 F17 F49(2.1) 0.79 0.62 71

PSG19 F5(3.1) F38 F57(−730) F68 F71 0.79 0.95 92

PSG20 F5(32.3) F6(−99) F11 F50 F74 0.83 0.86 85

PSG21 F4(3.9) F5(−10.8) F24 F42 0.64 0.78 74

PSG22 F4 F5(−3.3) F6(33.48) F32 F66 0.73 0.67 69

PSG23 F1 F6(473) F32(−80.5) F49 F53 0.73 0.63 67

PSG24 F6(−15.3) F8(3.9) F10 F38 F41 0.81 0.77 73

PSG25 F5(−76) F6(113) F19 F54 F77 0.79 0.67 60

PSG26 F6 F9(−18) F26 F38 F46(−23.5) 0.84 0.73 72

PSG27 F5(−161) 21 F25(−2550) F38 F51 0.81 0.67 75

PSG28 F5 F11 F25(−1889) F57(−4046) F71 0.8 0.63 67

PSG29 F1 F5(4.4) F6(−8.4) F37 F49 0.77 0.63 73

PSG30 F5(12.73) F21 F53 F65(−89.5) F77 0.78 0.84 80

PSG31 F6(44) F16 F29 F30 F65(24.7) 0.8 0.89 92

PSG32 F1(−0.005) F24(0.0009) F29 F51 0.65 0.62 58

PSG33 F18 F28 F29 F47(0.15) F68(−0.0004) 0.63 0.72 68

PSG34 F1(0.0157) F2(−0.006) F31 F37 F53 0.71 0.8 72

PSG35 F1(0.22) F2 F28 F32(−0.13) F36 0.63 0.74 74

PSG36 F2(−0.75) F22 F39 F46(1.78) F76 0.55 0.7 65
F: feature label, PSG#: PSG parameter number, CC: correlation coefficient with the outcomes of the bilinear model,
and ACC: testing classification accuracy. Feature coefficient in the model is represented in the parentheses, and
bolded features are the ones with the highest contribution to the constructed model.

Figure 6 shows the average inspiratory/expiratory power spectra during mouth/nose
breathing of four PSG parameter groups. The corresponding sound spectra to each PSG
parameter are represented using two curves (i.e., blue and red) with their 95% confidence
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intervals (dotted lines). The blue curve represents the average curves of individuals with
the PSG parameters less than the selected threshold, while the red curve represents the
average curves of individuals with the PSG parameters more than the selected threshold.
There is a big gap in the range of 100–300 Hz between the mouth inspiratory power spectra
of patients with a supine arousal index of more than 30 and less than 30.
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On average, a healthy adults’ sleep duration is 5% in stage 1, 50% in stage 2, 20%
in stage 3, and 20–25% in REM [18]. We used thresholds of 10% for stage 3 sleep as an
indicator of abnormal sleep duration. The total arousal index threshold depends on age; it
is 10 for young, 15–20 for middle-aged, and 25 for elders [19]. We used 25 as the threshold
for predicting the total arousal index, as it had more separability in the power spectra of
the training dataset (80% of the data). Furthermore, it has been mentioned that a normal
mean SpO2% is between 93% and98% [20]; thus, we used 93–94% as a threshold of the
beginning of an abnormal percentage. Moreover, de-SPO2 index is a value usually between
0 to 135, and it is highly correlated with AHI [21]; thus, we used 15 as the threshold for
de-SPO2 index similar to an AHI of 15.

Table 5 shows the selected thresholds for the PSG parameters. The presented PSG pa-
rameters are the ones with average classification accuracies of more than 70% and average
classification sensitivities and specificities of more than 60%. Table 5 also shows the aver-
age validation and blind testing classification accuracies, sensitivities, specificities, and F1
scores using the outcomes of the bilinear equations for the five dataset configurations. The
proposed method resulted in a blind testing classification accuracy of up to 88.8%. Predict-
ing the obstructive hypopnea index measured on the supine position with a threshold of
15 resulted in 81.6% blind testing accuracy with 86.1% validation accuracy and comparable
and high F1 scores for both the validation and blind testing processes. In addition, many
PSG parameters were predicted with reasonable and comparable accuracies, sensitivities,
and specificities.
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Table 5. The average validation and testing accuracies for classifying data around the selected threshold using the outcomes
of the bilinear models.

PSG# Threshold VF1 VCA% VSpec% VSens% TF1 TCA% TSpec% TSens%

PSG1 10% 0.66 80.7 88.9 61.9 0.73 78.2 80.1 73.8

PSG2 15 0.80 75.3 69.1 79.2 0.83 81.6 78.0 83.8

PSG3 25 0.65 74.6 83.9 60.6 0.66 73.6 81.6 61.7

PSG4 30 0.75 76.8 78.7 74.5 0.72 73.4 73.7 73.7

PSG5 20 0.70 76.2 81.8 67.9 0.76 84.7 97.8 63.3

PSG6 30% 0.79 74.9 63.1 83.7 0.75 72.4 76.4 70.5

PSG7 1 0.81 80.8 80.6 81.1 0.83 82.9 82.1 84.0

PSG8 1 0.79 82.3 88.7 74.1 0.73 80.7 85.4 70.1

PSG9 3.5 0.70 83.4 90.4 66.6 0.76 85.6 89.7 78.1

PSG10 0.5 0.76 77.9 80.7 74.8 0.79 80.6 79.6 82.6

PSG11 10 0.78 83.0 88.5 75.0 0.74 80.4 82.2 76.4

PSG12 20 0.70 77.8 84.6 67.0 0.68 79.5 91.3 60.6

PSG13 7.5 0.83 84.5 86.7 81.9 0.78 80.4 80.1 80.2

PSG14 5 0.87 82.8 66.9 91.6 0.90 88.8 82.5 94.7

PSG15 20 0.67 76.2 82.0 66.3 0.68 80.6 89.6 62.5

PSG16 5 0.83 80.7 77.2 83.5 0.83 82.6 77.7 90.3

PSG17 1 0.77 77.1 80.1 74.1 0.77 79.9 85.6 74.5

PSG18 15 0.86 86.1 85.3 86.9 0.78 81.6 82.1 79.8

PSG19 15 0.87 85.7 83.9 86.9 0.82 79.7 71.8 86.3

PSG20 20 0.84 83.4 80.6 85.8 0.81 81.4 79.4 83.4

PSG21 2.5 0.76 78.8 82.1 74.1 0.78 80.4 78.5 84.8

PSG22 7 0.76 84.4 92.1 70.3 0.71 80.2 85.9 69.8

PSG23 4 0.74 80.1 87.1 69.6 0.75 79.5 78.0 79.2

PSG24 1 0.84 81.6 80.3 82.6 0.82 80.4 77.5 82.5

PSG25 0.5 0.87 82.5 71.9 88.2 0.91 88.4 94.3 86.9

PSG26 0.5 0.86 82.2 75.6 86.1 0.87 83.7 85.0 84.2

PSG27 15 0.77 78.7 81.2 75.8 0.78 82.4 85.0 79.3

PSG28 15 0.76 80.5 87.1 71.7 0.75 80.5 83.9 74.5

PSG29 15 0.75 77.2 81.1 72.8 0.78 82.0 84.5 78.7

PSG30 5 0.87 83.0 70.7 89.5 0.89 86.5 77.9 91.6

PSG31 25 0.78 83.3 91.5 71.5 0.77 82.5 83.9 80.0

PSG32 94% 0.72 70.5 68.7 72.0 0.74 71.5 68.6 75.4

PSG33 94% 0.69 72.3 77.0 66.6 0.78 77.8 74.7 81.9

PSG34 93% 0.88 81.8 60.1 90.9 0.92 87.8 77.1 92.3

PSG35 0.45 0.78 72.4 64.3 77.2 0.88 86.5 100 80.6

PSG36 0.15 0.78 72.4 60.0 79.8 0.79 74.1 63.9 80.8

F: feature label, PSG#: PSG parameter number, V: validation, T: blind testing, CA: classification accuracy using the outcomes of the bilinear
models, F1: F1 score, Spec: specificity, and Sens: sensitivity.

4. Discussion

The results of this study show the possibility to predict AHI and other OSA severity
parameters with high precision during wakefulness by using only anthropometric informa-
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tion and five cycles of breathing sounds. Thus, the proposed methodology shows great
potentials for a quick, informative, and highly reliable OSA screening tool.

Tracheal breathing sounds’ features showed significant correlations with some of the
PSG parameters (Table 3). Feature 37 showed a high positive correlation with the total
arousal index. This suggests that individuals with high arousal index have a high first
frequency peak. The peaks at higher frequency represent stiffness, and that implies high
UA dilator muscle activities [15]. Feature 47 was found to be high in individuals with a low
average SpO2% during sleep. This indicates high power at low frequencies among those
with high SpO2%; this is also congruent with our previous findings [15] as individuals
with AHI < 15 have high power in the low-frequency components. Furthermore, this high
power indicates a wide UA and, thus, low UA resistance.

As shown in Table 1, most of the selected sound features were extracted from in-
spiratory breathing; inspiration is an active process, hence, the UA muscles are active.
This finding was expected because the UA muscle atrophy is one of the causes of the UA
collapse leading to OSA. Thus, we expected the characteristic features of the breathing
sounds in relation to OSA to be mostly selected during the inspiratory phase. This is also
congruent with our previous studies [15,27], in which the characteristic breathing sounds
in correlation with AHI were mostly selected from an inspiratory phase. Furthermore,
PSG parameters were correlated with various sound features, which were extracted from
linear and non-linear algorithms and from time and frequency domains. This indicates
the complexity of the UA structure and the ability of breathing sound features to identify
different UA characteristics.

Using models of bilinear equations resulted in better correlations with the PSG pa-
rameters than using only one-feature combinations (see Figure 5 and Table 4). Based on
the selected thresholds and using the selected model combinations, we were able to reach
up to 86.1% and 88.8% average validation and blind testing classification accuracy (VCA
and TCA) with comparable sensitivities and specificities. Using five different data con-
figurations and executing the entire process for each configuration ensured the unbiased
reliability of the extracted models. The F1 scores, sensitivities, and specificities show the
ability of the classifiers to have unbiased decisions. Therefore, the results demonstrate
the ability to predict the PSG parameters with high confidence using combinations of
anthropometric and breathing sounds features. The proposed method could be used as a
fast-diagnosing tool that predicts several OSA severity parameters, and could benefit sleep
physicians, anesthesiologists, and dentists.

Anthropometric parameters such as BMI, NC, age, etc. have shown their ability to
screen for OSA; however, they provide low screening specificity. Nevertheless, as shown
in this study, they had significant correlations with the attributes describing the OSA
disorder evaluated by a PSG assessment. Sleep efficiency (TST/total time on bed) and
stage 3 duration (representing deep sleeping) have been shown to decrease with age [18].
Additionally, average SpO2% and REM sleep duration were shown to decrease with obesity
(increasing BMI) [28]. Our data (Table 3) are congruent with the above observations. In
addition, our results showed that many event indices per hour during sleep, such as total
arousal index, hypopnea index, total de-SaO2 index, etc., are positively correlated with NC.
Furthermore, NC was selected as a significant feature in many models predicting several
PSG parameters, which indicates its importance on the OSA screening process. Therefore,
the outcomes confirm the relationships between OSA risk factors and the pathophysiology
of the disorder.

In our previous works, as well as the work of other researchers [8,15,29–31], tracheal
breathing sound features showed a high correlation with OSA severity in terms of AHI
values. Investigating the power spectra for PSG threshold determination revealed some
interesting observations. For example, the selected threshold for the apnea index in this
study was 1, while it was 10 for the hypopnea index. This implies that an apneic event
affects the UA much more significantly than a hypopnic event. Additionally, the selected
supine arousal index threshold was 25, while it was 30 for the non-supine arousal index.
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The thresholds for hypopnea index and de-SPO2 index during non-REM sleep were lower
than the threshold selected during REM sleep. Furthermore, the thresholds for obstruction
indexes, in general, were higher when the patients were sleeping on their left side than
those recorded when they were on their right side. These observations show a significant
change in the UA structure in supine or right-side body positions and/or during non-REM
sleep, and imply that the upper airway is at a higher risk if an obstruction event happens.

Limitations and Future Work

The main limitation of this study was its sample size (n = 145), which, given the
heterogeneity of the OSA population, is not enough to represent the whole OSA population.
Future studies with a larger sample size are needed to replicate and validate the claims
of this paper. The thresholds were mainly selected based on the separability between the
two PSG parameter groups, while having a reasonable number of individuals in each
group. Therefore, it is recommended to replace some of the selected thresholds with the
ones that imply high health risks. The dataset could not be matched in terms of all of the
mentioned anthropometric parameters due to the small sample size. Once we have a larger
sample, we will investigate predicting each PSG parameter in different anthropometric
groups, the same as the AWakeOSA analysis. Another limitation is that in this study, all
the features were adopted from our previous study [8], and not extracted from visualizing
the spectra of each PSG parameter. In future work, we will investigate the spectra for each
PSG parameter separately to extract the most prominent features and assess whether those
features would be much different from the current ones. Furthermore, the PSG reports
did not have any information regarding average apnea or hypopnea events’ duration and
average oxygen desaturation percentage duration during obstructive events. Once we
resume our sleep studies in our sleep lab, we will consider recording them in our future
studies, and investigate the possibility of their prediction.

5. Conclusions

Some PSG parameters, such as AHI, sleep duration, number of arousals, etc., are
crucial to understand the pathophysiology of the OSA disorder and choose an appropriate
treatment. Evaluating the parameters using simple means during wakefulness in a short
time is an essential step towards an expeditious treatment; moreover, it will significantly
help anesthesiologists who need to know the OSA status of their patients prior to surgery.
This study is the first to investigate the prediction of the PSG parameters other than AHI
during wakefulness using individuals’ anthropometric information and a few minutes
of breathing sound recording. The promising results of this study for predicting the PSG
parameters with meaningful features may pave the way for reducing the waiting lines and
providing sleep clinics with a quick and reliable OSA screening tool.
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Appendix A

Table A1. Shows the extracted PSG parameters from the PSG report.

PSG Parameter

Total sleep time TST

Sleep Efficiency

Total Awakenings

Total Awakenings Index

Stage 1 Duration %

Stage 2 Duration %

Stage 3 Duration %

Stage 4 Duration %

REM Duration %

Respiratory-Related Total Arousal Index

PLM-Related Total Arousal Index

EEG Total Arousal Index

Total Arousal Index

NREM Total Arousal Index

REM Arousal Index

Supine Arousal Index

Non-Supine Arousal Index

Total Arousal + Awakenings Index

Supine Sleep %

Prone Sleep %

Left-Side Sleep %

Right-Side Sleep

Apnea Total Index

Apnea REM Index

Apnea Non-REM Index

Apnea Total Index (No Central)

Apnea REM Index (No Central)

Apnea Non-REM Index (No Central)

Hypopnea Total Index

Hypopnea REM Index

Hypopnea Non-REM Index

Hypopnea Total Index (No Central)

Hypopnea REM Index (No Central)

Hypopnea Non-REM Index (No Central)

Supine Sleep Obs. Apnea

Supine Sleep Mix. Apnea

Supine Sleep Cen. Apnea

Supine Sleep Obs. Hypopnea

Supine Sleep A+H (with central)
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Table A1. Cont.

PSG Parameter

Supine Sleep A+H (without central)

Prone Sleep Obs. Apnea

Prone Sleep Mix. Apnea

Prone Sleep Cen. Apnea

Prone Sleep Obs. Hypopnea

Prone Sleep A+H (with central)

Prone Sleep A+H (without central)

Left-side Sleep Obs. Apnea

Left-side Sleep Mix. Apnea

Left-side Sleep Cen. Apnea

Left-side Sleep Obs. Hypopnea

Left-side Sleep A+H (with central)

Left-side Sleep A+H (without central)

Right-side Sleep Obs. Apnea

Right-side Sleep Mix. Apnea

Right-side Sleep Cen. Apnea

Right-side Sleep Obs. Hypopnea

Right-side Sleep A+H (with central)

Right-side Sleep A+H (without central)

Total AHI (With Central)

Total AHI (Without Central)

De-SpO2 Index Total

De-SpO2 Index Non-REM

De-SpO2 Index REM

Mean SpO2% Wake

Mean SpO2% NREM

Mean SpO2% REM

Mean SpO2% Total TST

Mean SpO2% Supine

Mean SpO2% Non-Supine

SpO2% ≤ 85% percentage of TST

Sleep Onset

REM Latency

REM Latency Less wake

Wake after sleep Onset

Sleep Onset/TST

REM Latency/TST

REM Latency Less wake/TST

Wake after sleep Onset/TST

Table A2 shows the best classification results for each PSG parameter. Furthermore, it
shows the validation and blind testing classification accuracies for one of the data configurations.
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Table A2. The validation accuracy for classifying data around the selected threshold using the outcomes of the bilinear
models for each of the three severity groups separately.

PSG Parameters Threshold VCA2_Total VCA2_<15 VCA2_>15 TCA2_Total TCA2_<15 TCA2_>15

Stage 3 Duration % 10% 85.71% 85.00% 84.44% 75.00% 83.33% 25.00%

Total Arousal Index 25 70.87% 72.88% 63.64% 80.95% 85.00% 0.00%

Apnea Total Index 1 79.46% 75.00% 84.09% 82.61% 81.82% 100.00%

Apnea Non-REM Index 1 83.33% 86.57% 78.72% 90.00% 92.59% 66.67%

Hypopnea Total Index 10 90.09% 96.83% 81.25% 85.71% 82.61% 100.00%

Hypopnea Non-REM Index 7.5 81.74% 81.82% 75.51% 85.71% 80.00% 100.00%

Hypopnea Total Index (No Central) 5 83.04% 79.03% 86.00% 93.33% 91.67% 100.00%

Supine Sleep Obs. Apnea 1 75.24% 70.97% 79.07% 86.96% 86.36% 100.00%

Supine Sleep Obs. Hypopnea 15 81.31% 80.65% 82.22% 77.78% 76.19% 83.33%

Supine Sleep A+H (with central) 15 86.67% 86.89% 86.36% 88.89% 86.96% 100.00%

Total AHI (With Central) 15 83.48% 89.23% 76.00% 86.67% 87.50% 83.33%

Total AHI (Without Central) 15 86.84% 93.75% 76.00% 85.71% 85.71% 85.71%

De-SpO2 Index Total 15 81.42% 84.13% 74.00% 92.86% 100.00% 75.00%

Mean SpO2% Total TST 94% 69.09% 63.93% 75.51% 72.00% 68.42% 83.33%

Mean SpO2% Supine 94% 81.40% 78.00% 80.56% 81.25% 91.67% 50.00%

Mean SpO2% Non-Supine 93% 86.09% 87.10% 84.91% 76.19% 72.22% 100.00%

Wake after sleep Onset/TST 0.15 73.53% 67.80% 76.74% 69.23% 66.67% 50.00%

V: validation, T: blind testing, CA2: classification accuracy using the outcomes of the second-order models, Total: all data, < 15: group of
AHI < 15, and > 15: group of AHI > 15.
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